搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹散射式扫描近场光学显微镜中探针与样品互作用及其影响探究

张倬铖 王月莹 张晓秋艳 张天宇 许星星 赵陶 宫玉彬 魏彦玉 胡旻

引用本文:
Citation:

太赫兹散射式扫描近场光学显微镜中探针与样品互作用及其影响探究

张倬铖, 王月莹, 张晓秋艳, 张天宇, 许星星, 赵陶, 宫玉彬, 魏彦玉, 胡旻

Tip-sample interactions in terahertz scattering scanning near-field optical microscopy and its influences

Zhang Zhuo-Cheng, Wang Yue-Ying, Zhang Xiao-Qiu-Yan, Zhang Tian-Yu, Xu Xing-Xing, Zhao Tao, Gong Yu-Bin, Wei Yan-Yu, Hu Min
PDF
HTML
导出引用
  • 太赫兹散射式扫描近场光学显微镜(scattering-type scanning near-field optical microscopy, s-SNOM)在生物纳米成像、太赫兹纳米光谱学、纳米材料成像以及极化激元的研究中有着广泛的应用前景. 原子力显微镜探针作为太赫兹s-SNOM的重要组成部分, 起着近场激发、探测、增强等关键作用. 但是在测量过程中, 探针与样品的相互作用会影响测量结果. 本文通过仿真和实验, 分别揭示了太赫兹s-SNOM中探针与样品相互作用对近场激发、近场探测以及太赫兹近场频谱的影响. 首先, 研究了探针激发的近场的波矢权重分布, 发现波矢主要集中在105 cm–1量级, 与一般的太赫兹激元的波矢相差2—3个数量级, 这表明太赫兹近场很难激发太赫兹激元. 其次, 通过理论和实验研究, 发现金属针尖会干扰石墨烯圆盘结构的表面近场, 这表明太赫兹近场系统在探测结构的近场分布具有局限性; 最后研究了探针对近场频谱的影响, 发现探针长度和悬臂长度是影响近场频谱的重要参数, 可以通过增大探针长度或者悬臂长度的方法来减小探针对近场频谱的影响.
    Terahertz scattering scanning near-field optical microscopy (s-SNOM), as an important means to break through the limits of conventional optical diffraction, can achieve super-resolution imaging on a nanoscale and has a wide range of applications in biological nano-imaging, terahertz nano-spectroscopy, nanomaterials imaging, and the study of polarized excitations. As an important component of the terahertz s-SNOM, the atomic force microscope tip plays a key role in implementing the near-field excitation, detection, and enhancement. However, the tip-sample interaction can greatly affect the results. In this paper, the effects of tip-sample interaction on near-field excitation, near-field detection, and terahertz near-field spectrum in terahertz s-SNOM are revealed through simulations and experiments. First, the wave vector coupling weight of the near field excited by the tip is investigated, and it is found that the wave vector is concentrated mainly on the order of 105 cm–1, which differs from that of the general terahertz excitations by 2 to 3 orders of magnitude, indicating that the terahertz near field is difficult to excite terahertz excitations. Secondly, through theoretical and experimental studies, it is found that the metal tip interferes with the surface near-field of the graphene disk structure, which indicates the limitations of the terahertz s-SNOM in probing the near-field distribution of the structure. Finally, the influence of the tip on the near-field spectrum is studied. It is found that the tip length and cantilever length are important parameters affecting the near-field spectrum, and the influence of the tip on the near-field spectrum can be reduced by increasing the tip length or cantilever length.
      通信作者: 胡旻, hu_m@uestc.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0701000, 2020YFA0714001)、国家自然科学基金(批准号: 61988102, 61921002, 62071108)和中央高校基本科研业务费专项资金(批准号: ZYGX2020J003, ZYGX2020ZB007)资助的课题.
      Corresponding author: Hu Min, hu_m@uestc.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0701000, 2020YFA0714001), the National Natural Science Foundation of China (Grant Nos. 61988102, 61921002, 62071108), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. ZYGX2020J003, ZYGX2020ZB007).
    [1]

    Alonso-Gonzalez P, Nikitin A Y, Gao Y, Woessner A, Lundeberg M B, Principi A, Forcellini N, Yan W, Velez S, Huber A J, Watanabe K, Taniguchi T, Casanova F, Hueso L E, Polini M, Hone J, Koppens F H L, Hillenbrand R 2017 Nat. Nanotechnol. 12 31Google Scholar

    [2]

    Soltani A, Kuschewski F, Bonmann M, Generalov A, Vorobiev A, Ludwig F, Wiecha M M, Cibiraite D, Walla F, Winnerl S, Kehr S C, Eng L M, Stake J, Roskos H G 2020 Light Sci. Appl. 9 97Google Scholar

    [3]

    Stinson H T, Sternbach A, Najera O, Jing R, Mcleod A S, Slusar T V, Mueller A, Anderegg L, Kim H T, Rozenberg M, Basov D N 2018 Nat. Commun. 9 1Google Scholar

    [4]

    Yang Z, Tang D, Hu J, Tang M, Zhang M, Cui H L, Wang L, Chang C, Fan C, Li J, Wang H 2020 Small 17 2005814Google Scholar

    [5]

    Shigekawa H, Yoshida S, Takeuchi O 2014 Nat. Photonics 8 815Google Scholar

    [6]

    McLeod A S, Kelly P, Goldflam M D, Gainsforth Z, Westphal A J, Dominguez G, Thiemens M H, Fogler M M, Basov D N 2014 Phys. Rev. B 90 085136Google Scholar

    [7]

    Babicheva V E, Gamage S, Stockman M I, Abate Y 2017 Opt. Express 25 23935Google Scholar

    [8]

    Chen X, Liu X, Guo X, Chen S, Hu H, Nikulina E, Ye X, Yao Z, Bechtel H A, Martin M C, Carr G L, Dai Q, Zhuang S, Hu Q, Zhu Y, Hillenbrand R, Liu M, You G 2020 ACS Photonics 7 687Google Scholar

    [9]

    Mooshammer F, Plankl M, Siday T, Zizlsperger M, Sandner F, Vitalone R, Jing R, Huber M A, Basov D N, Huber R 2021 Opt. Lett. 46 3572Google Scholar

    [10]

    Zhang Z, Hu M, Zhang X, Wang Y, Zhang T, Xu X, Zhao T, Wu Z, Zhong R, Liu D, Wei Y, Gong Y, Liu S 2021 Appl. Phys. Express 14 102004Google Scholar

    [11]

    Zayats A V, Smolyaninov, I I 2003 J. Opt. A-Pure and Appl. Op. 5 S16Google Scholar

    [12]

    Fei Z, Andreev G O, Bao W, Zhang L M, McLeod A S, Wang C, Stewart M K, Zhao Z, Dominguez G, Thiemens M, Fogler M M, Tauber M J, Castro-Neto A H, Lau C N, Keilmann F, Basov D N 2011 Nano Lett. 11 4701Google Scholar

    [13]

    Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82Google Scholar

    [14]

    Fei Z, Goldflam M D, Wu J S, Dai S, Wagner M, McLeod A S, Liu M K, Post K W, Zhu S, Janssen G C A M, Fogler M M, Basov D N 2015 Nano Lett. 15 8271Google Scholar

    [15]

    Luo W, Cai W, Xiang Y, Wu W, Shi B, Jiang X, Zhang N, Ren M, Zhang X, Xu J 2017 Adv. Mater. 29 1701083Google Scholar

    [16]

    Duan J, Capote-Robayna N, Taboada-Gutierrez J, Alvarez-Perez G, Prieto I, Martin-Sanchez J, Nikitin A Y, Alonso-Gonzalez P 2020 Nano Lett. 20 5323Google Scholar

    [17]

    Zhang Y, Hu C, Lyu B, Li H, Ying Z, Wang L, Deng A, Luo X, Gao Q, Chen J, Du J, Shen P, Watanabe K, Taniguchi T, Kang J H, Wang F, Zhang Y, Shi Z 2020 Nano Lett. 20 2770Google Scholar

    [18]

    Venuthurumilli P K, Wen X L, Iyer V, Chen Y P, Xu X F 2019 ACS Photonics 6 2492Google Scholar

    [19]

    Gerber J A, Berweger S, O'Callahan B T, Raschke M B 2014 Phys. Rev. Lett. 113 055502Google Scholar

    [20]

    Carney P S, Deutsch B, Govyadinov A A, Hillenbrand R 2012 ACS Nano 6 8Google Scholar

    [21]

    段嘉华, 陈佳宁 2019 物理学报 68 110701Google Scholar

    Duan J H, Chen J N 2019 Acta Phys. Sin. 68 110701Google Scholar

    [22]

    Zhang J, Chen X, Mills S, Ciavatti T, Yao Z, Mescall R, Hu H, Semenenko V, Fei Z, Li H, Perebeinos V, Tao H, Dai Q, Du X, Liu M 2018 ACS Photonics 5 2645Google Scholar

    [23]

    Ahn J S, Kihm H W, Kihm J E, Kim D S, Lee K G 2009 Opt. Express 17 2280Google Scholar

    [24]

    Neuman T, Alonso-González P, Garcia-Etxarri A, Schnell M, Hillenbrand R, Aizpurua J 2015 Laser Photonics Rev. 9 637Google Scholar

    [25]

    Cvitkovic A, Ocelic N, Hillenbrand R 2007 Opt. Express 15 8550Google Scholar

    [26]

    Maissen C, Chen S, Nikulina E, Govyadinov A, Hillenbrand R 2019 ACS Photonics 6 1279Google Scholar

    [27]

    Siday T, Hale L L, Hermans R I, Mitrofanov O 2020 ACS Photonics 7 596Google Scholar

    [28]

    Mastel S, Lundeberg M B, Alonso-Gonzale P, Gao Y, Watanabe K, Taniguchi T, Hone J, Koppen F H L, Nikitin A Y, Hillenbrand R 2017 Nano Lett. 17 6526Google Scholar

    [29]

    Siday T, Natrella M, Wu J, Liu H, Mitrofanov O 2017 Opt. Express 25 27874Google Scholar

    [30]

    Moon K, Park H, Kim J, Do Y, Lee S, Lee G, Kang H, Han H 2015 Nano Lett. 15 549Google Scholar

    [31]

    Moon K, Do Y, Park H, Kim J, Kang H, Lee G, Lim J H, Kim J W, Han H 2019 Sci. Rep. 9 169158Google Scholar

    [32]

    Wang Y Y, Hu M, Zhang Z C, Zhang T Y, Gong S, Wang W, Liu S G 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) Maison de la Chimie, France, September 1−6, 2019 pp1,2

  • 图 1  太赫兹s-SNOM示意图

    Fig. 1.  Schematic diagram of SNOM.

    图 2  (a)近场耦合权重; (b)石墨烯色散曲线

    Fig. 2.  (a) Near-field coupling weight; (b) graphene dispersion curves.

    图 3  (a)石墨烯圆盘结构的仿真模型示意图; (b), (c) 在0.1和1 THz石墨烯圆盘结构表面的|Ez|分布图

    Fig. 3.  (a) Schematic diagram of simulation of graphene disk; (b), (c) electric field |Ez| contour of graphene disk at 0.1 and 1 THz.

    图 4  石墨烯圆盘结构的太赫兹近场成像 (a)石墨烯圆盘的AFM形貌图; (b)−(d)石墨烯圆盘的太赫兹近场一阶、二阶、三阶成像

    Fig. 4.  THz near-field imaging of graphene disk: (a) AFM topography of graphene disk; (b)−(d) THz near-field imaging of graphene disk with 1st, 2nd, 3rd harmonics.

    图 5  不同长度探针的仿真结果 (a)时域谱; (b)频域谱; (c)仿真模型

    Fig. 5.  Simulation results of tips of different length: (a) Time domain signal; (b) frequency domain signal; (c) schematic diagram of simulation.

    图 6  不同长度悬臂的探针的仿真结果 (a)时域谱; (b)频域谱; (c)仿真模型; (d)长悬臂探针的时域谱; (e)长悬臂探针的频域谱

    Fig. 6.  Simulation results of tips of different cantilever length: (a) Time domain signal; (b) frequency domain signal; (c) schematic diagram of simulation; (d) time domain signal of long cantilever tip; (e) frequency domain signal of long cantilever tip.

  • [1]

    Alonso-Gonzalez P, Nikitin A Y, Gao Y, Woessner A, Lundeberg M B, Principi A, Forcellini N, Yan W, Velez S, Huber A J, Watanabe K, Taniguchi T, Casanova F, Hueso L E, Polini M, Hone J, Koppens F H L, Hillenbrand R 2017 Nat. Nanotechnol. 12 31Google Scholar

    [2]

    Soltani A, Kuschewski F, Bonmann M, Generalov A, Vorobiev A, Ludwig F, Wiecha M M, Cibiraite D, Walla F, Winnerl S, Kehr S C, Eng L M, Stake J, Roskos H G 2020 Light Sci. Appl. 9 97Google Scholar

    [3]

    Stinson H T, Sternbach A, Najera O, Jing R, Mcleod A S, Slusar T V, Mueller A, Anderegg L, Kim H T, Rozenberg M, Basov D N 2018 Nat. Commun. 9 1Google Scholar

    [4]

    Yang Z, Tang D, Hu J, Tang M, Zhang M, Cui H L, Wang L, Chang C, Fan C, Li J, Wang H 2020 Small 17 2005814Google Scholar

    [5]

    Shigekawa H, Yoshida S, Takeuchi O 2014 Nat. Photonics 8 815Google Scholar

    [6]

    McLeod A S, Kelly P, Goldflam M D, Gainsforth Z, Westphal A J, Dominguez G, Thiemens M H, Fogler M M, Basov D N 2014 Phys. Rev. B 90 085136Google Scholar

    [7]

    Babicheva V E, Gamage S, Stockman M I, Abate Y 2017 Opt. Express 25 23935Google Scholar

    [8]

    Chen X, Liu X, Guo X, Chen S, Hu H, Nikulina E, Ye X, Yao Z, Bechtel H A, Martin M C, Carr G L, Dai Q, Zhuang S, Hu Q, Zhu Y, Hillenbrand R, Liu M, You G 2020 ACS Photonics 7 687Google Scholar

    [9]

    Mooshammer F, Plankl M, Siday T, Zizlsperger M, Sandner F, Vitalone R, Jing R, Huber M A, Basov D N, Huber R 2021 Opt. Lett. 46 3572Google Scholar

    [10]

    Zhang Z, Hu M, Zhang X, Wang Y, Zhang T, Xu X, Zhao T, Wu Z, Zhong R, Liu D, Wei Y, Gong Y, Liu S 2021 Appl. Phys. Express 14 102004Google Scholar

    [11]

    Zayats A V, Smolyaninov, I I 2003 J. Opt. A-Pure and Appl. Op. 5 S16Google Scholar

    [12]

    Fei Z, Andreev G O, Bao W, Zhang L M, McLeod A S, Wang C, Stewart M K, Zhao Z, Dominguez G, Thiemens M, Fogler M M, Tauber M J, Castro-Neto A H, Lau C N, Keilmann F, Basov D N 2011 Nano Lett. 11 4701Google Scholar

    [13]

    Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82Google Scholar

    [14]

    Fei Z, Goldflam M D, Wu J S, Dai S, Wagner M, McLeod A S, Liu M K, Post K W, Zhu S, Janssen G C A M, Fogler M M, Basov D N 2015 Nano Lett. 15 8271Google Scholar

    [15]

    Luo W, Cai W, Xiang Y, Wu W, Shi B, Jiang X, Zhang N, Ren M, Zhang X, Xu J 2017 Adv. Mater. 29 1701083Google Scholar

    [16]

    Duan J, Capote-Robayna N, Taboada-Gutierrez J, Alvarez-Perez G, Prieto I, Martin-Sanchez J, Nikitin A Y, Alonso-Gonzalez P 2020 Nano Lett. 20 5323Google Scholar

    [17]

    Zhang Y, Hu C, Lyu B, Li H, Ying Z, Wang L, Deng A, Luo X, Gao Q, Chen J, Du J, Shen P, Watanabe K, Taniguchi T, Kang J H, Wang F, Zhang Y, Shi Z 2020 Nano Lett. 20 2770Google Scholar

    [18]

    Venuthurumilli P K, Wen X L, Iyer V, Chen Y P, Xu X F 2019 ACS Photonics 6 2492Google Scholar

    [19]

    Gerber J A, Berweger S, O'Callahan B T, Raschke M B 2014 Phys. Rev. Lett. 113 055502Google Scholar

    [20]

    Carney P S, Deutsch B, Govyadinov A A, Hillenbrand R 2012 ACS Nano 6 8Google Scholar

    [21]

    段嘉华, 陈佳宁 2019 物理学报 68 110701Google Scholar

    Duan J H, Chen J N 2019 Acta Phys. Sin. 68 110701Google Scholar

    [22]

    Zhang J, Chen X, Mills S, Ciavatti T, Yao Z, Mescall R, Hu H, Semenenko V, Fei Z, Li H, Perebeinos V, Tao H, Dai Q, Du X, Liu M 2018 ACS Photonics 5 2645Google Scholar

    [23]

    Ahn J S, Kihm H W, Kihm J E, Kim D S, Lee K G 2009 Opt. Express 17 2280Google Scholar

    [24]

    Neuman T, Alonso-González P, Garcia-Etxarri A, Schnell M, Hillenbrand R, Aizpurua J 2015 Laser Photonics Rev. 9 637Google Scholar

    [25]

    Cvitkovic A, Ocelic N, Hillenbrand R 2007 Opt. Express 15 8550Google Scholar

    [26]

    Maissen C, Chen S, Nikulina E, Govyadinov A, Hillenbrand R 2019 ACS Photonics 6 1279Google Scholar

    [27]

    Siday T, Hale L L, Hermans R I, Mitrofanov O 2020 ACS Photonics 7 596Google Scholar

    [28]

    Mastel S, Lundeberg M B, Alonso-Gonzale P, Gao Y, Watanabe K, Taniguchi T, Hone J, Koppen F H L, Nikitin A Y, Hillenbrand R 2017 Nano Lett. 17 6526Google Scholar

    [29]

    Siday T, Natrella M, Wu J, Liu H, Mitrofanov O 2017 Opt. Express 25 27874Google Scholar

    [30]

    Moon K, Park H, Kim J, Do Y, Lee S, Lee G, Kang H, Han H 2015 Nano Lett. 15 549Google Scholar

    [31]

    Moon K, Do Y, Park H, Kim J, Kang H, Lee G, Lim J H, Kim J W, Han H 2019 Sci. Rep. 9 169158Google Scholar

    [32]

    Wang Y Y, Hu M, Zhang Z C, Zhang T Y, Gong S, Wang W, Liu S G 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) Maison de la Chimie, France, September 1−6, 2019 pp1,2

  • [1] 向星诚, 马海贝, 王磊, 田达, 张伟, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨. 利用样品阱实现太赫兹超材料的超微量传感. 物理学报, 2023, 72(12): 128701. doi: 10.7498/aps.72.20230080
    [2] 王志全, 施卫. 太赫兹时域光谱中脉冲太赫兹波全息探测. 物理学报, 2022, 71(18): 188704. doi: 10.7498/aps.71.20220983
    [3] 冯龙呈, 杜琛, 杨圣新, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨. 太赫兹实时近场光谱成像研究. 物理学报, 2022, 71(16): 164201. doi: 10.7498/aps.71.20220131
    [4] 宁辉, 王凯程, 王少萌, 宫玉彬. 强场太赫兹波作用下氢气分子振动动力学研究. 物理学报, 2021, 70(24): 243101. doi: 10.7498/aps.70.20211482
    [5] 王晓雷, 赵洁惠, 李淼, 姜光科, 胡晓雪, 张楠, 翟宏琛, 刘伟伟. 基于人工表面等离激元探针实现太赫兹波的紧聚焦和场增强. 物理学报, 2020, 69(5): 054201. doi: 10.7498/aps.69.20191531
    [6] 许悦红, 张学迁, 王球, 田震, 谷建强, 欧阳春梅, 路鑫超, 张文涛, 韩家广, 张伟力. 基于光导微探针的近场/远场可扫描太赫兹光谱技术. 物理学报, 2016, 65(3): 036803. doi: 10.7498/aps.65.036803
    [7] 鹿文亮, 娄淑琴, 王鑫, 申艳, 盛新志. 基于太赫兹时域光谱技术的伪色彩太赫兹成像的实验研究. 物理学报, 2015, 64(11): 114206. doi: 10.7498/aps.64.114206
    [8] 孙怡雯, 钟俊兰, 左剑, 张存林, 但果. 血凝素蛋白及抗体相互作用的太赫兹光谱主成分分析. 物理学报, 2015, 64(16): 168701. doi: 10.7498/aps.64.168701
    [9] 李瑞, 张晓美, 李奇楠, 罗旺, 金明星, 徐海峰, 闫冰. SiS低激发态势能曲线和光谱性质的全电子组态相互作用方法研究. 物理学报, 2014, 63(11): 113102. doi: 10.7498/aps.63.113102
    [10] 张保磊, 王家序, 肖科, 李俊阳. 石墨烯-纳米探针相互作用有限元准静态计算. 物理学报, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [11] 高雪艳, 尤凯, 张晓美, 刘彦磊, 刘玉芳. 多参考组态相互作用方法研究BS+离子的势能曲线和光谱性质. 物理学报, 2013, 62(23): 233302. doi: 10.7498/aps.62.233302
    [12] 韩玉龙, 李真, 汪江洪, 凤尔银, 黄武英. Mg-CO体系的相互作用势和光谱预测. 物理学报, 2013, 62(9): 093101. doi: 10.7498/aps.62.093101
    [13] 刘天元, 孙成林, 里佐威, 周密. Raman光谱方法研究三氯甲烷与苯分子间的 C/H相互作用. 物理学报, 2012, 61(10): 107801. doi: 10.7498/aps.61.107801
    [14] 宁建平, 吕晓丹, 赵成利, 秦尤敏, 贺平逆, Bogaerts A., 苟富君. 样品温度对CF3+ 与Si表面相互作用影响的分子动力学模拟. 物理学报, 2010, 59(10): 7225-7231. doi: 10.7498/aps.59.7225
    [15] 马金龙, 徐开俊, 李哲, 金飚兵, 傅荣, 张彩虹, 吉争鸣, 张仓, 陈兆旭, 陈健, 吴培亨. D-,L-和DL-奥硝唑随温度变化的太赫兹光谱. 物理学报, 2009, 58(9): 6101-6107. doi: 10.7498/aps.58.6101
    [16] 王卫宁. 苏氨酸的太赫兹及拉曼光谱研究. 物理学报, 2009, 58(11): 7640-7645. doi: 10.7498/aps.58.7640
    [17] 王卫宁, 李元波, 岳伟伟. 组氨酸和精氨酸的太赫兹光谱研究. 物理学报, 2007, 56(2): 781-785. doi: 10.7498/aps.56.781
    [18] 马士华, 施宇蕾, 徐新龙, 严 伟, 杨玉平, 汪 力. 用太赫兹时域光谱技术探测天冬酰胺的低频集体吸收频谱. 物理学报, 2006, 55(8): 4091-4095. doi: 10.7498/aps.55.4091
    [19] 岳伟伟, 王卫宁, 赵国忠, 张存林, 闫海涛. 芳香族氨基酸的太赫兹光谱研究. 物理学报, 2005, 54(7): 3094-3099. doi: 10.7498/aps.54.3094
    [20] 郭长志, 黄永箴. 近单模半导体激光器中模式间相互作用对光谱线宽的影响. 物理学报, 1990, 39(7): 59-65. doi: 10.7498/aps.39.59-2
计量
  • 文章访问数:  4685
  • PDF下载量:  205
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-14
  • 修回日期:  2021-10-15
  • 上网日期:  2021-10-28
  • 刊出日期:  2021-12-20

/

返回文章
返回