搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固定相位振动噪声对绝对重力测量的影响

要佳敏 庄伟 冯金扬 王启宇 赵阳 王少凯 吴书清 李天初

引用本文:
Citation:

固定相位振动噪声对绝对重力测量的影响

要佳敏, 庄伟, 冯金扬, 王启宇, 赵阳, 王少凯, 吴书清, 李天初

Effect of vibration noise with fixed phase on absolute gravimetry applying vibration isolator

Yao Jia-Min, Zhuang Wei, Feng Jin-Yang, Wang Qi-Yu, Zhao Yang, Wang Shao-Kai, Wu Shu-Qing, Li Tian-Chu
PDF
HTML
导出引用
  • 绝对重力仪在地球物理等领域有着广泛的应用, 其普遍采用激光干涉式或原子干涉式的测量原理. 现有的绝对重力仪主要利用垂直隔振系统来减小地面振动对参考镜的影响以提升仪器的测量精密度. 但在激光干涉式绝对重力仪中, 隔振系统对仪器自振效应等固定相位振动噪声的响应可能引入系统误差, 即影响测量准确度; 在原子干涉式绝对重力仪中也可能有尚未标定的振动来源通过隔振系统引入系统误差. 本文对现有绝对重力仪中使用的4种典型隔振系统进行理论分析及仿真建模, 以自振脉冲、地脉动和随机振动这3种典型信号为输入, 分析激光干涉式绝对重力仪中隔振系统内参考镜的真实振动及其对重力测值的影响, 并通过实验对比评估了其中两种系统在实际重力仪中的性能. 结果表明, 当仪器运行期间存在自振脉冲等固定相位振动噪声时, 隔振系统中参考镜振动引入的系统误差可能达到10 μGal (1 μGal = 1 × 10–8 m/s2)及以上. 使用性能更好的隔振系统或在实际测量中对该系统误差进行修正, 有望进一步提高国产激光干涉式绝对重力仪的测量精度.
    Absolute gravimeter, an instrument which is applied to laser interferometry or atom interferometry for measuring the gravitational acceleration g (approximately 9.8 m/s2), plays an important role in metrology, geophysics, geological exploration, etc. To achieve a high accuracy of several microGals (μGal, 1μGal = 1 × 10–8 m/s2), a vertical vibration isolator is widely employed in the absolute gravimeter to protect the reference object (a retro-reflector or a mirror) from being disturbed by ground vibration noises. However, the reference object in vibration isolator may still move due to isolator’s response to the impulse caused by the self-vibration effect in laser-interferometry gravimeter, or the forced vibration of the ferromagnetic component in the isolator under the varying magnetic field of magneto-optical traps (MOTs) in atom-interferometry gravimeter. This vibration of the reference object has a fixed phase relative to the detection of the free-fall of a falling object or atoms, leading an additional systematic error to be introduced into measured g value. In this paper, the physical models of four typical vertical vibration isolators used in the current absolute gravimeters are introduced, i.e. a passive Minus K isolator, a passive Lacoste isolator, a one-stage active isolator, and a double-stage active isolator. The simulation models of these isolators are also created with specific resonance periods. Taking a laser-interferometry gravimeter for example, the responses of these isolators under impulse input are analyzed, proving that the real vibration of the reference object, namely the output of each isolator, has a fixed phase relative to the detection of the fringe signal, which indicates the trajectory of the free-falling object, hence resulting in an additional systematic error. To provide a detailed evaluation, firstly the vibration of the reference object under an impulse, a seismic noise, and a random noise, which represent typical ground vibrations, are obtained by running the simulation. Then the corresponding errors in the calculation of g value are presented. Besides, the experimental results of T-1 laser-interferometry gravimeter at a noisy site in Tsinghua University, with either a Minus K isolator or a Superspring isolator used, are compared with the simulated results. According to the above simulations and experiments, the systematic error introduced by the vibration of resonance object in a Minus K isolator or a one-stage active isolator under impulse can respectively exceed 600 μGal or 10 μGal, while the error with the object in a Lacoste isolator or a double-stage active isolator can be neglected. Therefore, it is better to use a double-stage active vibration isolator in absolute gravimeter to avoid this systematic error and achieve higher measurement accuracy. With more information about the forced vibration in the isolators under varying magnetic fields of MOT, the systematic error introduced by the vibration of reference object can also be specifically evaluated in the future.
      通信作者: 庄伟, zhuangwei@nim.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFF0212401, 2016YFF0200206)和中国计量科学研究院基本科研业务费(批准号: 29-AKY1922-20, AKYZD2002)资助的课题
      Corresponding author: Zhuang Wei, zhuangwei@nim.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFF0212401, 2016YFF0200206) and the Research Funds for National Institute of Metrology, China (Grant Nos. 29-AKY1922-20, AKYZD2002).
    [1]

    Marson I, Faller J E 1986 J. Phys. E:Sci. Instrum. 19 22Google Scholar

    [2]

    Faller J E 2002 Metrologia 39 425Google Scholar

    [3]

    Steiner R L, Williams E R, Newell D B, Liu R 2005 Metrologia 42 431Google Scholar

    [4]

    Timmen L, Gitlein O, Klemann V, Wolf D 2011 Pure Appl. Geophys. 169 1331Google Scholar

    [5]

    Niebauer T M, Sasagawa G S, Faller J E, Hilt R, Klopping F 1995 Metrologia 32 159Google Scholar

    [6]

    D'Agostino G, Desogus S, Germak A, et al. 2008 Ann. Geophys. 51 39

    [7]

    胡华, 伍康, 申磊, 李刚, 王力军 2012 物理学报 61 099101Google Scholar

    Hu H, Wu K, Shen L, Li G, Wang L J 2012 Acta Phys. Sin. 61 099101Google Scholar

    [8]

    吴书清, 李春剑, 徐进义, 粟多武, 冯金扬, 吉望西 2017 计量学报 38 01Google Scholar

    Wu S Q, Li C J, Xu J Y, Su D W, Feng J Y, Ji W X 2017 Acta Metrol. Sin. 38 01Google Scholar

    [9]

    Kasevich M, Chu S 1991 Phys. Rev. Lett. 67 181Google Scholar

    [10]

    Le Gouët J, Mehlstäubler T, Kim J, Merlet S, Clairon A, Landragin A, Pereira Dos Santos F 2008 Appl. Phys. B 92 133Google Scholar

    [11]

    Wang S K, Zhao Y, Zhuang W, Li T C, Wu S Q, Feng J Y, Li C J 2018 Metrologia 55 360Google Scholar

    [12]

    Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z, Luo J 2013 Phys. Rev. A 88 043610Google Scholar

    [13]

    Wang Q, Wang Z, Fu Z, Liu W, Lin Q 2016 Opt. Commun. 358 82Google Scholar

    [14]

    Peterson J 1993 Observations and Modeling of Seismic Background Noise (U.S. Geological Survey) Report 93-322

    [15]

    Sorrells G G, Douze E J 1974 J. Geophys. Res. 79 4908Google Scholar

    [16]

    Cessaro R K, Chan W 1989 J. Geophys. Res. -Solid Earth 94 15555Google Scholar

    [17]

    Chen L L, Luo Q, Zhang H, Duan X C, Zhou M K, Hu Z K 2018 Rev. Sci. Instrum. 89 066105Google Scholar

    [18]

    陈非凡 2007 仪器设计技术基础 (北京: 清华大学出版社) 第410−430页

    Chen F F 2007 Fundamental Technology for Instrument Design (Beijing: Tsinghua Unversity Press) pp410−430 (in Chinese)

    [19]

    International Vocabulary of Metrology—Basic and General Concepts and Associated Terms (VIM), JCGM 2012 https://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf [2021-03-29]

    [20]

    李玉和, 郭阳宽 2010 现代精密仪器设计(第2版) (北京: 清华大学出版社) 第57−59页

    Li Y H, Guo Y K 2010 Design of Modern Precision Instrument (2nd Ed.) (Beijing: Tsinghua University Press) pp57−59 (in Chinese)

    [21]

    李哲 2016 博士学位论文 (北京: 清华大学)

    Li Z 2016 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [22]

    LaCoste Jr L J B 1934 Physics 5 178Google Scholar

    [23]

    Stochino A, Abbot B, Aso Y, et al. 2009 Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip. 598 737Google Scholar

    [24]

    Winterflood J, Blair D G, Slagmolen B 2002 Phys. Lett. A 300 122Google Scholar

    [25]

    Platus D L 1993 Machine Design 65 123

    [26]

    Li G, Hu H, Wu K, Wang G, Wang L J 2014 Rev. Sci. Instrum. 85 104502Google Scholar

    [27]

    Hensley J M, Peters A, Chu S 1999 Rev. Sci. Instrum. 70 2735Google Scholar

    [28]

    Tang B, Zhou L, Xiong Z, Wang J, Zhan M 2014 Rev. Sci. Instrum. 85 093109Google Scholar

    [29]

    Rinker R L 1983 Ph. D. Dissertation (Boulder: University of Colorado)

    [30]

    Wu K, Li G, Hu H, Wang L 2017 Chin. J. Mech. Eng. 30 164Google Scholar

    [31]

    Wang G, Wu K, Hu H, Li G, Wang L 2016 Rev. Sci. Instrum. 87 105101Google Scholar

    [32]

    Yao J, Wu K, Guo M, Wang G, Wang L 2020 IEEE Trans. Instrum. Meas. 69 2670Google Scholar

    [33]

    要佳敏 2020 博士学位论文 (北京: 清华大学)

    Yao J M 2020 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [34]

    Guo M, Wu K, Yao J, Wen Y, Wang L 2021 IEEE Trans. Instrum. Meas. 70 1004310Google Scholar

    [35]

    Francis O, Baumann H, Ullrich C, et al. 2015 Metrologia 52 07009Google Scholar

    [36]

    FG5-X Absolute Gravimeter User's Manual, Micro-g Lacoste http://microglacoste.com/wp-content/uploads/2018/01/FG5-X-Manual-115060001.pdf [2021-06-03]

  • 图 1  系统误差与随机误差

    Fig. 1.  Systematic error and random error.

    图 2  (a) 被动式隔振系统的物理模型; (b) 一级主动式隔振系统的物理模型; (c) 二级主动式隔振系统的物理模型

    Fig. 2.  Physical models: (a) Passive vibration isolator; (b) one-stage active vibration isolator; (c) double-stage active vibration isolator

    图 3  自振脉冲输入下隔振系统内参考镜的振动

    Fig. 3.  Real vibration of reference retro-reflector in a vibration isolator under the impulse caused by self-vibration effect.

    图 4  仿真程序流程框图

    Fig. 4.  Flow chart of the simulation program.

    图 5  4种隔振系统 (a)传递函数伯德图; (b)阶跃响应

    Fig. 5.  Four vibration isolators used in simulation: (a) Bode diagrams; (b) step responses.

    图 6  综合振动输入下参考镜振动对光学重力仪引入的(a)单组重力测量误差, (b) 12组重力测量误差, 图(b)中误差条为每组测值的标准差

    Fig. 6.  Measurement errors of obtained from (a) one data set and (b) 12 data sets introduced in laser-interferometry absolute gravimeter by the vibration of retro-reflector under impulse, seismic noise and random noise, with the error bar in (b) indicating the standard deviation of each set.

    图 7  参考镜振动对光学重力仪引入的测量误差随测量组数的变化 (a) Minus K型被动隔振系统; (b) Lacoste型被动隔振系统; (c) 一级主动隔振系统; (d) 二级主动隔振系统

    Fig. 7.  Measurement errors introduced in laser-interferometry absolute gravimeter by the vibration of retro-reflector, varying with the numbers of data sets used in simulation: (a) Minus K passive vibration isolator; (b) Lacoste passive vibration isolator; (c) one-stage active vibration isolator; (d) double-stage active vibration isolator.

    图 8  实验验证现场图 (a) 干涉仪下方放置Minus K型被动式系统; (b) 干涉仪下方放置Superspring二级主动式系统

    Fig. 8.  Picture of absolute gravimeter with (a) Minus K passive vibration isolator or (b) Superspring double-stage active vibration isolator.

    图 9  实际测量结果(a)及相同振动输入下的仿真结果(b)

    Fig. 9.  Measurement results (a) and simulation results (b) of g values under the same vibration input.

    表 1  仿真运算参数表

    Table 1.  Parameters used in simulation.

    测量参数数值振动信号参数数值
    单次测量中采集的
    下落物体运动时长/ms
    120信号1: 自振效应导致的脉冲速度/(mm·s–1)0.1
    采集电路触发时刻与下落物体释放瞬间的延时/ms30信号2: 第1种地脉动
    (正弦信号)
    幅值/nm5
    单组测量包含的下落次数100信号2: 第1种地脉动
    (正弦信号)
    频率/Hz0.2
    单组测量期间相邻两次测量的时间间隔/s20信号3: 第2种地脉动
    (正弦信号)
    幅值/nm2
    相邻两组测量的时间间隔/h1信号3: 第2种地脉动
    (正弦信号)
    频率/Hz3
    总测量组数12信号4: 代表随机振动的
    高斯白噪声
    PSD
    /(m2·Hz–1)
    2.5×10–17
    下载: 导出CSV

    表 2  基于12组仿真数据得到的参考镜振动对光学重力仪引入的测量误差(单位: μGal)

    Table 2.  Measurement errors introduced in laser-interferometry absolute gravimeter by the vibration of retro-reflector, obtained from 12 data sets simulated results (unit: μGal)

    隔振类型输入信号
    自振脉冲
    (信号1)
    地脉动及随机振动
    (信号2—4)
    综合振动
    (信号1—4)
    无隔振5.1 ± 15.121.0 ± 74.9–121.8 ± 90.4
    Minus K型
    (被动式)
    655.8 ± 0.42.1 ± 2.0658.5 ± 2.5
    Lacoste型
    (被动式)
    0.0 ± 0.00.0 ± 0.00.0 ± 0.0
    一级主动式–15.9 ± 0.0–0.4 ± 0.2–15.9 ± 0.2
    二级主动式0.0 ± 0.00.0 ± 0.00.0 ± 0.0
    下载: 导出CSV

    表 3  6组实际测量结果(单位: μGal)

    Table 3.  Measurement results obtained from 6 data sets (unit: μGal).

    隔振类型结果类型
    实测结果
    (综合信号)
    仿真结果
    (综合信号)
    无隔振–52.0 ± 110.0–40.7 ± 123.3
    Minus K型(被动式)655.2 ± 77.8656.5 ± 3.3
    一级主动式–16.0 ± 0.3
    Superspring型
    二级主动式
    –6.7 ± 12.60.0 ± 0.0
    下载: 导出CSV

    表 4  采集过程起始时刻改变时的仿真结果(单位: μGal)

    Table 4.  One set of simulated results with different t1 (unit: μGal).

    隔振类型采样起点t1/ms
    343536
    无隔振–84.6 ± 314.7215.6 ± 334.0154.2 ± 294.5
    Minus K型
    (被动式)
    658.6 ± 8.1660.8 ± 9.2660.7 ± 7.7
    一级主动式–16.2 ± 0.7–16.1 ± 0.8–17.3 ± 0.7
    二级主动式0.0 ± 0.00.0 ± 0.00.1 ± 0.0
    下载: 导出CSV

    表 5  下落间隔改变时的仿真结果(单位: μGal)

    Table 5.  One set of simulated results with different drop interval (unit: μGal).

    隔振类型下落间隔/s
    30201073
    无隔振–168.0 ± 328.5215.6 ± 334.0176.7 ± 281.949.7 ± 322.1–281.3 ± 295.2
    Minus K型(被动式)658.5 ± 9.4667.5 ± 8.1631.2 ± 9.2937.9 ± 8.71037.1 ± 8.5
    一级主动式–16.3 ± 0.7–15.4 ± 0.8–15.7 ± 0.7–16.5 ± 0.8–16.8 ± 0.8
    二级主动式0.0 ± 0.00.0 ± 0.00.1 ± 0.00.1 ± 0.00.2 ± 0.0
    下载: 导出CSV

    表 6  使用多种正弦函数模拟地脉动时的仿真结果(单位: μGal)

    Table 6.  One set of simulated results with multiple sinusoidal signals as the seismic noise (unit: μGal)

    隔振类型地脉动信号
    19个正弦信号2个正弦信号
    无隔振226.3 ± 297.3215.6 ± 334.0
    Minus K型(被动式)662.4 ± 8.3644.2 ± 7.8
    一级主动式–15.1 ± 0.8–16.2 ± 0.7
    二级主动式0.1 ± 0.00.0 ± 0.0
    下载: 导出CSV

    表 7  以16次下落的地震计原始数据为输入时的计算结果(单位: μGal)

    Table 7.  Results with the ground vibrations measured during 16 drops as input signal (unit: μGal).

    隔振类型结果类型
    仿真值
    (真实振动信号)
    仿真值
    (设计信号)
    实测值
    无隔振–264.5 ± 849.3–513.9 ± 678.3471.5 ± 676.6
    Minus K型
    (被动式)
    646.0 ± 16.5629.1 ± 18.8876.7 ± 615.6
    一级主动式–12.1 ± 2.5–17.9 ± 1.5
    二级主动式1.8 ± 0.10.0 ± 0.0–20.0 ± 62.6
    下载: 导出CSV
  • [1]

    Marson I, Faller J E 1986 J. Phys. E:Sci. Instrum. 19 22Google Scholar

    [2]

    Faller J E 2002 Metrologia 39 425Google Scholar

    [3]

    Steiner R L, Williams E R, Newell D B, Liu R 2005 Metrologia 42 431Google Scholar

    [4]

    Timmen L, Gitlein O, Klemann V, Wolf D 2011 Pure Appl. Geophys. 169 1331Google Scholar

    [5]

    Niebauer T M, Sasagawa G S, Faller J E, Hilt R, Klopping F 1995 Metrologia 32 159Google Scholar

    [6]

    D'Agostino G, Desogus S, Germak A, et al. 2008 Ann. Geophys. 51 39

    [7]

    胡华, 伍康, 申磊, 李刚, 王力军 2012 物理学报 61 099101Google Scholar

    Hu H, Wu K, Shen L, Li G, Wang L J 2012 Acta Phys. Sin. 61 099101Google Scholar

    [8]

    吴书清, 李春剑, 徐进义, 粟多武, 冯金扬, 吉望西 2017 计量学报 38 01Google Scholar

    Wu S Q, Li C J, Xu J Y, Su D W, Feng J Y, Ji W X 2017 Acta Metrol. Sin. 38 01Google Scholar

    [9]

    Kasevich M, Chu S 1991 Phys. Rev. Lett. 67 181Google Scholar

    [10]

    Le Gouët J, Mehlstäubler T, Kim J, Merlet S, Clairon A, Landragin A, Pereira Dos Santos F 2008 Appl. Phys. B 92 133Google Scholar

    [11]

    Wang S K, Zhao Y, Zhuang W, Li T C, Wu S Q, Feng J Y, Li C J 2018 Metrologia 55 360Google Scholar

    [12]

    Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z, Luo J 2013 Phys. Rev. A 88 043610Google Scholar

    [13]

    Wang Q, Wang Z, Fu Z, Liu W, Lin Q 2016 Opt. Commun. 358 82Google Scholar

    [14]

    Peterson J 1993 Observations and Modeling of Seismic Background Noise (U.S. Geological Survey) Report 93-322

    [15]

    Sorrells G G, Douze E J 1974 J. Geophys. Res. 79 4908Google Scholar

    [16]

    Cessaro R K, Chan W 1989 J. Geophys. Res. -Solid Earth 94 15555Google Scholar

    [17]

    Chen L L, Luo Q, Zhang H, Duan X C, Zhou M K, Hu Z K 2018 Rev. Sci. Instrum. 89 066105Google Scholar

    [18]

    陈非凡 2007 仪器设计技术基础 (北京: 清华大学出版社) 第410−430页

    Chen F F 2007 Fundamental Technology for Instrument Design (Beijing: Tsinghua Unversity Press) pp410−430 (in Chinese)

    [19]

    International Vocabulary of Metrology—Basic and General Concepts and Associated Terms (VIM), JCGM 2012 https://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf [2021-03-29]

    [20]

    李玉和, 郭阳宽 2010 现代精密仪器设计(第2版) (北京: 清华大学出版社) 第57−59页

    Li Y H, Guo Y K 2010 Design of Modern Precision Instrument (2nd Ed.) (Beijing: Tsinghua University Press) pp57−59 (in Chinese)

    [21]

    李哲 2016 博士学位论文 (北京: 清华大学)

    Li Z 2016 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [22]

    LaCoste Jr L J B 1934 Physics 5 178Google Scholar

    [23]

    Stochino A, Abbot B, Aso Y, et al. 2009 Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip. 598 737Google Scholar

    [24]

    Winterflood J, Blair D G, Slagmolen B 2002 Phys. Lett. A 300 122Google Scholar

    [25]

    Platus D L 1993 Machine Design 65 123

    [26]

    Li G, Hu H, Wu K, Wang G, Wang L J 2014 Rev. Sci. Instrum. 85 104502Google Scholar

    [27]

    Hensley J M, Peters A, Chu S 1999 Rev. Sci. Instrum. 70 2735Google Scholar

    [28]

    Tang B, Zhou L, Xiong Z, Wang J, Zhan M 2014 Rev. Sci. Instrum. 85 093109Google Scholar

    [29]

    Rinker R L 1983 Ph. D. Dissertation (Boulder: University of Colorado)

    [30]

    Wu K, Li G, Hu H, Wang L 2017 Chin. J. Mech. Eng. 30 164Google Scholar

    [31]

    Wang G, Wu K, Hu H, Li G, Wang L 2016 Rev. Sci. Instrum. 87 105101Google Scholar

    [32]

    Yao J, Wu K, Guo M, Wang G, Wang L 2020 IEEE Trans. Instrum. Meas. 69 2670Google Scholar

    [33]

    要佳敏 2020 博士学位论文 (北京: 清华大学)

    Yao J M 2020 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [34]

    Guo M, Wu K, Yao J, Wen Y, Wang L 2021 IEEE Trans. Instrum. Meas. 70 1004310Google Scholar

    [35]

    Francis O, Baumann H, Ullrich C, et al. 2015 Metrologia 52 07009Google Scholar

    [36]

    FG5-X Absolute Gravimeter User's Manual, Micro-g Lacoste http://microglacoste.com/wp-content/uploads/2018/01/FG5-X-Manual-115060001.pdf [2021-06-03]

  • [1] 蔡荣根, 李理, 王少江. 哈勃常数危机. 物理学报, 2023, 72(23): 239801. doi: 10.7498/aps.72.20231270
    [2] 刘海平, 张世乘, 门玲鸰, 何振强. 面向激光跟踪仪宽频隔振器的理论分析及试验评价. 物理学报, 2022, 71(16): 160701. doi: 10.7498/aps.71.20220307
    [3] 车浩, 李安, 方杰, 葛贵国, 高伟, 张亚, 刘超, 许江宁, 常路宾, 黄春福, 龚文斌, 李冬毅, 陈曦, 覃方君. 基于冷原子重力仪的船载动态绝对重力测量实验研究. 物理学报, 2022, 71(11): 113701. doi: 10.7498/aps.71.20220113
    [4] 程冰, 陈佩军, 周寅, 王凯楠, 朱栋, 楚立, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 基于冷原子重力仪的绝对重力动态移动测量实验. 物理学报, 2022, 71(2): 026701. doi: 10.7498/aps.71.20211449
    [5] 王凯楠, 徐晗, 周寅, 许云鹏, 宋微, 汤鸿志, 王巧薇, 朱栋, 翁堪兴, 王河林, 彭树萍, 王肖隆, 程冰, 李德钊, 乔中坤, 吴彬, 林强. 基于车载原子重力仪的外场绝对重力快速测绘研究. 物理学报, 2022, 71(15): 159101. doi: 10.7498/aps.71.20220267
    [6] 要佳敏, 庄伟, 冯金扬, 王启宇, 赵阳, 王少凯, 吴书清, 李天初. 基于系数搜索的振动补偿方法. 物理学报, 2022, 71(11): 119101. doi: 10.7498/aps.71.20220037
    [7] 程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 船载系泊状态下基于原子重力仪的绝对重力测量. 物理学报, 2021, 70(4): 040304. doi: 10.7498/aps.70.20201522
    [8] 程冰, 陈佩军, 周寅, 王凯楠, 朱栋, 楚立, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 基于冷原子重力仪的绝对重力动态移动测量实验研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211449
    [9] 吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强. 基于原子重力仪的车载静态绝对重力测量. 物理学报, 2020, 69(6): 060302. doi: 10.7498/aps.69.20191765
    [10] 吴彬, 程冰, 付志杰, 朱栋, 邬黎明, 王凯楠, 王河林, 王兆英, 王肖隆, 林强. 拉曼激光边带效应对冷原子重力仪测量精度的影响. 物理学报, 2019, 68(19): 194205. doi: 10.7498/aps.68.20190581
    [11] 陈斌, 龙金宝, 谢宏泰, 陈泺侃, 陈帅. 可移动三维主动减振系统及其在原子干涉重力仪上的应用. 物理学报, 2019, 68(18): 183301. doi: 10.7498/aps.68.20190443
    [12] 吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强. 大倾斜角度下基于冷原子重力仪的绝对重力测量. 物理学报, 2018, 67(19): 190302. doi: 10.7498/aps.67.20181121
    [13] 罗东云, 程冰, 周寅, 吴彬, 王肖隆, 林强. 基于滑模鲁棒算法的超低频主动隔振系统. 物理学报, 2018, 67(2): 020702. doi: 10.7498/aps.67.20171884
    [14] 易洪, 李松, 马跃, 黄科, 周辉, 史光远. 基于足印探测的激光测高仪在轨标定. 物理学报, 2017, 66(13): 134206. doi: 10.7498/aps.66.134206
    [15] 王观, 胡华, 伍康, 李刚, 王力军. 基于两级摆杆结构的超低频垂直隔振系统. 物理学报, 2016, 65(20): 200702. doi: 10.7498/aps.65.200702
    [16] 张敬, 徐道临, 李盈利, 周加喜. 多源激励下双层隔振浮筏系统的线谱混沌化. 物理学报, 2014, 63(18): 180505. doi: 10.7498/aps.63.180505
    [17] 杨锦辉, 宋君强. 混沌系统模型误差平均绝对误差增长过程研究. 物理学报, 2012, 61(22): 220510. doi: 10.7498/aps.61.220510
    [18] 胡华, 伍康, 申磊, 李刚, 王力军. 新型高精度绝对重力仪. 物理学报, 2012, 61(9): 099101. doi: 10.7498/aps.61.099101
    [19] 赵艳影, 杨如铭. 利用时滞反馈控制自参数振动系统饱和控制减振频带. 物理学报, 2011, 60(10): 104304. doi: 10.7498/aps.60.104304.2
    [20] 徐丰, 陆明珠, 万明习, 方飞. 256阵元高强度聚焦超声相控阵系统误差与多焦点模式精确控制. 物理学报, 2010, 59(2): 1349-1356. doi: 10.7498/aps.59.1349
计量
  • 文章访问数:  4006
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-11
  • 修回日期:  2021-06-10
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-05

/

返回文章
返回