搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超透镜聚焦光环的产生及其在冷分子光学囚禁中的应用

李军依 叶玉儿 凌晨 李林 刘泱 夏勇

引用本文:
Citation:

超透镜聚焦光环的产生及其在冷分子光学囚禁中的应用

李军依, 叶玉儿, 凌晨, 李林, 刘泱, 夏勇

Generation of focusing ring of metalens and its application in optical trapping of cold molecules

Li Jun-Yi, Ye Yu-Er, Ling Chen, Li Lin, Liu Yang, Xia Yong
PDF
HTML
导出引用
  • 超表面可以对入射光场的相位、偏振、幅度等自由度进行精确调控, 为发展下一代基于量子态片上实验平台提供了一种新途径, 具有重要的应用前景. 本文提出了一种新型的超表面结构, 即具有不同占空比的硅结构光栅单元构成的超透镜, 在焦平面上可形成聚焦光环. 研究了在焦平面上环形光场的强度分布和不同数值孔径超透镜的聚焦特性. 采用这种超透镜聚焦光环来构建一个氟化镁(MgF)分子的光学存储环, 计算了MgF分子在聚焦光场中所受的光学势和偶极力, 对MgF分子束在存储环运动过程进行了Monte-Carlo模拟. 研究结果表明, 设计的超表面结构具有很好的聚焦特性, 聚焦光环的光场强度比入射光增强了55.1倍; 同时可以实现对MgF分子的装载并囚禁在表面存储环内.
    Metasurface can precisely control degrees of freedom of the phase, polarization, and amplitude of the incident light field. It provides a new way to develop the next generation of the experimental platform of quantum-state manipulation on-chip, which has important application prospects. This paper proposes a new type of metasurface structure, that is, a metalens composed of silicon grating elements with different duty ratios that can form a focusing ring on the focal plane. The intensity distribution of the ring light field in the focal plane and the focusing characteristics of metalens with different numerical apertures are studied. An optical storage ring of magnesium fluoride (MgF) molecule is constructed by using this kind of metalens focusing ring. The optical potential and dipole force of the MgF molecule in the focused light field are calculated, and the dynamic process of MgF molecule motion in the storage ring is simulated by the Monte-Carlo method. The research results show that for the incident light of 1064-nm radially polarized light, the designed metasurface structure has good focusing characteristics, and the light field intensity of the focusing ring is 55.1 times stronger than that of the incident light. The focal length of the annular light field is 22 μm and the full width at half maximum of the light intensity distribution in the focal plane is 0.8 μm, and the numerical aperture of the hyperlens is 0.69. The maximum dipole potential of MgF molecules in the light field is 32 μK, which can realize the loading of MgF molecules and trap them in the surface storage ring.
      通信作者: 刘泱, liuyang59@mail.sysu.edu.cn ; 夏勇, yxia@phy.ecnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 91836103, 11974434)和广东省自然科学基金(批准号: 2020A1515011159)
      Corresponding author: Liu Yang, liuyang59@mail.sysu.edu.cn ; Xia Yong, yxia@phy.ecnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91836103, 11974434) and the Natural Science Foundation of Guangdong Province(Grant No. 2020A1515011159)
    [1]

    Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 123009

    [2]

    Genevet P, Capasso F, Aieta F, Khorasaninejad M, Devlin R 2017 Optica 4 139Google Scholar

    [3]

    Chen W T, Zhu A Y, Capasso F 2020 Nat. Rev. Mater. 5 604Google Scholar

    [4]

    Arbabi A, Arbabi E, Kamali S M, Horie Y, Han S, Faraon A 2016 Nat. Commun. 7 1

    [5]

    Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F 2016 Science 352 1190Google Scholar

    [6]

    Wang S, Wu P C, Su V C, Lai Y C, Chu C H, Chen J W, Lu S H, Chen J, Xu B, Kuan C H 2017 Nat. Commun. 8 1Google Scholar

    [7]

    Wang S, Wu P C, Su V C, Lai Y C, Chen M K, Kuo H Y, Chen B H, Chen Y H, Huang T T, Wang J H 2018 Nat. Nanotech. 13 227Google Scholar

    [8]

    Chen W T, Zhu A Y, Sanjeev V, Khorasaninejad M, Shi Z, Lee E, Capasso F 2018 Nature Nanotech. 13 220Google Scholar

    [9]

    王漱明, 李涛, 祝世宁 2018 物理 47 379Google Scholar

    Wang S M, Li T, Zhu S N 2018 Phsics 47 379Google Scholar

    [10]

    肖行健, 祝世宁, 李涛 2020 红外与激光工程 49 61

    Xing X J, Zhu S N, Li T 2020 Infrared Laser Eng. 49 61

    [11]

    欧凯, 郁菲茏, 陈金, 李冠海, 陈效双 2021 红外与激光工程 50 24

    Ou K, Yu F L, Chen J, Li G H, Chen X S 2021 Infrared Laser Eng. 50 24

    [12]

    莫昊燃, 纪子韬, 郑义栋, 梁文耀, 虞华康, 李志远 2021 红外与激光工程 50 40

    Mo H R, Ji Z T, Zheng Y D, Liang W Y, Yu H K, Li Z Y 2021 Infrared Laser Eng. 50 40

    [13]

    Reichel J, Hänsel W, Hänsch T 1999 Phys. Rev. Lett. 83 3398Google Scholar

    [14]

    Hinds E, Hughes I 1999 J. Phys. D Appl. Phys. 32 R119Google Scholar

    [15]

    Folman R, Krüger P, Schmiedmayer J, Denschlag J, Henkel C 2002 Adv. Atom Mol. Opt. Phy. 48 263

    [16]

    Kitching J 2018 Phys. Rev. Appl. 5 031302Google Scholar

    [17]

    Nshii C, Vangeleyn M, Cotter J P, Griffin P F, Hinds E, Ironside C N, See P, Sinclair A, Riis E, Arnold A S 2013 Nat. Nanotech. 8 321Google Scholar

    [18]

    Imhof E, Stuhl B K, Kasch B, Kroese B, Olson S E, Squires M B 2017 Phys. Rev. A 96 033636Google Scholar

    [19]

    McGilligan J P, Griffin P F, Elvin R, Ingleby S J, Riis E, Arnold A S 2017 Sci. Rep. 7 1Google Scholar

    [20]

    Zhu L, Liu X, Sain B, Wang M, Schlickriede C, Tang Y, Deng J, Li K, Yang J, Holynski M, Zhang S, Zentgraf T, Bongs K, Lien Y-H, Li G 2020 Sci. Adv. 6 eabb6667Google Scholar

    [21]

    Barker D, Norrgard E, Klimov N, Fedchak J, Scherschligt J, Eckel S 2019 Phys. Rev. Appl. 11 064023Google Scholar

    [22]

    Elvin R, Hoth G W, Wright M, Lewis B, McGilligan J P, Arnold A S, Griffin P F, Riis E 2019 Opt. Express 27 38359Google Scholar

    [23]

    Cai W, Yu H, Xu S, Xia M, Li T, Yin Y, Xia Y, Yin J 2018 J. Opt. Soc. Am. B 35 3049Google Scholar

    [24]

    Yu H, Mao Z, Li J, Ye Y, Yin Y, Xia Y, Yin J 2020 J. Opt. 2 2

    [25]

    Crompvoets F M, Bethlem H L, Jongma R T, Meijer G 2001 Nature 411 174Google Scholar

    [26]

    Van der Poel A P, Dulitz K, Softley T P, Bethlem H L 2015 New J. Phys. 17 055012Google Scholar

    [27]

    Anderegg L, Augenbraun B L, Bao Y, Burchesky S, Cheuk L W, Ketterle W, Doyle J M 2018 Nat. Phys. 14 890Google Scholar

    [28]

    Yan K, Wei B, Yin Y, Xu S, Xu L, Xia M, Gu R, Xia Y, Yin J 2020 New J. Phys. 22 033003Google Scholar

  • 图 1  (a)单元结构的示意图, Si柱宽度为W, 高度为H, SiO2基底的在周期为P; (b)和(c)分别表示扫描单元衬底周期和占空比得到的相位、透射率二维图; (d)当P = 380 nm时, 相位和透射率分别与占空比之间的关系, 黑色实线为透射率曲线, 红色实线为相位变化曲线

    Fig. 1.  (a) Schematic diagram of the unit structure, the width of the Si column is W, the height is H, and the period of the SiO2 substrate is P; (b) and (c) represent the two-dimensional diagram of the phase and transmittance obtained by scanning the period and duty cycle of the unit structure, respectively; (d) when P = 380 nm, the dependence of the phase and transmittance on the duty cycle, respectively, the black solid line is the transmittance curve, and the red solid line is the phase change curve.

    图 2  超表面环形透镜设计原理图 (a)超表面环形光场形成的原理图; (b)半径方向截面光栅排布结构示意图; (c)当焦距f = 22 μm时, 对应的相位分布图, 红色实线为所需相位曲线, 蓝色原点为单元结构实际所需的分立相位值

    Fig. 2.  Design principle diagram of the metasurface ring lens: (a) Principle diagram of the formation of the ring light field; (b) layout structure diagram of the cross section of the half grating; (c) corresponding phase distribution for f = 22 μm, the red solid line is the required phase curve, and the blue dot is the discrete phase value required by the unit structure.

    图 3  超表面环形光场的光强分布 (a)焦平面上二维光强度分布; (b)焦平面上一维光强度分布

    Fig. 3.  Intensity distribution of ring light field on the metasurface: (a) Two-dimensional intensity distribution on focal plane; (b) one-dimensional intensity distribution on focal plane.

    图 4  数值孔径NA对焦平面上聚焦光环的最大光强的影响

    Fig. 4.  Effect of numerical aperture NA on the maximum intensity of the ring light field on the focal plane.

    图 5  MgF分子在环形聚焦光场中所受光学势和偶极力(见插图)

    Fig. 5.  Optical potential and dipole force(inset firure) of MgF molecule in ring focused light field.

    图 6  MgF分子束在存储环运动若干圈的飞行时间谱. 插图是探测原理示意图

    Fig. 6.  Time-of-flight spectrum of MgF molecular beam moving in the storage ring for several cycles. The illustration is the schematic diagram of molecule detection.

    图 7  单个MgF分子在表面储存环中运动运动轨迹图, 其中红色虚线为分子在储存环中运动的俯视图, 也就是运动轨迹在xoy平面的投影

    Fig. 7.  Motion trajectory of a single MgF molecule in the surface storage ring, in which the red dotted line is the top view of the motion of the molecule in the storage ring, that is, the projection of the motion trajectory on the xoy plane.

  • [1]

    Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 123009

    [2]

    Genevet P, Capasso F, Aieta F, Khorasaninejad M, Devlin R 2017 Optica 4 139Google Scholar

    [3]

    Chen W T, Zhu A Y, Capasso F 2020 Nat. Rev. Mater. 5 604Google Scholar

    [4]

    Arbabi A, Arbabi E, Kamali S M, Horie Y, Han S, Faraon A 2016 Nat. Commun. 7 1

    [5]

    Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F 2016 Science 352 1190Google Scholar

    [6]

    Wang S, Wu P C, Su V C, Lai Y C, Chu C H, Chen J W, Lu S H, Chen J, Xu B, Kuan C H 2017 Nat. Commun. 8 1Google Scholar

    [7]

    Wang S, Wu P C, Su V C, Lai Y C, Chen M K, Kuo H Y, Chen B H, Chen Y H, Huang T T, Wang J H 2018 Nat. Nanotech. 13 227Google Scholar

    [8]

    Chen W T, Zhu A Y, Sanjeev V, Khorasaninejad M, Shi Z, Lee E, Capasso F 2018 Nature Nanotech. 13 220Google Scholar

    [9]

    王漱明, 李涛, 祝世宁 2018 物理 47 379Google Scholar

    Wang S M, Li T, Zhu S N 2018 Phsics 47 379Google Scholar

    [10]

    肖行健, 祝世宁, 李涛 2020 红外与激光工程 49 61

    Xing X J, Zhu S N, Li T 2020 Infrared Laser Eng. 49 61

    [11]

    欧凯, 郁菲茏, 陈金, 李冠海, 陈效双 2021 红外与激光工程 50 24

    Ou K, Yu F L, Chen J, Li G H, Chen X S 2021 Infrared Laser Eng. 50 24

    [12]

    莫昊燃, 纪子韬, 郑义栋, 梁文耀, 虞华康, 李志远 2021 红外与激光工程 50 40

    Mo H R, Ji Z T, Zheng Y D, Liang W Y, Yu H K, Li Z Y 2021 Infrared Laser Eng. 50 40

    [13]

    Reichel J, Hänsel W, Hänsch T 1999 Phys. Rev. Lett. 83 3398Google Scholar

    [14]

    Hinds E, Hughes I 1999 J. Phys. D Appl. Phys. 32 R119Google Scholar

    [15]

    Folman R, Krüger P, Schmiedmayer J, Denschlag J, Henkel C 2002 Adv. Atom Mol. Opt. Phy. 48 263

    [16]

    Kitching J 2018 Phys. Rev. Appl. 5 031302Google Scholar

    [17]

    Nshii C, Vangeleyn M, Cotter J P, Griffin P F, Hinds E, Ironside C N, See P, Sinclair A, Riis E, Arnold A S 2013 Nat. Nanotech. 8 321Google Scholar

    [18]

    Imhof E, Stuhl B K, Kasch B, Kroese B, Olson S E, Squires M B 2017 Phys. Rev. A 96 033636Google Scholar

    [19]

    McGilligan J P, Griffin P F, Elvin R, Ingleby S J, Riis E, Arnold A S 2017 Sci. Rep. 7 1Google Scholar

    [20]

    Zhu L, Liu X, Sain B, Wang M, Schlickriede C, Tang Y, Deng J, Li K, Yang J, Holynski M, Zhang S, Zentgraf T, Bongs K, Lien Y-H, Li G 2020 Sci. Adv. 6 eabb6667Google Scholar

    [21]

    Barker D, Norrgard E, Klimov N, Fedchak J, Scherschligt J, Eckel S 2019 Phys. Rev. Appl. 11 064023Google Scholar

    [22]

    Elvin R, Hoth G W, Wright M, Lewis B, McGilligan J P, Arnold A S, Griffin P F, Riis E 2019 Opt. Express 27 38359Google Scholar

    [23]

    Cai W, Yu H, Xu S, Xia M, Li T, Yin Y, Xia Y, Yin J 2018 J. Opt. Soc. Am. B 35 3049Google Scholar

    [24]

    Yu H, Mao Z, Li J, Ye Y, Yin Y, Xia Y, Yin J 2020 J. Opt. 2 2

    [25]

    Crompvoets F M, Bethlem H L, Jongma R T, Meijer G 2001 Nature 411 174Google Scholar

    [26]

    Van der Poel A P, Dulitz K, Softley T P, Bethlem H L 2015 New J. Phys. 17 055012Google Scholar

    [27]

    Anderegg L, Augenbraun B L, Bao Y, Burchesky S, Cheuk L W, Ketterle W, Doyle J M 2018 Nat. Phys. 14 890Google Scholar

    [28]

    Yan K, Wei B, Yin Y, Xu S, Xu L, Xia M, Gu R, Xia Y, Yin J 2020 New J. Phys. 22 033003Google Scholar

  • [1] 王玥, 王豪杰, 崔子健, 张达篪. 双谐振环金属超表面中的连续域束缚态. 物理学报, 2024, 73(5): 057801. doi: 10.7498/aps.73.20231556
    [2] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性. 物理学报, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [3] 赖镇鑫, 张也, 仲帆, 王强, 肖彦玲, 祝世宁, 刘辉. 基于合成维度拓扑外尔点的波长选择热辐射超构表面. 物理学报, 2024, 73(11): 117802. doi: 10.7498/aps.73.20240512
    [4] 李豪, 庞永强, 屈冰玥, 郑江山, 徐卓. 光学透明超表面透镜及其无线通信效率增强. 物理学报, 2024, 73(14): 144104. doi: 10.7498/aps.73.20240464
    [5] 白宇, 张振方, 杨海滨, 蔡力, 郁殿龙. 基于非对称吸声器的发动机声学超表面声衬. 物理学报, 2023, 72(5): 054301. doi: 10.7498/aps.72.20222011
    [6] 刘有海, 秦天翔, 王英策, 亢兴旺, 刘君, 吴佳琛, 曹良才. 简单光学成像技术及其研究进展. 物理学报, 2023, 72(8): 084205. doi: 10.7498/aps.72.20230092
    [7] 黄晓俊, 高焕焕, 何嘉豪, 栾苏珍, 杨河林. 动态可调谐的频域多功能可重构极化转换超表面. 物理学报, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [8] 范辉颖, 罗杰. 非厄密电磁超表面研究进展. 物理学报, 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [9] 孙胜, 阳棂均, 沙威. 基于反射超表面的偏馈式涡旋波产生装置. 物理学报, 2021, 70(19): 198401. doi: 10.7498/aps.70.20210681
    [10] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [11] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用. 物理学报, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [12] 谢智强, 贺炎亮, 王佩佩, 苏明样, 陈学钰, 杨博, 刘俊敏, 周新星, 李瑛, 陈书青, 范滇元. 基于Pancharatnam-Berry相位超表面的二维光学边缘检测. 物理学报, 2020, 69(1): 014101. doi: 10.7498/aps.69.20191181
    [13] 严巍, 王纪永, 曲俞睿, 李强, 仇旻. 基于相变材料超表面的光学调控. 物理学报, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [14] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [15] 范庆斌, 徐挺. 基于电磁超表面的透镜成像技术研究进展. 物理学报, 2017, 66(14): 144208. doi: 10.7498/aps.66.144208
    [16] 郭文龙, 王光明, 李海鹏, 侯海生. 单层超薄高效圆极化超表面透镜. 物理学报, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [17] 范亚, 屈绍波, 王甲富, 张介秋, 冯明德, 张安学. 基于交叉极化旋转相位梯度超表面的宽带异常反射. 物理学报, 2015, 64(18): 184101. doi: 10.7498/aps.64.184101
    [18] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 圆极化波反射聚焦超表面. 物理学报, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [19] 李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证. 物理学报, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [20] 陈泳屹, 秦莉, 佟存柱, 王立军. 金属-介质光栅结构表面等离子体耦合效率的模拟研究. 物理学报, 2013, 62(16): 167301. doi: 10.7498/aps.62.167301
计量
  • 文章访问数:  5422
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-08
  • 修回日期:  2021-04-15
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-20

/

返回文章
返回