-
闪烁体探测器是辐射物理领域重要的探测器件, 闪烁体作为其中的核心部分, 其特性受到广泛研究, 特别是闪烁体在高激发密度下的非线性效应由于其对测量结果的直接影响而得到格外关注. 本文结合目前国内外闪烁体发光的相关理论, 以载流子方程为基础, 量化分析了激子的二阶猝灭效应对于载流子动力学过程的影响, 着重计算分析了脉冲测量场景下不同激发密度产生的不同初始载流子浓度对于闪烁体光衰减曲线、光产额以及效率的影响. 接着利用光致激发实验, 研究了CeF3闪烁体光产额与激发密度的关系, 并利用载流子猝灭模型对实验数据进行了拟合, 拟合曲线与实验数据一致性较高, 并得到了CeF3闪烁体10%非线性效应对应的能量密度阈值. 通过本文研究工作建立的物理模型, 结合不同的模型参数, 可以实现多种闪烁材料发光非线性特性的预测和解释, 对于理解及解决实验中遇到的闪烁体在高激发密度下产生的非线性效应问题具有重要作用.
The scintillator detector is one of the most important detectors in the field of radiation detection and radiation physics. The characteristics and performance of scintillator that is a core part of the measurement system, are widely studied. Especially, the nonlinearity of scintillators under high excitation density has received more attention because of its direct influence on the measurement results. In this paper, physical modeling and experimental research on this problem are carried out in-depth. First, the second-order quenching effect of excitons on the scintillator luminescence process is quantitatively analyzed based on the carrier dynamic equation. The luminescence attenuation curves of scintillator under different initial carrier concentrations generated by different excitation densities are obtained. The relationship of the light yield and the efficiency of scintillator with the initial carrier concentration is analyzed, and the results show that with the increase of the initial carrier concentration, the light yield tends to be saturated and the light efficiency decreases. Then CeF3 scintillator is studied in the Z-scan photoluminescence experiment. The relationship between the light yield and the excitation density is obtained, and the experimental data can be fitted by the carrier quenching model well, which verifies the physical model. At the same time, the energy density threshold corresponding to the 10% nonlinearity of CeF3 scintillator is obtained.The physical model established in this paper can be used to predict and explain the nonlinear luminescence of various scintillation materials according to different parameters of crystal materials, which is important to understand and solve the nonlinearity problem of scintillators under high excitation density in practical application of radiation detection. -
Keywords:
- scintillator nonlinearity /
- carrier quenching /
- photoluminescence
[1] Moses W W, BizarriG A, WilliamsR T, Payne S A, Vasil'ev A N, Singh J, Li Q, Grim J Q, Choong W S 2012 IEEE Trans. Nucl. Sci. 59 2038Google Scholar
[2] Khodyuk I V, Dorenbos P 2012 IEEE Trans. Nucl. Sci. 59 3320Google Scholar
[3] Moses W W, PayneS A, ChoongW S, Hull G, Reutter B W 2008 IEEE Trans. Nucl. Sci. 55 1049Google Scholar
[4] Siengsanoh K, LimkitjaroenpornP, Sustini E, Kaewkhao J 2018 Mater. Today Proc. 5 15024Google Scholar
[5] Limkitjaroenporn P, Hongtong W, Chaiphaksa W, Kang S J, Kaewkhao J, Siengsanoh K 2018 Mater. Today Proc. 5 15110Google Scholar
[6] Klamra W, Balcerzyk M, Czarnacki W, Kozlov V, Mosynski M, Syntfeld-Kazuch A, Szczesniak T 2009 J. Instrum. 4 05006Google Scholar
[7] Swiderski L, Marcinkowski R, Szawłowski M, Mosynski M, CzarnackiW, Syntfeld-Kazuch A, Szczesniak T, Pausch G, Plettner C, Roemer K 2012 IEEE Trans. Nucl. Sci. 59 222Google Scholar
[8] Chen X, Han H T, Li G 2017 Radiat. Meas. 97 42Google Scholar
[9] 管兴胤, 张子川, 张文钰 2009 原子能科学与技术 43 942Google Scholar
Guan X Y, Zhang Z C, Zhang W Y 2009 Atomic Energy Sci. Tech 43 942Google Scholar
[10] 宋朝晖, 李刚, 王奎禄, 胡华四, 代秋声 2004 核电子学与探测技术 24 461Google Scholar
Song Z H, Li G, Wang K L, Hu H S, Dai Q S 2004 Nuclear Electron. Detection Tech. 24 461Google Scholar
[11] Spassky D, Vasil'ev A, Belsky A, Fedorov N, Martin P, Markov S, Buzanov O, Kozlova N, Shlegel V 2019 Opt. Mater. 90 7Google Scholar
[12] Grim J Q, Ucer K B, Burger A, BhattacharyaP, Tupitsyn E, Rowe E, Buliga V M, Trefilova L, Gektin A, Bizarri G A, Moses W W, Williams R T 2013 Phys. Rev. B 87 125117Google Scholar
[13] Williams R T, GrimJ Q, Li Q, Ucer K B, Bizarri G A, Kerisit S, Gao F, Bhattacharya P, Tupitsyn E, Rowe E, Buliga V M, Burger A 2013 Proc. SPIE 8852 88520JGoogle Scholar
[14] 鲍杰, 陈永浩, 张显鹏, 等 2019 物理学报 68 080101Google Scholar
Bao J, Chen Y H, Zhang X P, et al. 2019 Acta Phys. Sin. 68 080101Google Scholar
[15] 任杰, 阮锡超, 陈永浩, 等 2020 物理学报 69 172901Google Scholar
Ren J, Ruan X C, Chen Y H, et al. 2020 Acta Phys. Sin. 69 172901Google Scholar
[16] Krzywinski J, Andrejczuk A, Bionta R M, Burian T, Chalupsky J, Jurek M, Krim M, Nagirnyi V, Sobierajski R, Tiedtke K, Vielhauer S, Juha L 2017 Opt. Mater. Express 7 665Google Scholar
[17] Vielhauer S, Babina V, De Graziab M, Feldach E, Kirm M, Nagirnyi V, Vasil'ev A 2009 Proc. SPIE 7361 73610RGoogle Scholar
[18] Vielhauer S, Babin V, De Grazia M, Feldbach E, Kirm M, Nagirnyi V, Vasil'ev A 2008 Phys. Solid State 50 1789Google Scholar
[19] Kirm M, Andrejczuk A, Krzywinski J, Sobierajski R 2005 Phys. Stat. Sol.(c) 2 649Google Scholar
[20] Förster T H 1948 Ann. Phys. 55 437
[21] Clegg R M, Herman B 1995 Methods Enzymol. 6 1Google Scholar
[22] Wu P G, Brand L 1994 Anal. Biochem. 218 1Google Scholar
[23] Belsky A N, Kamenskikh I A, Mikhailin V V, Pedrini C, Vasil'ev A N 1998 Radiat. Eff. Defect. S. 150 1Google Scholar
[24] 施朝淑, 陈永虎, 张国斌, 许小亮, 汤洪高 2002 发光学报 23 217Google Scholar
Shi C S, Chen Y H, Zhang G B, Xu X L, Tang H G 2002 Chin. J. Lumin. 23 217Google Scholar
[25] Nagirnyi V, Dolgov S, Grigonis R, Kirm M, Nagornaya L L, Savikhin F, Sirutkaitis V, Vielhauer S, A. Vasil'ev A 2010 IEEE Trans Nucl. Sci. 57 1182Google Scholar
-
-
[1] Moses W W, BizarriG A, WilliamsR T, Payne S A, Vasil'ev A N, Singh J, Li Q, Grim J Q, Choong W S 2012 IEEE Trans. Nucl. Sci. 59 2038Google Scholar
[2] Khodyuk I V, Dorenbos P 2012 IEEE Trans. Nucl. Sci. 59 3320Google Scholar
[3] Moses W W, PayneS A, ChoongW S, Hull G, Reutter B W 2008 IEEE Trans. Nucl. Sci. 55 1049Google Scholar
[4] Siengsanoh K, LimkitjaroenpornP, Sustini E, Kaewkhao J 2018 Mater. Today Proc. 5 15024Google Scholar
[5] Limkitjaroenporn P, Hongtong W, Chaiphaksa W, Kang S J, Kaewkhao J, Siengsanoh K 2018 Mater. Today Proc. 5 15110Google Scholar
[6] Klamra W, Balcerzyk M, Czarnacki W, Kozlov V, Mosynski M, Syntfeld-Kazuch A, Szczesniak T 2009 J. Instrum. 4 05006Google Scholar
[7] Swiderski L, Marcinkowski R, Szawłowski M, Mosynski M, CzarnackiW, Syntfeld-Kazuch A, Szczesniak T, Pausch G, Plettner C, Roemer K 2012 IEEE Trans. Nucl. Sci. 59 222Google Scholar
[8] Chen X, Han H T, Li G 2017 Radiat. Meas. 97 42Google Scholar
[9] 管兴胤, 张子川, 张文钰 2009 原子能科学与技术 43 942Google Scholar
Guan X Y, Zhang Z C, Zhang W Y 2009 Atomic Energy Sci. Tech 43 942Google Scholar
[10] 宋朝晖, 李刚, 王奎禄, 胡华四, 代秋声 2004 核电子学与探测技术 24 461Google Scholar
Song Z H, Li G, Wang K L, Hu H S, Dai Q S 2004 Nuclear Electron. Detection Tech. 24 461Google Scholar
[11] Spassky D, Vasil'ev A, Belsky A, Fedorov N, Martin P, Markov S, Buzanov O, Kozlova N, Shlegel V 2019 Opt. Mater. 90 7Google Scholar
[12] Grim J Q, Ucer K B, Burger A, BhattacharyaP, Tupitsyn E, Rowe E, Buliga V M, Trefilova L, Gektin A, Bizarri G A, Moses W W, Williams R T 2013 Phys. Rev. B 87 125117Google Scholar
[13] Williams R T, GrimJ Q, Li Q, Ucer K B, Bizarri G A, Kerisit S, Gao F, Bhattacharya P, Tupitsyn E, Rowe E, Buliga V M, Burger A 2013 Proc. SPIE 8852 88520JGoogle Scholar
[14] 鲍杰, 陈永浩, 张显鹏, 等 2019 物理学报 68 080101Google Scholar
Bao J, Chen Y H, Zhang X P, et al. 2019 Acta Phys. Sin. 68 080101Google Scholar
[15] 任杰, 阮锡超, 陈永浩, 等 2020 物理学报 69 172901Google Scholar
Ren J, Ruan X C, Chen Y H, et al. 2020 Acta Phys. Sin. 69 172901Google Scholar
[16] Krzywinski J, Andrejczuk A, Bionta R M, Burian T, Chalupsky J, Jurek M, Krim M, Nagirnyi V, Sobierajski R, Tiedtke K, Vielhauer S, Juha L 2017 Opt. Mater. Express 7 665Google Scholar
[17] Vielhauer S, Babina V, De Graziab M, Feldach E, Kirm M, Nagirnyi V, Vasil'ev A 2009 Proc. SPIE 7361 73610RGoogle Scholar
[18] Vielhauer S, Babin V, De Grazia M, Feldbach E, Kirm M, Nagirnyi V, Vasil'ev A 2008 Phys. Solid State 50 1789Google Scholar
[19] Kirm M, Andrejczuk A, Krzywinski J, Sobierajski R 2005 Phys. Stat. Sol.(c) 2 649Google Scholar
[20] Förster T H 1948 Ann. Phys. 55 437
[21] Clegg R M, Herman B 1995 Methods Enzymol. 6 1Google Scholar
[22] Wu P G, Brand L 1994 Anal. Biochem. 218 1Google Scholar
[23] Belsky A N, Kamenskikh I A, Mikhailin V V, Pedrini C, Vasil'ev A N 1998 Radiat. Eff. Defect. S. 150 1Google Scholar
[24] 施朝淑, 陈永虎, 张国斌, 许小亮, 汤洪高 2002 发光学报 23 217Google Scholar
Shi C S, Chen Y H, Zhang G B, Xu X L, Tang H G 2002 Chin. J. Lumin. 23 217Google Scholar
[25] Nagirnyi V, Dolgov S, Grigonis R, Kirm M, Nagornaya L L, Savikhin F, Sirutkaitis V, Vielhauer S, A. Vasil'ev A 2010 IEEE Trans Nucl. Sci. 57 1182Google Scholar
计量
- 文章访问数: 5072
- PDF下载量: 112
- 被引次数: 0