搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于格子Boltzmann方法的幂律流体二维顶盖驱动流转捩研究

张恒 任峰 胡海豹

引用本文:
Citation:

基于格子Boltzmann方法的幂律流体二维顶盖驱动流转捩研究

张恒, 任峰, 胡海豹

Transitions of power-law fluids in two-dimensional lid-driven cavity flow using lattice Boltzmann method

Zhang Heng, Ren Feng, Hu Hai-Bao
PDF
HTML
导出引用
  • 研究非牛顿流体转捩问题, 可为调控非牛顿流体动力特性提供理论基础. 相对于牛顿流体转捩问题, 非牛顿流体转捩研究较少, 缺乏转捩雷诺数精细预报方法. 论文以格子Boltzmann方法为核心求解器, 以典型非牛顿流体幂律模型为例, 开展了幂律流体二维顶盖驱动流转捩模拟, 给出剪切变稀和剪切增稠流体的第一转捩雷诺数, 并分析了转捩雷诺数附近流场时频域特性及模态分布. 结果表明, 剪切变稀流体和剪切增稠流体的第一转捩雷诺数与牛顿流体差异显著, 且在转捩临界雷诺数附近监控点处速度分量均呈现周期性变化趋势. 通过对流场速度和涡量的本征正交分解发现, 不同类型的流体在转捩临界雷诺数附近, 前两阶模态均为流场的主模态, 能量占比超过95%, 且同类型流体不同雷诺数的主模态间具有相似的结构.
    Studying transitions from laminar to turbulence of non-Newtonian fluids can provide a theoretical basis to further mediate their dynamic properties. Compared with Newtonian fluids, transitions of non-Newtonian fluids turning are less focused, thus being lack of good predictions of the critical Reynolds number (Re) corresponding to the first Hopf bifurcation. In this study, we employ the lattice Boltzmann method as the core solver to simulate two-dimensional lid-driven flows of a typical non-Newtonian fluid modeled by the power rheology law. Results show that the critical Re of shear-thinning (5496) and shear-thickening fluids (11546) are distinct from that of Newtonian fluids (7835). Moreover, when Re is slightly larger than the critical one, temporal variations of velocity components at the monitor point all show a periodic trend. Before transition of the flow filed, the velocity components show a horizontal straight line, and after transition , the velocity components fluctuate greatly and irregularly. Through fast Fourier transform for the velocity components, it is noted that the velocity has a dominant frequency and a harmonic frequency when Re is marginally larger than the critical one. Besides, the velocity is steady before transition of flow filed, so it appears as a point on the frequency spectrum. As the flow filed turns to be turbulent, the frequency spectrum of the velocity component appears multispectral. Different from a single point in the velocity phase diagram before transition, the velocity phase diagram after transition forms a smooth and closed curve, whose area is also increasing as Re increases. The center point of the curve moves along a certain direction, while movement directions of different center points are different. Proper orthogonal decompositions for the velocity and vorticity field reveal that the first two modes, in all types of fluids, are the dominant modes when Re is close to the critical one, with energy, occupying more than 95% the whole energy. In addition, for one type of fluid, the dominant modes at different Re values have similar structures. Results of the first and second modes of velocity field show that the modal peak is mainly distributed in vicinity of the cavity wall.
      通信作者: 胡海豹, huhaibao@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52071272, 1210021247)、陕西省自然科学基础研究计划(批准号: 2020JC-18)、中央高校基本科研业务费专项资金(批准号: 3102020HHZY030014, 3102021HHZY030002)和河南省水下智能装备重点实验室开放基金(批准号: KL01B2101)资助的课题
      Corresponding author: Hu Hai-Bao, huhaibao@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52071272, 1210021247), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2020JC-18), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 3102020HHZY030014, 3102021HHZY030002), and the Open Fund of Henan Key Laboratory of Underwater Intelligent Equipment, China (Grant No. KL01B2101)
    [1]

    Ghia U, Ghia K N, Shin C 1982 J. Comput. Phys. 48 387Google Scholar

    [2]

    Yu H, Luo L S, Girimaji S S 2006 Comput. Fluids. 35 957Google Scholar

    [3]

    Lin L S, Chang H W, Lin C A 2013 Comput. Fluids. 80 381Google Scholar

    [4]

    Burggraf O R 1966 J. Fluid Mech. 24 113Google Scholar

    [5]

    Peng F, Shiau Y H, Hwang R R 2003 Comput. Fluids. 32 337Google Scholar

    [6]

    Bruneau C H, Saad M 2006 Comput. Fluids. 35 326Google Scholar

    [7]

    Auteri F, Parolini N, Quartapelle L 2002 J. Comput. Phys. 183 1Google Scholar

    [8]

    Sahin M, Owens R G 2003 Int. J. Numer. Methods Fluids 42 57Google Scholar

    [9]

    Gong X, Xu Y, Zhu W, Xuan S, Jiang W, Jiang W 2014 J. Compos Mater. 48 641Google Scholar

    [10]

    Giuntoli A, Puosi F, Leporini D, Starr F W, Douglas J F 2020 Sci. Adv. 6 eaaz0777Google Scholar

    [11]

    Johnston B M, Johnston P R, Corney S, Kilpatrick D 2004 J. Biomech. 37 709Google Scholar

    [12]

    Zhao C, Zholkovskij E, Masliyah J H, Yang C 2008 J. Colloid Interface Sci. 326 503Google Scholar

    [13]

    Hojjat M, Etemad S G, Bagheri R, Thibault J 2011 Int. Commun. Heat Mass Transf. 38 144Google Scholar

    [14]

    Chen S, Doolen G D 1998 Annu. Rev. Fluid Mech. 30 329Google Scholar

    [15]

    Shan X, Chen H 1993 Phys. Rev. E 47 1815Google Scholar

    [16]

    Hou S, Zou Q, Chen S, Doolen G, Cogley A C 1995 J. Comput. Phys. 118 329Google Scholar

    [17]

    He X, Chen S, Doolen G D 1998 J. Comput. Phys. 146 282Google Scholar

    [18]

    Boyd J, Buick J, Green S 2006 J. Phys. A: Math. Gen. 39 14241Google Scholar

    [19]

    Wang C H, Ho J R 2011 Comput. Math. Appl. 62 75Google Scholar

    [20]

    Chen Y L, Cao X D, Zhu K Q 2009 J. Non-Newtonian Fluid Mech. 159 130Google Scholar

    [21]

    Nejat A, Abdollahi V, Vahidkhah K 2011 J. Non-Newtonian Fluid Mech. 166 689Google Scholar

    [22]

    d'Humieres D 2002 Philos. Trans. Roy. Soc. A 360 437Google Scholar

    [23]

    Ren F, Song B, Zhang Y, Hu H 2018 Comput. Fluids. 173 29Google Scholar

    [24]

    Wei Y, Wang Z, Yang J, Dou H S, Qian Y 2015 Comput. Fluids. 118 167Google Scholar

    [25]

    Guo Z, Shi B, Wang N 2000 J. Comput. Phys. 165 288Google Scholar

    [26]

    Ziegler D P 1993 J. Stat. Phys. 71 1171Google Scholar

    [27]

    Yu D, Mei R, Shyy W 2003 41 st Aerospace Sciences Meeting and Exhibit Reno, USA, January 6−9, 1999 p953

    [28]

    Gabbanelli S, Drazer G, Koplik J 2005 Phys. Rev. E 72 046312Google Scholar

    [29]

    Hall K C, Thomas J P, Dowell E H 2000 AIAA J. 38 1853Google Scholar

    [30]

    Taira K, Brunton S L, Dawson S T, et al. 2017 AIAA J. 55 4013Google Scholar

    [31]

    Cazemier W, Verstappen R, Veldman A 1998 Phys. Fluids 10 1685Google Scholar

    [32]

    Poliashenko M, Aidun C K 1995 J. Comput. Phys. 121 246Google Scholar

  • 图 1  算例模型示意图

    Fig. 1.  Schematic diagram of calculation model.

    图 2  LBM与幂律模型耦合计算流程示意图

    Fig. 2.  Diagram of coupling calculation process between LBM and power law model.

    图 3  顶盖驱动流在中心线处的速度分布

    Fig. 3.  Velocity distribution at center line of lid-driven flow.

    图 4  转捩临界雷诺数

    Fig. 4.  Transition critical Reynolds number.

    图 5  三类流体在速度监控点处的时频域特性 (a), (d) n = 1, Re = 7500, 8500, 16000; (g) n = 1, Re = 8500; (b), (e) n = 0.75, Re = 5500, 6500, 10000; (h) n = 0.75, Re = 6500; (c), (f) n = 1.25, Re = 9500, 13000, 20000; (i) n = 1.25, Re = 13000

    Fig. 5.  Time-frequency spectrum characteristics at the velocity monitoring point for three types of fluids: (a), (d) n = 1, Re = 7500, 8500, 16000; (g) n = 1, Re = 8500; (b), (e) n = 0.75, Re = 5500, 6500, 10000; (h) n = 0.75, Re = 6500; (c), (f) n = 1.25, Re = 9500, 13000, 20000; (i) n = 1.25, Re = 13000.

    图 6  在监控点处的速度相图 (a) 牛顿流体; (b) 剪切变稀流体; (c) 剪切增稠流体

    Fig. 6.  Velocity phase diagrams at the monitoring point: (a) Newtonian fluid; (b) shear-thinning fluid; (c) shear-thickening fluid.

    图 7  速度u的各阶模态的能量占比 (a) 牛顿流体; (b) 剪切变稀流体; (c) 剪切增稠流体

    Fig. 7.  Energy share of each order of mode for velocity u: (a) Newtonian fluid; (b) shear thinning-fluid; (c) shear-thickening fluid.

    图 8  涡量的各阶模态的能量占比 (a) 牛顿流体; (b) 剪切变稀流体; (c) 剪切增稠流体

    Fig. 8.  Vortex energy share of each order of mode: (a) Newtonian fluid; (b) shear-thinning fluid; (c) shear-thickening fluid.

    图 9  牛顿流体的水平速度的各阶模态图 (a), (b), (c) Re = 8500时, 平均场、一阶模态与二阶模态; (d), (e), (f) Re = 9000时, 平均场、一阶模态与二阶模态

    Fig. 9.  Modal diagrams of horizontal velocity of Newtonian fluid: (a), (b) and (c) The mean field, the first and second modes when Re = 8500; (d), (e), (f) mean field, first-order mode and second-order mode when Re = 9000

    图 10  剪切变稀流体的水平速度的各阶模态图 (a), (b), (c) Re = 5700时, 平均场、一阶模态与二阶模态; (d), (e), (f) Re = 6000时, 平均场、一阶模态与二阶模态

    Fig. 10.  Modal diagrams of horizontal velocity of shear-thinning fluid: (a), (b), (c) The mean field, the first and second modes when Re = 5700; (d), (e), (f) mean field, first-order mode and second-order mode when Re = 6000.

    图 11  剪切增稠流体的水平速度的各阶模态图 (a), (b), (c) Re = 13000时, 平均场、一阶模态与二阶模态; (d), (e), (f) Re = 13500时, 平均场、一阶模态与二阶模态

    Fig. 11.  Modal diagrams of horizontal velocity of shear-thickening fluid: (a), (b), (c) The mean field, the first and second modes when Re = 13000; (d), (e), (f) mean field, first-order mode and second-order mode when Re = 13500.

    表 1  牛顿流体转捩临界雷诺数计算结果的对比

    Table 1.  Comparison of calculation results of critical Reynolds number for Newtonian fluid transition.

    转捩临界雷诺数
    本文7835
    Peng等[5]7704
    Poliashenko和Aidu[32]7763 × (1% ± 2%)
    Cazemier等[31]7819
    Bruneau和Saad[6]8000—8030
    下载: 导出CSV
  • [1]

    Ghia U, Ghia K N, Shin C 1982 J. Comput. Phys. 48 387Google Scholar

    [2]

    Yu H, Luo L S, Girimaji S S 2006 Comput. Fluids. 35 957Google Scholar

    [3]

    Lin L S, Chang H W, Lin C A 2013 Comput. Fluids. 80 381Google Scholar

    [4]

    Burggraf O R 1966 J. Fluid Mech. 24 113Google Scholar

    [5]

    Peng F, Shiau Y H, Hwang R R 2003 Comput. Fluids. 32 337Google Scholar

    [6]

    Bruneau C H, Saad M 2006 Comput. Fluids. 35 326Google Scholar

    [7]

    Auteri F, Parolini N, Quartapelle L 2002 J. Comput. Phys. 183 1Google Scholar

    [8]

    Sahin M, Owens R G 2003 Int. J. Numer. Methods Fluids 42 57Google Scholar

    [9]

    Gong X, Xu Y, Zhu W, Xuan S, Jiang W, Jiang W 2014 J. Compos Mater. 48 641Google Scholar

    [10]

    Giuntoli A, Puosi F, Leporini D, Starr F W, Douglas J F 2020 Sci. Adv. 6 eaaz0777Google Scholar

    [11]

    Johnston B M, Johnston P R, Corney S, Kilpatrick D 2004 J. Biomech. 37 709Google Scholar

    [12]

    Zhao C, Zholkovskij E, Masliyah J H, Yang C 2008 J. Colloid Interface Sci. 326 503Google Scholar

    [13]

    Hojjat M, Etemad S G, Bagheri R, Thibault J 2011 Int. Commun. Heat Mass Transf. 38 144Google Scholar

    [14]

    Chen S, Doolen G D 1998 Annu. Rev. Fluid Mech. 30 329Google Scholar

    [15]

    Shan X, Chen H 1993 Phys. Rev. E 47 1815Google Scholar

    [16]

    Hou S, Zou Q, Chen S, Doolen G, Cogley A C 1995 J. Comput. Phys. 118 329Google Scholar

    [17]

    He X, Chen S, Doolen G D 1998 J. Comput. Phys. 146 282Google Scholar

    [18]

    Boyd J, Buick J, Green S 2006 J. Phys. A: Math. Gen. 39 14241Google Scholar

    [19]

    Wang C H, Ho J R 2011 Comput. Math. Appl. 62 75Google Scholar

    [20]

    Chen Y L, Cao X D, Zhu K Q 2009 J. Non-Newtonian Fluid Mech. 159 130Google Scholar

    [21]

    Nejat A, Abdollahi V, Vahidkhah K 2011 J. Non-Newtonian Fluid Mech. 166 689Google Scholar

    [22]

    d'Humieres D 2002 Philos. Trans. Roy. Soc. A 360 437Google Scholar

    [23]

    Ren F, Song B, Zhang Y, Hu H 2018 Comput. Fluids. 173 29Google Scholar

    [24]

    Wei Y, Wang Z, Yang J, Dou H S, Qian Y 2015 Comput. Fluids. 118 167Google Scholar

    [25]

    Guo Z, Shi B, Wang N 2000 J. Comput. Phys. 165 288Google Scholar

    [26]

    Ziegler D P 1993 J. Stat. Phys. 71 1171Google Scholar

    [27]

    Yu D, Mei R, Shyy W 2003 41 st Aerospace Sciences Meeting and Exhibit Reno, USA, January 6−9, 1999 p953

    [28]

    Gabbanelli S, Drazer G, Koplik J 2005 Phys. Rev. E 72 046312Google Scholar

    [29]

    Hall K C, Thomas J P, Dowell E H 2000 AIAA J. 38 1853Google Scholar

    [30]

    Taira K, Brunton S L, Dawson S T, et al. 2017 AIAA J. 55 4013Google Scholar

    [31]

    Cazemier W, Verstappen R, Veldman A 1998 Phys. Fluids 10 1685Google Scholar

    [32]

    Poliashenko M, Aidun C K 1995 J. Comput. Phys. 121 246Google Scholar

  • [1] 许鑫萌, 娄钦. 剪切增稠幂律流体中单气泡上升动力学行为的格子Boltzmann方法研究. 物理学报, 2024, 73(13): 134701. doi: 10.7498/aps.73.20240394
    [2] 杨晓峰, 刘姣, 单方, 柴振华, 施保昌. 幂律流体顶盖驱动流中的颗粒运动. 物理学报, 2024, 73(14): 144701. doi: 10.7498/aps.73.20240164
    [3] 刘程, 梁宏. 三相流体的轴对称格子 Boltzmann 模型及其在 Rayleigh-Plateau 不稳定性的应用. 物理学报, 2023, 72(4): 044701. doi: 10.7498/aps.72.20221967
    [4] 陈百慧, 施保昌, 汪垒, 柴振华. 基于GPU的二维梯形空腔流的格子Boltzmann模拟与分析. 物理学报, 2023, 72(15): 154701. doi: 10.7498/aps.72.20230430
    [5] 马聪, 刘斌, 梁宏. 耦合界面张力的三维流体界面不稳定性的格子Boltzmann模拟. 物理学报, 2022, 71(4): 044701. doi: 10.7498/aps.71.20212061
    [6] 唐冰亮, 郭善广, 宋国正, 罗彦浩. 脉冲电弧等离子体激励控制超声速平板边界层转捩实验. 物理学报, 2020, 69(15): 155201. doi: 10.7498/aps.69.20200216
    [7] 胡嘉懿, 张文欢, 柴振华, 施保昌, 汪一航. 三维不可压缩流的12速多松弛格子Boltzmann模型. 物理学报, 2019, 68(23): 234701. doi: 10.7498/aps.68.20190984
    [8] 李洋, 苏婷, 梁宏, 徐江荣. 耦合界面力的两相流相场格子Boltzmann模型. 物理学报, 2018, 67(22): 224701. doi: 10.7498/aps.67.20181230
    [9] 周光雨, 陈力, 张鸿雁, 崔海航. 基于格子Boltzmann方法的自驱动Janus颗粒扩散泳力. 物理学报, 2017, 66(8): 084703. doi: 10.7498/aps.66.084703
    [10] 段娟, 陈耀钦, 朱庆勇. 微扩张管道内幂律流体非定常电渗流动. 物理学报, 2016, 65(3): 034702. doi: 10.7498/aps.65.034702
    [11] 陶实, 王亮, 郭照立. 微尺度振荡Couette流的格子Boltzmann模拟. 物理学报, 2014, 63(21): 214703. doi: 10.7498/aps.63.214703
    [12] 史冬岩, 王志凯, 张阿漫. 任意复杂流-固边界的格子Boltzmann处理方法. 物理学报, 2014, 63(7): 074703. doi: 10.7498/aps.63.074703
    [13] 曾建邦, 李隆键, 蒋方明. 气泡成核过程的格子Boltzmann方法模拟. 物理学报, 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [14] 郭亚丽, 徐鹤函, 沈胜强, 魏兰. 利用格子Boltzmann方法模拟矩形腔内纳米流体Raleigh-Benard对流. 物理学报, 2013, 62(14): 144704. doi: 10.7498/aps.62.144704
    [15] 苏进, 欧阳洁, 王晓东. 耦合不可压流场输运方程的格子Boltzmann方法研究. 物理学报, 2012, 61(10): 104702. doi: 10.7498/aps.61.104702
    [16] 陈林, 唐登斌, Chaoqun Liu. 转捩边界层中流向条纹的新特性. 物理学报, 2011, 60(9): 094702. doi: 10.7498/aps.60.094702
    [17] 石自媛, 胡国辉, 周哲玮. 润湿性梯度驱动液滴运动的格子Boltzmann模拟. 物理学报, 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
    [18] 张超英, 李华兵, 谭惠丽, 刘慕仁, 孔令江. 椭圆柱体在牛顿流体中运动的格子Boltzmann方法模拟. 物理学报, 2005, 54(5): 1982-1987. doi: 10.7498/aps.54.1982
    [19] 龚安龙, 李睿劬, 李存标. 平板边界层转捩过程中低频信号的产生. 物理学报, 2002, 51(5): 1068-1074. doi: 10.7498/aps.51.1068
    [20] 吕晓阳, 李华兵. 用格子Boltzmann方法模拟高雷诺数下的热空腔黏性流. 物理学报, 2001, 50(3): 422-427. doi: 10.7498/aps.50.422
计量
  • 文章访问数:  5042
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-08
  • 修回日期:  2021-05-07
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-20

/

返回文章
返回