搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AlGaN/GaN高电子迁移率晶体管的栅极电容模型

刘乃漳 姚若河 耿魁伟

引用本文:
Citation:

AlGaN/GaN高电子迁移率晶体管的栅极电容模型

刘乃漳, 姚若河, 耿魁伟
cstr: 32037.14.aps.70.20210700

Gate capacitance model of AlGaN/GaN high electron mobility transistor

Liu Nai-Zhang, Yao Ruo-He, Geng Kui-Wei
cstr: 32037.14.aps.70.20210700
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • AlGaN/GaN 高电子迁移率晶体管的栅极电容由本征电容和边缘电容组成. 边缘电容分为外部边缘电容和内部边缘电容, 内部边缘电容相比外部边缘电容对器件的开关转换特性更为敏感. 本文基于内部边缘电容的形成机理, 推导了内部边缘电容Cifs/d模型, 进一步的分析表明, 其与器件的栅极偏置强相关; 基于Ward-Dutton电荷分配原则推导了相应的本征电容模型, 最后结合外部边缘电容得到了完整的栅极电容模型. 由于边缘电容是由器件结构产生的寄生电容, 仿真结果表明, 若不考虑边缘电容的影响, 栅源电容的误差可达80%以上, 而栅漏电容的误差可达65%以上. 因此, 在高频开关应用领域, 边缘电容对栅极电容的影响不可忽略.
    The research on capacitance model of AlGaN/GaN high electron mobility transistor (HEMT) is of great significance in modern communication technology and circuit simulation. At present, many modeling methods of AlGaN/GaN HEMT capacitance models have been proposed. The gate capacitance is composed of intrinsic capacitance and fringe capacitance. However, most researches focus on the intrinsic capacitance but ignore the fringe capacitance, which leads to a large error in the final results. A total gate capacitance model including fringe capacitance needs to be established.In this paper, the conformal mapping method and transition functions are used to establish the inner fringe capacitance model, and the intrinsic capacitance model is derived based on the Ward-Dutton charge distribution principle. The intrinsic capacitance model and the outer fringe capacitance model are combined to obtain the source/drain total gate capacitance model. Based on this model, the relationship between the bias condition and the fringe capacitance is analyzed. We compare the difference between the effects of external bias on gate capacitance with and without the fringe capacitance considered, and the error rate of the gate capacitance in the on state is calculated without considering the fringe capacitance.The results show that the fringe capacitance is mainly affected by the gate bias. When the fringe capacitance is taken into account in the intrinsic capacitance model, the total capacitance model is larger than that without considering the fringe capacitance. For the gate capacitance, if the influence of fringing capacitance is not considered, the gate capacitance error rate of the device in the OFF state can reach 80%; for fringing capacitance, the error rate is over 65% when the device is working in the saturation region.
      通信作者: 姚若河, phrhyao@scut.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFB1802100)和广东省重点领域研发计划(批准号: 2019B010143003)资助的课题.
      Corresponding author: Yao Ruo-He, phrhyao@scut.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFB1802100) and the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2019B010143003).
    [1]

    Chow Paul T 2014 Materials Science Forum 778–780 1077

    [2]

    Chow Paul T 2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA) Blacksburg, VA, USA, November 2–4, 2015 pp402–405

    [3]

    Chowdhury S, Stum Z, Li Z, Ueno K, Chow T P 2014 Materials Science Forum 778–780 971Google Scholar

    [4]

    Millan J, Godignon P, Perpina X, Perez-Tomas A, Rebollo J 2014 IEEE Trans. Power Electron. 29 2155Google Scholar

    [5]

    Tolbert L M 2008 Ph. D. Dissertation (Tennessee: Oak Ridge National Laboratory)

    [6]

    Bindra A 2015 IEEE Power Electron. Mag. 2 42Google Scholar

    [7]

    Jones E A, Fei F W, Costinett D 2016 IEEE J. Emerging Sel. Top. Power Electron. 4 707Google Scholar

    [8]

    Ward D, Dutton R W 1978 IEEE Trans. Electron Devices 13 703Google Scholar

    [9]

    Yigletu F M, Khandelwal S, Fjeldly T A, Iniguez B 2013 IEEE Trans. Electron Devices 60 3746Google Scholar

    [10]

    Li K, Rakheja S 2018 Device Research Conference-Conference Digest Santa Barbara, California, USA, June 24–27, 2018 p1

    [11]

    Jia Y H, Xu Y, Wen Z, Wu Y, Guo Y 2019 IEEE Trans. Electron Devices 66 357Google Scholar

    [12]

    Bansal A, Paul B C, Roy K 2005 IEEE Trans. Electron Devices 52 256Google Scholar

    [13]

    Koudymov A, Shur M S, Simin G 2007 IEEE Electron Device Lett. 28 332Google Scholar

    [14]

    Tirado J M, Sanchez R J L, Izpura J I 2007 IEEE Trans. Electron Devices 54 410Google Scholar

    [15]

    Simin G, Koudymov A, Tarakji A, Hu X, Yang J, Khan M A, Shur M S, Gaska R 2001 Appl. Phys. Lett. 79 2651Google Scholar

    [16]

    Cheng X, Li M, Wang Y 2009 IEEE Trans. Electron Devices 56 12Google Scholar

    [17]

    Yigletu F M, Iniguez B, Khandelwal S, Fjeldly T A 2013 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) Glasgow, UK, September 3–5, 2013 p13879917

    [18]

    Khandelwal S, Yigletu F M, Iniguez B, Fjeldly T A 2013 Solid-state Electron. 82 38Google Scholar

    [19]

    Swamy N S, Dutta A K 2018 IEEE Trans. Electron Devices 65 936Google Scholar

    [20]

    刘乃漳, 张雪冰, 姚若河 2020 物理学报 69 077302Google Scholar

    Liu N Z, Zhang X B, Yao R H 2020 Acta Phys. Sin. 69 077302Google Scholar

    [21]

    Jia Y, Xu Y, Kai L, Zhang W, Huang A D, Guo Y X 2018 IEEE Trans. Electron Devices 65 3169Google Scholar

  • 图 1  不同工作状态下AlGaN/GaN HEMT栅极电容的示意图 (a)处于关断状态; (b)处于开启状态

    Fig. 1.  Schematic of AlGaN/GaN HEMT gate capacitances in different states: (a) In the OFF-state; (b) in the ON-state

    图 2  靠近漏端处边缘电容示意图

    Fig. 2.  Schematic of fringing capacitances near the drain.

    图 3  Cifs/d椭圆电场示意图 (a) Cifd; (b) Cifs

    Fig. 3.  Schematic of Cifs/d elliptical electric field: (a) Cifd; (b) Cofd .

    图 4  Cifs/d椭圆电场共焦后存在的误差

    Fig. 4.  Errors after Cifs/d elliptical electric field confocal.

    图 5  源端边缘电容(Cifs + Cofs)与Vg的关系图

    Fig. 5.  Relation between source fringing capacitance (Cifs + Cofs) and Vg .

    图 6  Cgs总电容与Vg的关系图

    Fig. 6.  Relation between total capacitance of Cgs and Vg .

    图 7  漏端边缘电容(Cifd + Cofd)与Vds的关系图

    Fig. 7.  Relation between drain fringing capacitance (Cifd + Cofd) and Vds .

    图 8  Cgd总电容与Vds的关系图

    Fig. 8.  Relationship between total capacitance of Cgd and Vds .

    表 1  器件模型的参数值

    Table 1.  Parameter of the device model.

    参数定义数值
    Ls/μm源端沟道长度0.15
    εx有效介电常数7.65ε0
    Esat/(V⋅μm–1)饱和电场15
    Ld/μm漏端沟道长度1
    Ldep_s/nm漏断耗尽层长度12
    Ldep_d/nm漏端沟道长度22
    TAlGaN/nmAlGaN势垒层厚度22
    Te/nm二维电子气厚度8
    Lg/μm栅极长度0.35
    ζ拟合参数0.4
    ζ2拟合参数0.3
    δ1拟合参数–10.35
    δ2拟合参数13.6
    β2拟合参数20
    下载: 导出CSV
  • [1]

    Chow Paul T 2014 Materials Science Forum 778–780 1077

    [2]

    Chow Paul T 2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA) Blacksburg, VA, USA, November 2–4, 2015 pp402–405

    [3]

    Chowdhury S, Stum Z, Li Z, Ueno K, Chow T P 2014 Materials Science Forum 778–780 971Google Scholar

    [4]

    Millan J, Godignon P, Perpina X, Perez-Tomas A, Rebollo J 2014 IEEE Trans. Power Electron. 29 2155Google Scholar

    [5]

    Tolbert L M 2008 Ph. D. Dissertation (Tennessee: Oak Ridge National Laboratory)

    [6]

    Bindra A 2015 IEEE Power Electron. Mag. 2 42Google Scholar

    [7]

    Jones E A, Fei F W, Costinett D 2016 IEEE J. Emerging Sel. Top. Power Electron. 4 707Google Scholar

    [8]

    Ward D, Dutton R W 1978 IEEE Trans. Electron Devices 13 703Google Scholar

    [9]

    Yigletu F M, Khandelwal S, Fjeldly T A, Iniguez B 2013 IEEE Trans. Electron Devices 60 3746Google Scholar

    [10]

    Li K, Rakheja S 2018 Device Research Conference-Conference Digest Santa Barbara, California, USA, June 24–27, 2018 p1

    [11]

    Jia Y H, Xu Y, Wen Z, Wu Y, Guo Y 2019 IEEE Trans. Electron Devices 66 357Google Scholar

    [12]

    Bansal A, Paul B C, Roy K 2005 IEEE Trans. Electron Devices 52 256Google Scholar

    [13]

    Koudymov A, Shur M S, Simin G 2007 IEEE Electron Device Lett. 28 332Google Scholar

    [14]

    Tirado J M, Sanchez R J L, Izpura J I 2007 IEEE Trans. Electron Devices 54 410Google Scholar

    [15]

    Simin G, Koudymov A, Tarakji A, Hu X, Yang J, Khan M A, Shur M S, Gaska R 2001 Appl. Phys. Lett. 79 2651Google Scholar

    [16]

    Cheng X, Li M, Wang Y 2009 IEEE Trans. Electron Devices 56 12Google Scholar

    [17]

    Yigletu F M, Iniguez B, Khandelwal S, Fjeldly T A 2013 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) Glasgow, UK, September 3–5, 2013 p13879917

    [18]

    Khandelwal S, Yigletu F M, Iniguez B, Fjeldly T A 2013 Solid-state Electron. 82 38Google Scholar

    [19]

    Swamy N S, Dutta A K 2018 IEEE Trans. Electron Devices 65 936Google Scholar

    [20]

    刘乃漳, 张雪冰, 姚若河 2020 物理学报 69 077302Google Scholar

    Liu N Z, Zhang X B, Yao R H 2020 Acta Phys. Sin. 69 077302Google Scholar

    [21]

    Jia Y, Xu Y, Kai L, Zhang W, Huang A D, Guo Y X 2018 IEEE Trans. Electron Devices 65 3169Google Scholar

计量
  • 文章访问数:  9674
  • PDF下载量:  253
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-13
  • 修回日期:  2021-06-21
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-05

/

返回文章
返回