搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁电电压可调电感器的理论设计与可调性优化

聂长文 吴瀚舟 王书豪 蔡园园 宋树 SokolovOleg BichurinM. I. 汪尧进

引用本文:
Citation:

磁电电压可调电感器的理论设计与可调性优化

聂长文, 吴瀚舟, 王书豪, 蔡园园, 宋树, SokolovOleg, BichurinM. I., 汪尧进

Theoretical model and tunability optimization of magnetoelectric voltage tunable inductor

Nie Chang-Wen, Wu Han-Zhou, Wang Shu-Hao, Cai Yuan-Yuan, Song Shu, Sokolov Oleg, Bichurin M. I., Wang Yao-Jin
PDF
HTML
导出引用
  • 磁电电压可调电感器(ME-VTI)是基于磁电效应实现电场对电感的调控. 与其他可调电感器相比, 具有能耗低、体积小、可调性大且连续等特点. 而以往对ME-VTI的研究主要针对结构和磁致伸缩材料, 致使电感器制备工艺复杂或可调性提高不大. 本文通过构建理论模型, 着眼于压电材料场致应变对电感可调性的影响. 采用磁电复合材料Metglas/PMN-PT单晶/Metglas作为磁芯制备ME-VTI. 在1 kHz时可调性高达680%, 相当于选用Metglas/PZT/Metglas磁芯的2.4倍. 前者品质因子达到15.6, 相对于后者提高了2.8倍. 本文提出的基于PMN-PT单晶的ME-VTI为器件集成化、小型化的发展提供了新的思路, 在电力电子领域有重要的应用前景.
    Magnetoelectric voltage tunable inductor (ME-VTI) realizes the modulation of electric field to inductance based on magnetoelectric effect. Compared with other adjustable inductors, it has the advantages of low energy consumption, small volume, large tunability and continuity. However, previous reports on ME-VTI mainly focused on structure and magnetostrictive materials, resulting in the complexity of inductor structure and slight improvement of tunability. This study focuses on the influence of field-induced strain in piezoelectric materials on inductance tunability by constructing a theoretical model. The magnetoelectric laminate of Metglas/ PMN-PT single crystal /Metglas is employed as a magnetic core to design ME-VTI. The tunability is as high as 680% at 1 kHz, which is over 2.4 times larger than that of the Metglas/PZT/Metglas magnetic core. The quality factor of the PMN-PT based ME laminate reaches 15.6, which is 2.8 times higher than that of the PZT-based one. The proposed PMN-PT based ME-VTI provides an alternative approach for developing the integrated and miniaturized devices, and has an important prospect of application in the field of power electronics.
      通信作者: 汪尧进, yjwang@njust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 520721178, 51911530120, 51790492, 11874032)、中央高校基本科研业务费专项资金(批准号: 30920041119)和俄罗斯基础研究基金会(批准号: 19-07-00391)资助的课题.
      Corresponding author: Wang Yao-Jin, yjwang@njust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 520721178, 51911530120, 51790492, 11874032), the Fundamental Research Funds for the Central Universities, China (Grant No. 30920041119), and the Russian Foundation for Basic Research (Grant No. 19-07-00391).
    [1]

    Yan Y K, Geng L W D, Tan Y H, Ma J H, Zhang L J, Sanghadasa M, Ngo K, Ghosh A W, Wang Y U, Priya S 2018 Nat. Commun. 9 4998Google Scholar

    [2]

    Peng B, Zhang C, Yan Y, Liu M 2017 Phys. Rev. Appl. 7 044015Google Scholar

    [3]

    Zhang J, Chen D, Filippov D A, Li K, Zhang Q, Jiang L, Zhu W, Cao L, Srinivasan G 2018 Appl. Phys. Lett. 113 113502Google Scholar

    [4]

    Zhang J, Chen D, Filippov D A, Zhang Q, Li K, Hang X, Ge B, Cao L, Srinivasan G 2019 IEEE Trans. Magn. 55 7Google Scholar

    [5]

    Liu G, Zhang Y, Ci P, Dong S 2013 J. Appl. Phys. 114 064107Google Scholar

    [6]

    杨娜娜, 陈轩, 汪尧进 2018 物理学报 67 157508Google Scholar

    Yang N N, Chen X, Wang Y J 2018 Acta Phys. Sin. 67 157508Google Scholar

    [7]

    俞斌, 胡忠强, 程宇心, 彭斌, 周子尧, 刘明 2018 物理学报 67 157507Google Scholar

    Yu B, Hu Z Q, Cheng Y X, Peng B, Zhou Z Y, Liu M 2018 Acta Phys. Sin. 67 157507Google Scholar

    [8]

    Lin H, Lou J, Gao Y, Hasegawa R, Liu M, Howe B, Jones J, Brown G, Sun N X 2015 IEEE Trans. Magn. 51 1Google Scholar

    [9]

    Yan Y, Geng L, Zhang L, Tu C, Sri Ramdas R M, Liu H, Li X, Sanghadasa M, Ngo K D T, Wang Y U, Priya S 2020 IEEE Trans. Ind. Electron. 12 44981Google Scholar

    [10]

    Lou J, Reed D, Liu M, Sun N X 2016 Appl. Phys. Lett. 94 112508 2016 Appl. Phys. Lett. 94 112508Google Scholar

    [11]

    Liu G, Cui X, Dong S 2010 J. Appl. Phys. 108 094106Google Scholar

    [12]

    Geng L, Yan Y, Priya S, Wang Y U 2020 ACS Applied Mater. Interfaces 12 44981Google Scholar

    [13]

    Geng L W D, Yan Y K, Priya S, Wang Y U 2017 Acta Mater. 140 97Google Scholar

    [14]

    Geng L D, Yan Y, Priya S, Wang Y U 2019 Acta Mater. 166 493Google Scholar

    [15]

    Geng L D, Yan Y, Priya S, Wang Y U 2020 Phys. Rev. B 101 054422Google Scholar

    [16]

    Ma F D, Jin Y M, Wang Y U, Kampe S L, Dong S 2014 Acta Mater. 70 45Google Scholar

    [17]

    Wang Y, Wang Z, Ge W, Luo C, Li J, Viehland D, Chen J, Luo H 2014 Phys. Rev. B 90 134107Google Scholar

    [18]

    Wang Y, Wen X, Jia Y, Huang M, Wang F, Zhang X, Bai Y, Yuan G, Wang Y 2020 Nat. Commun. 11 1328Google Scholar

    [19]

    李飞, 张树君, 徐卓 2020 物理学报 69 217703Google Scholar

    Li F, Zhang S J, Xu Z 2020 Acta Phys. Sin. 69 217703Google Scholar

    [20]

    Chu Z, Shi H, Shi W, Liu G, Wu J, Yang J, Dong S 2017 Adv Mater. 29 1606022Google Scholar

    [21]

    Wang Y J, Gray D, Berry D, Gao J Q, Li M H, Li J F, Viehland D 2011 Adv. Mater. 23 4111Google Scholar

    [22]

    Liu G, Ci P, Dong S 2014 Appl. Phys. Lett. 104 032908Google Scholar

    [23]

    Chu Z, PourhosseiniAsl M, Dong S 2018 J. Phys. D: Appl. Phys. 51 243001Google Scholar

    [24]

    Wang Y, Li J, Viehland D 2014 Mater. Today 17 269Google Scholar

    [25]

    Chu Z, Dong C, Tu C, He Y, Liang X, Wang J, Wei Y, Chen H, Gao X, Lu C, Zhu Z, Lin Y, Dong S, McCord J, Sun N X 2019 Phys. Rev. Appl. 12 044001Google Scholar

    [26]

    王慧, 徐萌, 郑仁奎 2020 物理学报 69 017301Google Scholar

    Wang H, Xu M, Zheng R K 2020 Acta Phys. Sin. 69 017301Google Scholar

    [27]

    Li M, Wang Y, Hasanyan D, Li J, Viehland D 2012 Appl. Phys. Lett. 100 132904Google Scholar

    [28]

    Wang Y, Wang D, Yuan G, Ma H, Xu F, Li J, Viehland D, Gehring P M 2016 Phys. Rev. B 94 174103Google Scholar

    [29]

    Wang D, Yuan G, Luo H, Li J, Viehland D, Wang Y 2017 J. Am. Ceram. Soc. 100 4938Google Scholar

    [30]

    Yan Y K, Geng L W D, Zhang L J, Gao X Y, Gollapudi S, Song H C, Dong S X, Sanghadasa M, Ngo K, Wang Y U, Priya S 2017 Sci. Rep. 7 16008Google Scholar

  • 图 1  磁电电压可调电感器 (a) 应用示意图; (b) 结构示意图; (c) 逆磁电效应原理图; (d) (i)和(ii) 分别为电场作用时应变和磁导率的变化图; (e) 实物图; (f) PMN-PT基和PZT基磁电系数随偏置磁场的变化

    Fig. 1.  Magnetoelectric voltage tunable inductor (ME-VTI): (a) Potential application and (b) structure of ME-VTI; (c) principle of inverse magnetoelectric effect; (d) the variation of (i) strain and (ii) permeability under electric field; (e) photo for a ME-VTI; (f) the ME voltage coefficient of the Metglas/PMN-PT/Metglas and Metglas/PZT/Metglas.

    图 2  (a) (i)和(ii) 分别为PZT及PMN-PT的场致应变图和PMN-PT的相变示意图; (b) Metglas束缚时PZT和PMN-PT的场致应变图

    Fig. 2.  (a) (i) Electric-field induced strain of PZT and PMN-PT and (ii) the phase transition of PMN-PT; (b) the electric-field induced strain of PZT and PMN-PT based ME composites.

    图 3  (a)−(c)和(d)−(f) 分别为磁电电压可调电感器PZT基 (E-field up)、PMN-PT基(E-field up)、PMN-PT基 (E-field down)的电感频谱图和可调性频谱图; (g) 1 kHz时直流电场对PZT基和PMN-PT基电感的影响; (h) 1 kHz时PZT基和PMN-PT基的电感可调性

    Fig. 3.  (a)−(c) Inductance and (d)−(f) tunable spectra of PZT based (E-field up), PMN-PT based (E-field up) and PMN-PT based (E-field down) ME-VTI, respectively; (g) inductance of PZT based and PMN-PT based ME-VTI as a function of the applied dc voltage at 1 kHz; (h) tunability γ of PZT based and PMN-PT based ME-VTI at 1 kHz.

    图 4  (a)−(c) 磁电电压可调电感器PZT基(E-field up)、PMN-PT基(E-field up)、PMN-PT基 (E-field down)的品质因子频谱图

    Fig. 4.  (a)−(c) Quality factor spectra of PZT based (E-field up), PMN-PT based (E-field up), and PMN-PT based (E-field down) ME-VTI.

    图 5  (a) PZT基和 (b) PMN-PT基电场对电感的调控, 黑色的点代表实验数据, 红色的线代表理论曲线.

    Fig. 5.  Variation of (a) PZT based and (b) PMN-PT based inductance under electric field, respectively. The black dots represent the experimental data, and the red line represents the theoretical curve.

    图 6  (a) 各频率下PMN-PT基电压可调电感器电场对可调性的影响; (b) 1 kHz下PMN-PT基电压可调电感器电场对电感和可调性的影响; (c), (d) 分别为电场对应力和磁导率影响的模拟图

    Fig. 6.  Influence of electric field of PMN-PT based ME-VTI on (a) tunability at various frequencies; (b) influence of electric field of PMN-PT based ME-VTI on inductance and tunability at 1 kHz; simulation of electric field dependent (c) stress and (d) permeability, respectively.

  • [1]

    Yan Y K, Geng L W D, Tan Y H, Ma J H, Zhang L J, Sanghadasa M, Ngo K, Ghosh A W, Wang Y U, Priya S 2018 Nat. Commun. 9 4998Google Scholar

    [2]

    Peng B, Zhang C, Yan Y, Liu M 2017 Phys. Rev. Appl. 7 044015Google Scholar

    [3]

    Zhang J, Chen D, Filippov D A, Li K, Zhang Q, Jiang L, Zhu W, Cao L, Srinivasan G 2018 Appl. Phys. Lett. 113 113502Google Scholar

    [4]

    Zhang J, Chen D, Filippov D A, Zhang Q, Li K, Hang X, Ge B, Cao L, Srinivasan G 2019 IEEE Trans. Magn. 55 7Google Scholar

    [5]

    Liu G, Zhang Y, Ci P, Dong S 2013 J. Appl. Phys. 114 064107Google Scholar

    [6]

    杨娜娜, 陈轩, 汪尧进 2018 物理学报 67 157508Google Scholar

    Yang N N, Chen X, Wang Y J 2018 Acta Phys. Sin. 67 157508Google Scholar

    [7]

    俞斌, 胡忠强, 程宇心, 彭斌, 周子尧, 刘明 2018 物理学报 67 157507Google Scholar

    Yu B, Hu Z Q, Cheng Y X, Peng B, Zhou Z Y, Liu M 2018 Acta Phys. Sin. 67 157507Google Scholar

    [8]

    Lin H, Lou J, Gao Y, Hasegawa R, Liu M, Howe B, Jones J, Brown G, Sun N X 2015 IEEE Trans. Magn. 51 1Google Scholar

    [9]

    Yan Y, Geng L, Zhang L, Tu C, Sri Ramdas R M, Liu H, Li X, Sanghadasa M, Ngo K D T, Wang Y U, Priya S 2020 IEEE Trans. Ind. Electron. 12 44981Google Scholar

    [10]

    Lou J, Reed D, Liu M, Sun N X 2016 Appl. Phys. Lett. 94 112508 2016 Appl. Phys. Lett. 94 112508Google Scholar

    [11]

    Liu G, Cui X, Dong S 2010 J. Appl. Phys. 108 094106Google Scholar

    [12]

    Geng L, Yan Y, Priya S, Wang Y U 2020 ACS Applied Mater. Interfaces 12 44981Google Scholar

    [13]

    Geng L W D, Yan Y K, Priya S, Wang Y U 2017 Acta Mater. 140 97Google Scholar

    [14]

    Geng L D, Yan Y, Priya S, Wang Y U 2019 Acta Mater. 166 493Google Scholar

    [15]

    Geng L D, Yan Y, Priya S, Wang Y U 2020 Phys. Rev. B 101 054422Google Scholar

    [16]

    Ma F D, Jin Y M, Wang Y U, Kampe S L, Dong S 2014 Acta Mater. 70 45Google Scholar

    [17]

    Wang Y, Wang Z, Ge W, Luo C, Li J, Viehland D, Chen J, Luo H 2014 Phys. Rev. B 90 134107Google Scholar

    [18]

    Wang Y, Wen X, Jia Y, Huang M, Wang F, Zhang X, Bai Y, Yuan G, Wang Y 2020 Nat. Commun. 11 1328Google Scholar

    [19]

    李飞, 张树君, 徐卓 2020 物理学报 69 217703Google Scholar

    Li F, Zhang S J, Xu Z 2020 Acta Phys. Sin. 69 217703Google Scholar

    [20]

    Chu Z, Shi H, Shi W, Liu G, Wu J, Yang J, Dong S 2017 Adv Mater. 29 1606022Google Scholar

    [21]

    Wang Y J, Gray D, Berry D, Gao J Q, Li M H, Li J F, Viehland D 2011 Adv. Mater. 23 4111Google Scholar

    [22]

    Liu G, Ci P, Dong S 2014 Appl. Phys. Lett. 104 032908Google Scholar

    [23]

    Chu Z, PourhosseiniAsl M, Dong S 2018 J. Phys. D: Appl. Phys. 51 243001Google Scholar

    [24]

    Wang Y, Li J, Viehland D 2014 Mater. Today 17 269Google Scholar

    [25]

    Chu Z, Dong C, Tu C, He Y, Liang X, Wang J, Wei Y, Chen H, Gao X, Lu C, Zhu Z, Lin Y, Dong S, McCord J, Sun N X 2019 Phys. Rev. Appl. 12 044001Google Scholar

    [26]

    王慧, 徐萌, 郑仁奎 2020 物理学报 69 017301Google Scholar

    Wang H, Xu M, Zheng R K 2020 Acta Phys. Sin. 69 017301Google Scholar

    [27]

    Li M, Wang Y, Hasanyan D, Li J, Viehland D 2012 Appl. Phys. Lett. 100 132904Google Scholar

    [28]

    Wang Y, Wang D, Yuan G, Ma H, Xu F, Li J, Viehland D, Gehring P M 2016 Phys. Rev. B 94 174103Google Scholar

    [29]

    Wang D, Yuan G, Luo H, Li J, Viehland D, Wang Y 2017 J. Am. Ceram. Soc. 100 4938Google Scholar

    [30]

    Yan Y K, Geng L W D, Zhang L J, Gao X Y, Gollapudi S, Song H C, Dong S X, Sanghadasa M, Ngo K, Wang Y U, Priya S 2017 Sci. Rep. 7 16008Google Scholar

  • [1] 谢冰鸿, 徐国凯, 肖绍球, 喻忠军, 朱大立. 非线性磁电换能器模型的谐振磁电效应分析及其输出功率优化. 物理学报, 2023, 72(11): 117501. doi: 10.7498/aps.72.20222277
    [2] 杨娜娜, 陈轩, 汪尧进. 磁电异质结及器件应用. 物理学报, 2018, 67(15): 157508. doi: 10.7498/aps.67.20180856
    [3] 周勇, 李纯健, 潘昱融. 磁致伸缩/压电层叠复合材料磁电效应分析. 物理学报, 2018, 67(7): 077702. doi: 10.7498/aps.67.20172307
    [4] 施展, 陈来柱, 佟永帅, 郑智滨, 杨水源, 王翠萍, 刘兴军. Terfenol-D/PZT磁电复合材料的磁电相位移动研究. 物理学报, 2013, 62(1): 017501. doi: 10.7498/aps.62.017501
    [5] 李平, 黄娴, 文玉梅. 偏置电压对磁致伸缩/压电层合换能结构磁电性能影响. 物理学报, 2012, 61(13): 137504. doi: 10.7498/aps.61.137504
    [6] 鲍丙豪, 骆英. 纵向极化与磁化叠层复合材料磁电效应理论及计算. 物理学报, 2011, 60(6): 067504. doi: 10.7498/aps.60.067504
    [7] 李廷先, 张铭, 王光明, 郭宏瑞, 李扩社, 严辉. La2/3Sr1/3MnO3/BaTiO3复合薄膜的制备及其电致磁电效应研究. 物理学报, 2011, 60(8): 087501. doi: 10.7498/aps.60.087501
    [8] 鲍丙豪, 骆英. 有限输入阻抗下压电/磁伸层叠材料磁电效应理论及实验. 物理学报, 2011, 60(1): 017508. doi: 10.7498/aps.60.017508
    [9] 陈蕾, 李平, 文玉梅, 王东. 高磁导率材料FeCuNbSiB对超磁致伸缩/压电层合材料磁电性能的影响. 物理学报, 2011, 60(6): 067501. doi: 10.7498/aps.60.067501
    [10] 卞雷祥, 文玉梅, 李平. 磁致伸缩/压电叠层复合材料磁-机-电耦合系数分析. 物理学报, 2009, 58(6): 4205-4213. doi: 10.7498/aps.58.4205
    [11] 张延芳, 文玉梅, 李平, 卞雷祥. 采用阶梯形弹性基底的磁致伸缩/压电复合结构磁电响应研究. 物理学报, 2009, 58(1): 546-553. doi: 10.7498/aps.58.546
    [12] 曹鸿霞, 张 宁. 磁电双层膜层间耦合的弹性力学研究. 物理学报, 2008, 57(5): 3237-3243. doi: 10.7498/aps.57.3237
    [13] 曹鸿霞, 张 宁. 过渡族元素掺杂BaTiO3-Tb1-xDyxFe2-y层状复合材料中的磁电效应. 物理学报, 2008, 57(10): 6582-6586. doi: 10.7498/aps.57.6582
    [14] 阳昌海, 文玉梅, 李 平, 卞雷祥. 偏置磁场对磁致伸缩/弹性/压电层合材料磁电效应的影响. 物理学报, 2008, 57(11): 7292-7297. doi: 10.7498/aps.57.7292
    [15] 杨 帆, 文玉梅, 李 平, 郑 敏, 卞雷祥. 考虑损耗的磁致/压电层合材料谐振磁电响应分析. 物理学报, 2007, 56(6): 3539-3545. doi: 10.7498/aps.56.3539
    [16] 万 红, 谢立强, 吴学忠, 刘希从. TbDyFe/PZT层状复合材料的磁电效应研究. 物理学报, 2005, 54(8): 3872-3877. doi: 10.7498/aps.54.3872
    [17] 万 红, 沈仁发, 吴学忠. 对称磁电层合板磁电转换效应理论研究. 物理学报, 2005, 54(3): 1426-1430. doi: 10.7498/aps.54.1426
    [18] 周 丹, 林 迪, 贺天厚, 冯祖勇, 徐海清, 罗豪甦. 掺铑BaTiO3单晶场致应变特性的研究. 物理学报, 2005, 54(9): 4053-4057. doi: 10.7498/aps.54.4053
    [19] 冯祖勇, 罗豪甦, 殷之文, 官春林, 凌 宁. 铁电单晶Pb (Mg1/3Nb2/3)O3-PbTiO3的高场致应变及其在层叠式驱动器中的应用. 物理学报, 2004, 53(10): 3609-3613. doi: 10.7498/aps.53.3609
    [20] 刘 鹏, 杨同青, 徐 卓, 张良莹, 姚 熹. Pb(Zr,Sn,Ti)O3反铁电陶瓷场诱相变性能的改进. 物理学报, 2000, 49(9): 1852-1858. doi: 10.7498/aps.49.1852
计量
  • 文章访问数:  5242
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-11
  • 修回日期:  2021-08-28
  • 上网日期:  2021-09-02
  • 刊出日期:  2021-12-20

/

返回文章
返回