-
运用激光拉曼光谱研究了450—1050 ℃退火处理对氧化镍中二阶磁振子散射的增强效应, 同时分析了激光功率对氧化镍中二阶磁振子散射的影响. 研究发现, 退火处理可显著增强氧化镍中二阶磁振子散射, 在450—1050 ℃范围内, 退火温度越高, 增强效应越明显, 经过1050 ℃退火处理后二阶磁振子散射增强效应可达两个数量级以上. 该显著增强效应与高温退火处理后氧化镍样品中镍缺陷的显著减少紧密相关, 同时也与镍离子的晶格排列结构紧密相关. 而且高温退火处理还可显著降低激光功率对氧化镍中二阶磁振子散射的影响. 当退火温度较低时, 氧化镍中二阶磁振子散射随激光功率的增加快速减弱并消失, 而经过1050 ℃退火处理后, 氧化镍中二阶磁振子散射在较高激光功率下仍非常显著.Laser Raman spectroscopy is used to study the enhancement effect of two-magnon scattering in nickel oxide through annealing treatment in a temperature range from 450 ℃ to 1050 ℃, and investigate laser heating effect on two-magnon scattering. Our study shows that two-magnon scattering of nickel oxide can be tremendously enhanced with annealing temperature rising. In the temperature range from 450 ℃ to 1050 ℃, the enhancement increases with annealing temperature increasing, and with 1050 ℃ annealing the two-magnon scattering can be enhanced more than two orders of magnitude, also the enhancement of two-magnon scattering is much stronger than that of two-phonon scattering. This tremendous enhancement is correlated not only with the significant decrease of Ni-vacancy by high temperature annealing, but also with the magnetic spin ordering network of Ni ions. The variation of sensitive intensity of two-magnon scattering with the concentration of Ni-vacancy can be used to provide a simple Raman spectroscopy method of quantitatively measuring the Ni-vacancy in nickel oxide. In addition, the annealing treatment can significantly reduce the laser heating effect on two-magnon scatting in nickel oxide power samples. At low annealing temperature, the intensity of two-magnon scattering quickly quenches with increasing laser power. With 1050 ℃ annealing, the laser heating effect on two-magnon scattering is significantly reduced and two-magnon scattering can still have strong intensity at high laser power.
-
Keywords:
- two-magnon /
- Raman spectroscopy /
- annealed /
- nickel oxide
[1] Dharmaraj N, Prabu P, Nagarajan S, Kim C H, Park J H, Kim H Y 2006 Mater. Sci. Eng. B 128 111Google Scholar
[2] Chen Z Y, Chen Y Q, Zhang Q K, Tang X Q, Wang D D, Chen Z Q, Mascher P, Wang S J 2017 ECS J. Solid State Sci. Technol. 6 798Google Scholar
[3] Mishra Sunil K, Subrahmanyam V 2011 Int. J. Mod. Phys. B 25 2507Google Scholar
[4] Gandhi S, Nagalakshmi N, Baskaran I, Dhanalakshmi V, Gopinathan Nair M R, Anbarasan R 2010 J. Appl. Polym. Sci. 118 1666Google Scholar
[5] Wang Y, Zhu J, Yang X, Lu L, Wang X 2005 Thermochim. Acta 437 106Google Scholar
[6] Plashnitsa V V, Gupta V, Miura N 2010 Electrochim. Acta 55 6941Google Scholar
[7] Chen X B, Kong M H, Choi J Y, Kim H T 2016 J. Phys. D: Appl. Phys. 49 465304Google Scholar
[8] Chen X B, Guo P C, Huyen N T, Kim S, Yang I S, Wang X Y, Cheong S W 2017 Appl. Phys. Lett. 110 122405Google Scholar
[9] Nam J Y, Kim S, Nguyen H T M, Chen X B, Choi M S, Lee D, Noh T W, Yang I S 2020 J. Raman Spectrosc. 51 2298Google Scholar
[10] Gandhi A C, Huang C Y, Yang C C, Chan T S, Cheng C L, Ma Y R, Wu S Y 2011 Nanoscale Res. Lett. 6 485Google Scholar
[11] Sunny A, Balasubramanian K 2020 J. Phys. Chem. C 124 12636Google Scholar
[12] Mironova-Ulmane N, Kuzmin A, Sildos I, Puust L, Grabis J 2019 Latv. J. Phys. Tech. Sci. 56 61Google Scholar
[13] Deshpande M P, Patel K N, Gujarati V P, Patel K, Chaki S H 2016 Adv. Mater. Res. 1141 65Google Scholar
[14] Lockwood D J, Cottam M G, Baskey J H 1992 J. Magn. Magn. Mater. 104-107 1053Google Scholar
[15] Duan W J, Lu S H, Wu Z L, Wang Y S 2012 J. Phys. Chem. C 116 26043Google Scholar
[16] Gandhi A C, Pant J, Pandit S D, Dalimbkar S K, Chan T S, Cheng C L, Ma Y R, Sheng Y W 2013 J. Phys. Chem. C 117 18666Google Scholar
[17] Lacerda M M, Kargar F, Aytan E, Samnakay R, Debnath B, Li J X, Khitun A, Lake R K, Shi J, Balandin A A 2017 Appl. Phys. Lett. 110 202406Google Scholar
[18] Baran S, Hoser A, Penc B, Szytula A 2016 Acta Phys. Pol. A 129 35Google Scholar
[19] Hou H Y, Yang M, Qiu J, Yang Y S, Chen X B 2019 Cryst. 9 357Google Scholar
[20] Bala N, Singh H K, Verma S, Rath S 2020 Phys. Rev. B 102 024423Google Scholar
[21] Dietz R E, Parisot G I, Meixner A E 1971 Phys. Rev. B 4 2302Google Scholar
-
图 2 (a) 归一化2M散射强度与退火温度的关系. 插图为六角锰氧化物中磁振子散射强度与非磁性离子浓度的关系[9]. (b) 2M与2LO散射强度比及归一化2M散射强度的对数与退火温度的关系
Fig. 2. (a) Normalized 2M intensity as a function of annealing temperature. Inset is the magnon scattering intensity as a function of non-magnetic doping concentration in hexagonal manganite[9]. (b) Logarithms of 2M to 2LO intensity ratio and normalized 2M intensity as a function of annealing temperature.
-
[1] Dharmaraj N, Prabu P, Nagarajan S, Kim C H, Park J H, Kim H Y 2006 Mater. Sci. Eng. B 128 111Google Scholar
[2] Chen Z Y, Chen Y Q, Zhang Q K, Tang X Q, Wang D D, Chen Z Q, Mascher P, Wang S J 2017 ECS J. Solid State Sci. Technol. 6 798Google Scholar
[3] Mishra Sunil K, Subrahmanyam V 2011 Int. J. Mod. Phys. B 25 2507Google Scholar
[4] Gandhi S, Nagalakshmi N, Baskaran I, Dhanalakshmi V, Gopinathan Nair M R, Anbarasan R 2010 J. Appl. Polym. Sci. 118 1666Google Scholar
[5] Wang Y, Zhu J, Yang X, Lu L, Wang X 2005 Thermochim. Acta 437 106Google Scholar
[6] Plashnitsa V V, Gupta V, Miura N 2010 Electrochim. Acta 55 6941Google Scholar
[7] Chen X B, Kong M H, Choi J Y, Kim H T 2016 J. Phys. D: Appl. Phys. 49 465304Google Scholar
[8] Chen X B, Guo P C, Huyen N T, Kim S, Yang I S, Wang X Y, Cheong S W 2017 Appl. Phys. Lett. 110 122405Google Scholar
[9] Nam J Y, Kim S, Nguyen H T M, Chen X B, Choi M S, Lee D, Noh T W, Yang I S 2020 J. Raman Spectrosc. 51 2298Google Scholar
[10] Gandhi A C, Huang C Y, Yang C C, Chan T S, Cheng C L, Ma Y R, Wu S Y 2011 Nanoscale Res. Lett. 6 485Google Scholar
[11] Sunny A, Balasubramanian K 2020 J. Phys. Chem. C 124 12636Google Scholar
[12] Mironova-Ulmane N, Kuzmin A, Sildos I, Puust L, Grabis J 2019 Latv. J. Phys. Tech. Sci. 56 61Google Scholar
[13] Deshpande M P, Patel K N, Gujarati V P, Patel K, Chaki S H 2016 Adv. Mater. Res. 1141 65Google Scholar
[14] Lockwood D J, Cottam M G, Baskey J H 1992 J. Magn. Magn. Mater. 104-107 1053Google Scholar
[15] Duan W J, Lu S H, Wu Z L, Wang Y S 2012 J. Phys. Chem. C 116 26043Google Scholar
[16] Gandhi A C, Pant J, Pandit S D, Dalimbkar S K, Chan T S, Cheng C L, Ma Y R, Sheng Y W 2013 J. Phys. Chem. C 117 18666Google Scholar
[17] Lacerda M M, Kargar F, Aytan E, Samnakay R, Debnath B, Li J X, Khitun A, Lake R K, Shi J, Balandin A A 2017 Appl. Phys. Lett. 110 202406Google Scholar
[18] Baran S, Hoser A, Penc B, Szytula A 2016 Acta Phys. Pol. A 129 35Google Scholar
[19] Hou H Y, Yang M, Qiu J, Yang Y S, Chen X B 2019 Cryst. 9 357Google Scholar
[20] Bala N, Singh H K, Verma S, Rath S 2020 Phys. Rev. B 102 024423Google Scholar
[21] Dietz R E, Parisot G I, Meixner A E 1971 Phys. Rev. B 4 2302Google Scholar
计量
- 文章访问数: 8478
- PDF下载量: 208
- 被引次数: 0