-
高功率单频光纤激光在引力波探测、非线性频率变换等领域有重要的应用需求, 其输出功率的提升面临横向模式不稳定和非线性效应等因素带来的技术挑战, 而长锥形增益光纤具有综合抑制横向模式不稳定效应和非线性效应的潜力. 为进一步提升全光纤结构单频光纤激光器的输出功率, 国防科技大学自主研制了一段长度为2.2 m的长锥形掺镱双包层光纤, 其输入端纤芯和内包层直径分别为30.3 μm和245 μm, 输出端纤芯和内包层直径为49.3 μm和404 μm. 基于该光纤, 采用前向泵浦的方式搭建了一个全光纤结构的单频主振荡功率放大系统. 其中种子激光的中心波长为1064 nm, 输出功率为30 mW. 该系统实现了中心波长为1064 nm、功率超过400 W的单频激光输出, 斜率效率为81.7%, 功率400 W时光束质量因子(M 2)为1.29. 系统输出功率的进一步提升受限于横向模式不稳定效应. 据可查询文献, 这是目前基于国产增益光纤实现的单频单模光纤激光器最高输出功率. 该结果表明, 长锥形光纤在实现单频光纤激光器高功率、高光束质量输出方面极具潜力, 通过光纤参数和实验结构的进一步优化有望实现更高功率水平的单频单模激光输出.In recent years, the high-power single-frequency fiber lasers have developed rapidly, and they have been used in nonlinear frequency conversion and gravitational wave detection. The main factors limiting the output power of single-frequency fiber lasers are the nonlinear effect and transverse mode instability (TMI) effect. In general, large-core fibers can mitigate nonlinear effects while small-core fibers help to suppress the TMI effect. Owing to the core diameter varying in the longitudinal direction, tapered double clad fiber (T-DCF) is a promising solution to simultaneously suppress the nonlinearity and TMI effects. In the present study, we have fabricated a piece of 2.2-m-long Ytterbium-doped T-DCF. The core diameter and the cladding diameter of this fiber vary gradually from 30.3 μm to 49.3 μm and from 245 μm to 404 μm, respectively. Using this homemade fiber, we constructe an all-fiberized single-frequency master oscillator power amplifier system, which is pumped by laser diodes with a central wavelength of 976 nm. The seed of the system has a central wavelength of 1064 nm, and output power of 30 mW. The T-DCF is coiled on a piece of cooling plate, whose output end is cleaved at a 8° angle. The laser is output to free space and collimated by a free-space collimator. After the collimator, dichroic mirror is utilized to strip out the residual pump power for measuring power, spectrum, time-domain signal and beam quality. The output power increases linearly with the pumping power increasing. When the pumping power is 502 W, the output power reaches 400 W. And there is no stimulated Brillouin scattering (SBS) nor TMI under the power level. The corresponding slope efficiency is 81.7% while the M2 is measured to be 1.29, exhibiting the single-mode output characteristic of the system. When the output power is further increased to 418 W, the TMI effect is observed, which limits further the power scaling of the single-mode output. To the best of our knowledge, this is the highest output power of single-frequency fiber laser based on home-made gain fibers. The results indicate that T-DCFs can simultaneously suppress the nonlinearity and TMI, thus providing a useful reference for further power scaling of single-frequency fiber lasers. Higher output power is expected by optimizing the parameters of T-DCF and the structure of system.
-
Keywords:
- single-frequency /
- high power fiber lasers /
- long tapered fiber /
- transverse mode instability
[1] Fu S J, Shi W, Feng Y, Zhang L, Yang Z M, Xu S H, Zhu X S, Norwood R A, Peyghambarian N 2017 J. Opt. Soc. Am. B: Opt. Phys. 34 A49Google Scholar
[2] 杨昌盛, 岑旭, 徐善辉, 杨中民 2021 光学学报 41 0114002Google Scholar
Yang C S, Cen X, Xu S H, Yang Z M 2021 Acta Opt. Sin. 41 0114002Google Scholar
[3] 来文昌, 马鹏飞, 肖虎, 刘伟, 李灿, 姜曼, 许将明, 粟荣涛, 冷进勇, 马阎星 周朴 2020 强激光与粒子束 32 121001
Lai W C, Ma P F, Xiao H, Liu W, Li C, Jiang M, Xu J M, Su R T, Leng J Y, Ma Y X, Zhou P 2020 High Power Las. Part. Beam. 32 121001
[4] Chang H X, Chang Q, Xi J C, Hou T Y, Su R T, Ma P F, Wu J, Li C, Jiang M, Ma Y X, Zhou P 2020 Photonics Res. 8 1943Google Scholar
[5] Dong J Y, Zeng X, Cui S Z, Zhou J Q, Feng Y 2019 Opt. Express 27 35362Google Scholar
[6] Trikshev A I, Kurkov A S, Tsvetkov V B, Filatova S A, Kertulla J, Filippov V, Chamorovskiy Y K, Okhotnikov O G 2013 Laser Phys. Lett. 10 1
[7] Zhang L, Cui S Z, Liu C, Zhou J, Feng Y 2013 Opt. Express 21 5456Google Scholar
[8] Ma P F, Zhou P, Ma Y X, Su R T, Xu X J, Liu Z J 2013 Appl. Opt. 52 4854Google Scholar
[9] Robin C, Dajani I, Pulford B 2014 Opt. Lett. 39 666Google Scholar
[10] Huang L, Wu H S, Li R X, Li L, Ma P F, Wang X L, Leng J Y, Zhou P 2016 Opt. Lett. 42 1
[11] Huang L, Lai W C, Ma P F, Wang J, Su R T, Ma Y X, Li C, Zhi D, Zhou P 2020 Opt. Lett. 45 4001Google Scholar
[12] Lai W C, Ma P F, Liu W, Huang L, Li C, Ma Y X, Zhou P 2020 Opt. Express 28 20908Google Scholar
[13] Wellmann F, Steinke M, Meylahn F, Bode N, Willke B, Overmeyer L, Neumann J, Kracht D 2019 Opt. Express 27 28523Google Scholar
[14] Dixneuf C, Guiraud G, Bardin Y V, Rosa Q, Santarelli G 2020 Opt. Express 28 10960Google Scholar
[15] Kobyakov A, Sauer M, Chowdhury D 2009 Adv. Opt. Photonics 2 1
[16] Jauregui C, Limpert J, Tünnermann A 2013 Nat. Photonics 7 861Google Scholar
[17] Tao R M, Wang X L, Zhou P 2018 IEEE J. Sel. Top. Quantum. Electron. 24 1
[18] Tao R M, Ma P F, Wang X L, Zhou P, Liu Z J 2015 Photonics Res. 3 86Google Scholar
[19] Filippov V, Chamorovskii Y, Kerttula J, Golant K, Pessa M, Okhotnikov O 2008 Opt. Express 16 1929Google Scholar
[20] Trikshev A, Kurkov A, Tsvetkov V, Filatova S, Kertulla J, Filippov V, Chamorovskiy Y K, Okhotnikov O 2013 Laser Phys. Lett. 10 065101Google Scholar
[21] Roy V, Pare C, Labranche B, Laperle P, Desbiens L, Boivin M, Taillon Y 2017 Fiber Lasers XIV: Technology and Systems San Francisco, CA, January 30-February 2, 2017, p1008314
[22] 肖虎, 董小林, 周朴, 许晓军, 陈金宝 2011 强激光与粒子束 23 1437Google Scholar
Xiao H, Dong X L, Zhou P, Xu X J, Chen J B 2011 High Power Las. Part. Beam. 23 1437Google Scholar
[23] 王雪娇, 肖起榕, 闫平, 陈霄, 李丹, 杜城, 莫琦, 衣永青, 潘蓉, 巩马理 2015 物理学报 64 164204Google Scholar
Wang X J, Xiao Q R, Yan P, Chen X, Li D, Du C, Mo Q, Yi Y Q, Pan R, Gong M L 2015 Acta Phys. Sin. 64 164204Google Scholar
[24] 王泽晖, 肖起榕, 王雪娇, 衣永青, 庞璐, 潘蓉, 黄昱升, 田佳丁, 李丹, 闫平, 巩马理 2018 物理学报 67 024205Google Scholar
Wang Z H, Xiao Q R, Wang X J, Yi Y Q, Pang L, Pan R, Huang Y S, Tian J D, Li D, Yan P, Gong M L 2018 Acta Phys. Sin. 67 024205Google Scholar
[25] 林宏奂, 唐选, 李成钰, 郭超, 刘玙, 赵鹏飞, 王波鹏, 王建军, 景峰 2018 中国激光 45 0315001Google Scholar
Lin H H, Tang X, Li C Y, Guo C, Liu Y, Zhao P F, Wang B P, Wang J J, Jing F 2018 Chin. J. Las. 45 0315001Google Scholar
[26] 陈晓龙, 楼风光, 何宇, 王孟, 徐中巍, 郭晓晨, 叶韧, 张磊, 于春雷, 胡丽丽, 何兵, 周军 2019 光学学报 39 0336001Google Scholar
Chen X L, Lou F G, He Y, Wang M, Xu Z W, Guo X C, Ye R, Zhang L, Yu C L, Hu L L, He B, Zhou J 2019 Acta Optic. Sin. 39 0336001Google Scholar
[27] 李学文, 于春雷, 胡丽丽, 沈辉, 全昭, 李秋瑞, 楼风光, 王孟, 张磊, 漆云凤, 何兵, 周军 2019 光学学报 39 0636001Google Scholar
Li X W, Yu C L, Hu L L, Shen H, Quan Z, Li Q R, Lou F G, Wang M, Zhang L, Qi Y F, He B, Zhou J 2019 Acta Optic. Sin. 39 0636001Google Scholar
[28] 刘茵紫, 邢颍滨, 廖雷, 王一礴, 彭景刚, 李海清, 戴能利, 李进延 2020 物理学报 69 184209Google Scholar
Liu Y Z, Xing Y B, Liao L, Wang Y B, Peng J G, Li H Q, Dai N L, Li J Y 2020 Acta Phys. Sin. 69 184209Google Scholar
[29] 张志伦, 张芳芳, 林贤峰, 、王世杰, 曹驰, 邢颍滨, 廖雷, 李进延 2020 物理学报 69 234205Google Scholar
Zhang Z L, Zhang F F, Lin X F, Wang S J, Cao C, Xing Y B, Liao L, Li J Y 2020 Acta Phys. Sin. 69 234205Google Scholar
[30] She S F, Liu B, Chang C, Xu Y T, Xiao X S, Cui X X, Li Z, Zheng J K, Gao S, Zhang Y, Li Y Z, Zhou Z Y, Mei L, Hou C Q, Guo H T 2020 J. Lightwave Technol. 38 6924Google Scholar
[31] 安毅, 杨欢, 肖虎, 陈潇, 黄良金, 潘志勇, 王小林, 奚小明, 马鹏飞, 王泽锋, 周朴, 许晓军, 姜宗福, 陈金宝 2021 中国激光 48 0115002Google Scholar
An Y, Yang H, Xiao H, Chen X, Huang L J, Pan Z Y, Wang X L, Xi X M, Ma P F, Wang Z F, Zhou P, Xu X J, Jiang Z F, Chen J B 2021 Chin. J. Las. 48 0115002Google Scholar
[32] 林傲祥, 湛欢, 彭昆, 王小龙, 倪力, 王瑜英, 李雨薇, 刘爽, 孙仕豪, 姜佳丽, 唐选, 刘玙, 姜蕾, 俞娟, 王建军, 景峰 2018 强激光与粒子束 30 060101Google Scholar
Lin A X, Zhan H, Peng K, Wang X L, Ni L, Wang Y Y, Li Y W, Liu S, Sun S H, Jiang J L, Tang X, Liu Y, Jiang L, Yu J, Wang J J, Jing F 2018 High Power Las. Part. Beam. 30 060101Google Scholar
[33] Zhang F P, Lou Q H, Zhou J, Zhao H M, Dong J X, Wei Y R, He B, Li J Y, Chen W B, Zhu J Q, Wang Z J 2007 Chin. Opt. Lett. 5 060322
[34] Dong X L, Xiao H, Xu S H, Pan Z Y, Ma Y X, Wang X L, Zhou P, Yang Z M 2011 Chin. Opt. Lett. 9 111404Google Scholar
-
图 3 不同输出功率下, 光电探测器接收光信号的时频域 (a)输出功率为400 W时的时域; (b) 输出功率为400 W时的频域; (c) 输出功率为418 W时的时域; (d) 输出功率为418 W时的频域; (e) 输出功率为434 W时的时域; (f) 输出功率为434 W时的频域
Fig. 3. The detected scattering light signals under different output power levels: (a) Time domain when output power reaches 400 W; (b) frequency domain when output power reaches 400 W; (c) time domain when output power reaches 418 W; (d) frequency domain when output power reaches 418 W; (e) time domain when output power reaches 434 W; (f) frequency domain when output power reaches 434 W.
-
[1] Fu S J, Shi W, Feng Y, Zhang L, Yang Z M, Xu S H, Zhu X S, Norwood R A, Peyghambarian N 2017 J. Opt. Soc. Am. B: Opt. Phys. 34 A49Google Scholar
[2] 杨昌盛, 岑旭, 徐善辉, 杨中民 2021 光学学报 41 0114002Google Scholar
Yang C S, Cen X, Xu S H, Yang Z M 2021 Acta Opt. Sin. 41 0114002Google Scholar
[3] 来文昌, 马鹏飞, 肖虎, 刘伟, 李灿, 姜曼, 许将明, 粟荣涛, 冷进勇, 马阎星 周朴 2020 强激光与粒子束 32 121001
Lai W C, Ma P F, Xiao H, Liu W, Li C, Jiang M, Xu J M, Su R T, Leng J Y, Ma Y X, Zhou P 2020 High Power Las. Part. Beam. 32 121001
[4] Chang H X, Chang Q, Xi J C, Hou T Y, Su R T, Ma P F, Wu J, Li C, Jiang M, Ma Y X, Zhou P 2020 Photonics Res. 8 1943Google Scholar
[5] Dong J Y, Zeng X, Cui S Z, Zhou J Q, Feng Y 2019 Opt. Express 27 35362Google Scholar
[6] Trikshev A I, Kurkov A S, Tsvetkov V B, Filatova S A, Kertulla J, Filippov V, Chamorovskiy Y K, Okhotnikov O G 2013 Laser Phys. Lett. 10 1
[7] Zhang L, Cui S Z, Liu C, Zhou J, Feng Y 2013 Opt. Express 21 5456Google Scholar
[8] Ma P F, Zhou P, Ma Y X, Su R T, Xu X J, Liu Z J 2013 Appl. Opt. 52 4854Google Scholar
[9] Robin C, Dajani I, Pulford B 2014 Opt. Lett. 39 666Google Scholar
[10] Huang L, Wu H S, Li R X, Li L, Ma P F, Wang X L, Leng J Y, Zhou P 2016 Opt. Lett. 42 1
[11] Huang L, Lai W C, Ma P F, Wang J, Su R T, Ma Y X, Li C, Zhi D, Zhou P 2020 Opt. Lett. 45 4001Google Scholar
[12] Lai W C, Ma P F, Liu W, Huang L, Li C, Ma Y X, Zhou P 2020 Opt. Express 28 20908Google Scholar
[13] Wellmann F, Steinke M, Meylahn F, Bode N, Willke B, Overmeyer L, Neumann J, Kracht D 2019 Opt. Express 27 28523Google Scholar
[14] Dixneuf C, Guiraud G, Bardin Y V, Rosa Q, Santarelli G 2020 Opt. Express 28 10960Google Scholar
[15] Kobyakov A, Sauer M, Chowdhury D 2009 Adv. Opt. Photonics 2 1
[16] Jauregui C, Limpert J, Tünnermann A 2013 Nat. Photonics 7 861Google Scholar
[17] Tao R M, Wang X L, Zhou P 2018 IEEE J. Sel. Top. Quantum. Electron. 24 1
[18] Tao R M, Ma P F, Wang X L, Zhou P, Liu Z J 2015 Photonics Res. 3 86Google Scholar
[19] Filippov V, Chamorovskii Y, Kerttula J, Golant K, Pessa M, Okhotnikov O 2008 Opt. Express 16 1929Google Scholar
[20] Trikshev A, Kurkov A, Tsvetkov V, Filatova S, Kertulla J, Filippov V, Chamorovskiy Y K, Okhotnikov O 2013 Laser Phys. Lett. 10 065101Google Scholar
[21] Roy V, Pare C, Labranche B, Laperle P, Desbiens L, Boivin M, Taillon Y 2017 Fiber Lasers XIV: Technology and Systems San Francisco, CA, January 30-February 2, 2017, p1008314
[22] 肖虎, 董小林, 周朴, 许晓军, 陈金宝 2011 强激光与粒子束 23 1437Google Scholar
Xiao H, Dong X L, Zhou P, Xu X J, Chen J B 2011 High Power Las. Part. Beam. 23 1437Google Scholar
[23] 王雪娇, 肖起榕, 闫平, 陈霄, 李丹, 杜城, 莫琦, 衣永青, 潘蓉, 巩马理 2015 物理学报 64 164204Google Scholar
Wang X J, Xiao Q R, Yan P, Chen X, Li D, Du C, Mo Q, Yi Y Q, Pan R, Gong M L 2015 Acta Phys. Sin. 64 164204Google Scholar
[24] 王泽晖, 肖起榕, 王雪娇, 衣永青, 庞璐, 潘蓉, 黄昱升, 田佳丁, 李丹, 闫平, 巩马理 2018 物理学报 67 024205Google Scholar
Wang Z H, Xiao Q R, Wang X J, Yi Y Q, Pang L, Pan R, Huang Y S, Tian J D, Li D, Yan P, Gong M L 2018 Acta Phys. Sin. 67 024205Google Scholar
[25] 林宏奂, 唐选, 李成钰, 郭超, 刘玙, 赵鹏飞, 王波鹏, 王建军, 景峰 2018 中国激光 45 0315001Google Scholar
Lin H H, Tang X, Li C Y, Guo C, Liu Y, Zhao P F, Wang B P, Wang J J, Jing F 2018 Chin. J. Las. 45 0315001Google Scholar
[26] 陈晓龙, 楼风光, 何宇, 王孟, 徐中巍, 郭晓晨, 叶韧, 张磊, 于春雷, 胡丽丽, 何兵, 周军 2019 光学学报 39 0336001Google Scholar
Chen X L, Lou F G, He Y, Wang M, Xu Z W, Guo X C, Ye R, Zhang L, Yu C L, Hu L L, He B, Zhou J 2019 Acta Optic. Sin. 39 0336001Google Scholar
[27] 李学文, 于春雷, 胡丽丽, 沈辉, 全昭, 李秋瑞, 楼风光, 王孟, 张磊, 漆云凤, 何兵, 周军 2019 光学学报 39 0636001Google Scholar
Li X W, Yu C L, Hu L L, Shen H, Quan Z, Li Q R, Lou F G, Wang M, Zhang L, Qi Y F, He B, Zhou J 2019 Acta Optic. Sin. 39 0636001Google Scholar
[28] 刘茵紫, 邢颍滨, 廖雷, 王一礴, 彭景刚, 李海清, 戴能利, 李进延 2020 物理学报 69 184209Google Scholar
Liu Y Z, Xing Y B, Liao L, Wang Y B, Peng J G, Li H Q, Dai N L, Li J Y 2020 Acta Phys. Sin. 69 184209Google Scholar
[29] 张志伦, 张芳芳, 林贤峰, 、王世杰, 曹驰, 邢颍滨, 廖雷, 李进延 2020 物理学报 69 234205Google Scholar
Zhang Z L, Zhang F F, Lin X F, Wang S J, Cao C, Xing Y B, Liao L, Li J Y 2020 Acta Phys. Sin. 69 234205Google Scholar
[30] She S F, Liu B, Chang C, Xu Y T, Xiao X S, Cui X X, Li Z, Zheng J K, Gao S, Zhang Y, Li Y Z, Zhou Z Y, Mei L, Hou C Q, Guo H T 2020 J. Lightwave Technol. 38 6924Google Scholar
[31] 安毅, 杨欢, 肖虎, 陈潇, 黄良金, 潘志勇, 王小林, 奚小明, 马鹏飞, 王泽锋, 周朴, 许晓军, 姜宗福, 陈金宝 2021 中国激光 48 0115002Google Scholar
An Y, Yang H, Xiao H, Chen X, Huang L J, Pan Z Y, Wang X L, Xi X M, Ma P F, Wang Z F, Zhou P, Xu X J, Jiang Z F, Chen J B 2021 Chin. J. Las. 48 0115002Google Scholar
[32] 林傲祥, 湛欢, 彭昆, 王小龙, 倪力, 王瑜英, 李雨薇, 刘爽, 孙仕豪, 姜佳丽, 唐选, 刘玙, 姜蕾, 俞娟, 王建军, 景峰 2018 强激光与粒子束 30 060101Google Scholar
Lin A X, Zhan H, Peng K, Wang X L, Ni L, Wang Y Y, Li Y W, Liu S, Sun S H, Jiang J L, Tang X, Liu Y, Jiang L, Yu J, Wang J J, Jing F 2018 High Power Las. Part. Beam. 30 060101Google Scholar
[33] Zhang F P, Lou Q H, Zhou J, Zhao H M, Dong J X, Wei Y R, He B, Li J Y, Chen W B, Zhu J Q, Wang Z J 2007 Chin. Opt. Lett. 5 060322
[34] Dong X L, Xiao H, Xu S H, Pan Z Y, Ma Y X, Wang X L, Zhou P, Yang Z M 2011 Chin. Opt. Lett. 9 111404Google Scholar
计量
- 文章访问数: 5853
- PDF下载量: 140
- 被引次数: 0