搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹波生物效应

彭晓昱 周欢

引用本文:
Citation:

太赫兹波生物效应

彭晓昱, 周欢

Biological effects of terahertz waves

Peng Xiao-Yu, Zhou Huan
PDF
HTML
导出引用
  • 太赫兹波能被生物组织中的水强烈吸收, 能与生物组织中生物大分子和这些分子间的弱相互作用产生共振, 因而太赫兹波在生物医学中有许多潜在的应用. 尽管单个太赫兹光子能量很低, 对生物组织没有电离损伤作用, 但是随着强度增大, 太赫兹波会对生物细胞和组织产生一系列生物效应. 由于太赫兹波参数和受辐照生物材料等辐照条件不同, 将导致不同的生物学效应, 包括以热效应为主和以非热效应为主导致的生物学效应. 本文讨论了这两种效应的物理机理, 介绍了适合用于生物效应研究的现今主要的强太赫兹辐射源种类, 综述了典型的太赫兹波的生物效应具体表现和已有的研究进展, 展望了太赫兹波生物效应的潜在应用以及面临的挑战.
    There are numerous applications of terahertz (THz) waves in biomedicine due to their properties that can be absorbed strongly by water in biological systems and resonant with biological macromolecules and weak interactions among them in the biological systems. Though there is no direct ionization damage to the biological tissues due to their low photon energy, the THz waves can give rise to a series of biological effects on the biological cells and tissues with the increase of the intensity of the THz beam. Different irradiation conditions such as the different parameters of the THz waves and the different biological systems will result in different biological effects, including mainly the thermal effects and non-thermal effects. In this paper, we discuss first the physical mechanisms of these two kinds of effects, then introduce the existing main THz sources suitable for studying the biological effects, and summarize the typical biological effects in detail and the research progress in this field. Finally we prospect the potential applications and challenges of the THz wave biological effects.
      通信作者: 彭晓昱, xypeng@cigit.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0701000)和NSAF联合基金(批准号: U2030119)资助的课题.
      Corresponding author: Peng Xiao-Yu, xypeng@cigit.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0701000) and the NSAF Joint Fund, China (Grant No. U2030119).
    [1]

    Yi W T, Yu J P, Xu Y T, Wang F, Yu Q, Sun H J, Xu L, Liu Y F, Jiang L 2016 Instrum. Sci. Technol. 45 423Google Scholar

    [2]

    Shi C C, Ma Y T, Zhang J, Wei D S, Wang H B, Peng X Y, Tang M J, Yan S H, Zuo G K, Du C L, Cui H L 2018 Biomed. Opt. Express 9 1350Google Scholar

    [3]

    El-Shenawee M, Vohra N, Bowman T, Bailey K 2019 Biomed. Spectrosc. Imaging 8 1Google Scholar

    [4]

    Ladanyi B M, Skaf M S 1993 Annu. Rev. Phys. Chem. 44 335Google Scholar

    [5]

    Russo D, Hura G, Head-Gordon T 2004 Biophys. J. 86 1852Google Scholar

    [6]

    Yada H, Nagai M, Tanaka K 2008 Chem. Phys. Lett. 464 166Google Scholar

    [7]

    Kristensen T T, Withayachumnankul W, Jepsen P U, et al. 2010 Opt. Express 18 4727Google Scholar

    [8]

    Yu M, Yan S, Sun Y Q, Sheng W, Tang F, Peng X Y, Hu Y 2019 Sensors 19 1148Google Scholar

    [9]

    Pal S K, Zewail A H 2004 Chem. Rev. 104 2099Google Scholar

    [10]

    Alexandrov B S, Gelev V, Bishop A R, Usheva A, Rasmussen K Ø 2010 Phys. Lett. A 374 1214Google Scholar

    [11]

    Fischer B M, Walther M, Uhd J P 2002 Phys. Med. Biol. 47 3807Google Scholar

    [12]

    Cherkasova O P, Fedorov V I, Nemova E F, Pogodin A S 2009 Opt. Spectrosc. 107 534Google Scholar

    [13]

    Borovkova M, Serebriakova M, Fedorov V, Sedykh E, Vaks V, Lichutin A, Salnikova A, Khodzitsky M 2017 Biomed. Opt. Express 8 273Google Scholar

    [14]

    Perera P G T, Appadoo D R T, Cheeseman S, Wandiyanto J V, Linklater D, Dekiwadia C, Truong V K, Tobin M J, Vongsvivut J, Bazaka O, Bazaka K, Croft R J, Crawford R J, Ivanova E P 2019 Cancers 11 162Google Scholar

    [15]

    Kampfrath T, Tanaka K, Nelson K A 2013 Nat. Photonics 7 680Google Scholar

    [16]

    Liao G, Li Y, Liu H, Scott G G, Neely D, Zhang Y, Zhu B, Zhang Z, Armstrong C, Zemaityte E, Bradford P, Huggard P G, Rusby D R, McKenna P, Brenner Ce M, Woolsey N C, Wang W, Sheng Z, Zhang J 2019 Proc. Natl. Acad. Sci. U. S. A. 116 3994Google Scholar

    [17]

    Zhang D, Fakhari M, Cankaya H, Calendron A L, Matlis N H, Kärtner F X 2020 Phys. Rev. X 10 011067Google Scholar

    [18]

    Williams R, Schofield A, Holder G, Downes J, Edgar D, Harrison P, Siggel-King M, Surman M, Dunning D, Hill S, Holder D, Jackson F, Jones J, McKenzie J, Saveliev Y, Thomsen N, Williams P, Weightman P 2013 Phys. Med. Biol. 58 373

    [19]

    Miyoshi N, Idehara T, Khutoryan E, Fukunaga Y, Bibin A B, Ito S, Sabchevski S P 2016 J. Infrared Millimeter Terahz Waves 37 805Google Scholar

    [20]

    Song T, Qi X, Yan Z, Liang P S, Zhang C, Huang J, Wang W, Zhang K C, Hu M, Wu Z H, Zhao T, Liu D W 2021 IEEE Electron. Device Lett. 42 1232Google Scholar

    [21]

    Doria A, Gallerano G P, Giovenale E, Messina G, Spassovsky I 2004 Phys. Rev. Lett. 93 264801Google Scholar

    [22]

    Grosse E 2002 Phys. Med. Biol. 47 3755Google Scholar

    [23]

    Glyavin M Y, Luchiniin A G, Golubiatnikov G Y 2008 Phys. Rev. Lett. 100 015101Google Scholar

    [24]

    Daranciang D, Goodfellow J, Fuchs M, Wen H, Ghimire S, Reis D A, Loos H, Fisher A S, Lindenberg A M 2011 Appl. Phys. Lett. 99 141117Google Scholar

    [25]

    Tian Q L, Xu H X, Wang Y, Liang Y F, Tan Y M, Ning X N, Yan L X, Du Y C, Li R K, Hua J F, Huang W H, Tang C X 2021 Opt. Express 29 9624Google Scholar

    [26]

    Zhang B H, Ma Z Z, Ma J L, Wu X J, Ouyang C, Kong D Y, Hong T S, Wang X, Yang P D, Chen L M, Li Y T, Zhang J 2021 Laser & Photonics Rev. 15 2000295Google Scholar

    [27]

    Sheng W, Tang F, Zhang Z L, Chen Y P, Peng X Y, Sheng Z M 2021 Opt. Express 29 8676Google Scholar

    [28]

    Oh T I, You Y S, Jhajj N, Rosenthal E W, Milchberg H M, Kim K Y 2013 New J. Phys. 15 075002Google Scholar

    [29]

    余争平, 张蕾 2020 第三军医大学学报 42 2259Google Scholar

    Yu Z P, Zhang L 2020 J. Third Mil. Med. Univ. 42 2259Google Scholar

    [30]

    Bondar N P, Kovalenko I L, Avgustinovich D F, Khamoyan A G, Kudryavtseva N N 2008 Bull. Exp. Biol. Med. 145 401

    [31]

    Kirichuk V F, Antipova O N, Krylova Y A 2014 Bull. Exp. Biol. Med. 157 184Google Scholar

    [32]

    Kirichuk V F, Efimova N V, Andronov E V 2009 Bull. Exp. Biol. Med. 148 746Google Scholar

    [33]

    Ostrovskiy N V, Nikituk C M, Kirichuk V F, Krenitskiy A P, Majborodin A V, Tupikin V D, Shub G M 2005 Joint 30th International Conference on Infrared and Millimeter Waves and 13 th International Conference on Terahertz Electronics Williamsburg, USA, September 19–23, 2005 p301

    [34]

    Weismana N Y, Fedorov V I, Nemovab E F, Nikolaev N A 2013 Adv. Gerontology 26 631Google Scholar

    [35]

    Wilmink G J, Grundt J E 2011 J. Infrared. Millimeter Terahz Waves 32 1074Google Scholar

    [36]

    Bottauscio O, Chiampi M, Zilberti L 2015 IEEE 3 51Google Scholar

    [37]

    Dalzell D R, Quade J M, Vincelette R, Ibey B, Payne J, Thomas R, Roach W P, Roth C L, Wilmink G J 2010 Proc. SPIE 7562 75620Google Scholar

    [38]

    陈纯海, 马秦龙, 陶嘉雯, 卢永辉, 林敏, 高鹏, 邓平, 何旻蒂, 皮会丰, 张蕾, 张彦文, 余争平 2020 第三军医大学学报 42 2282Google Scholar

    Chen C H, Ma Q L, Tao J W, Lu Y H, Lin M, Gao P, Deng P, He M D, Pi H F, Zhang L, Zhang Y W, Yu Z P 2020 J. Third Mil. Med. Univ. 42 2282Google Scholar

    [39]

    高鹏, 卢永辉, 马秦龙, 李敏, 陈纯海, 何旻蒂, 余争平 2020 第三军医大学学报 42 2290Google Scholar

    Gao P, Lu Y H, Ma Q L, Li M, Chen C H, He M D, Yu Z P 2020 J. Third Mil. Med. Univ. 42 2290Google Scholar

    [40]

    Hwang Y, Ahn J, Mun J, Bae S, Uk J Y, Vinokurov N A, Kim P 2014 Opt. Express 22 11465Google Scholar

    [41]

    Zhou J, Ge Z Z, Jiang P D, Rao X, Wu S T, Qian J J, Wu D, Li P, Zhang P, Yan L G, Li M 2021 Proc. SPIE 11909 119090ZGoogle Scholar

    [42]

    Ge Z Z, Zhou J, Wu S T, Rao X, Qian J J, Zhu Z 2021 Proc. SPIE 11909 119090YGoogle Scholar

    [43]

    Alexandrov B S, Rasmussen K Ø, Bishop A R, Usheva A, Alexandrov L B, Chong S, Dagon Y, Booshehri L G, Mielke C H, Phipps M L, Martinez J S, Chen H T, Rodriguez G 2011 Biomed. Opt. Express 2 2679Google Scholar

    [44]

    马秦龙, 陈纯海, 林敏, 陶嘉雯, 邓平, 高鹏, 卢永辉, 皮会丰, 何旻蒂, 张蕾, 张彦文, 余争平 2020 第三军医大学学报 42 2267Google Scholar

    Ma Q L, Chen C H, Lin M, Tao J W, Deng P, Gao P, Lu Y H, Pi H F, He M D, Zhang L, Zhang Y W, Yu Z P 2020 J. Third Mil. Med. Univ. 42 2267Google Scholar

    [45]

    Ramundo-Orlando A, Gallerano G P, Stano P, Doria A, Giovenale E, Messina G, Cappelli M, D’Arienzo M, Spassovsky I 2007 Bioelectromagnetics 28 587Google Scholar

    [46]

    Ramundo-Orlando A, Gallerano G P 2009 J. Infrared Millimeter Terahz Waves 30 1308Google Scholar

    [47]

    Fedorov V I, Khamoyan A G, Shevela E Y, Chernykh E R 2007 Proc. SPIE. 6734 673404Google Scholar

    [48]

    Olshevskaya J S, Ratushnyak A S, Petrov A K, Kozlov A S, Zapara T A 2008 IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering Novosibirsk, Russia, July 21–25, 2008 p210

    [49]

    Hintzsche H, Jastrow C, Kleine-Ostmann T, Stopper H, Schmidc E, Schrader T 2011 Radiat. Res. 175 569Google Scholar

    [50]

    Wei C, Zhang Y C, Li R, Wang S G, Wang T, Liu J H, Liu Z, Wang K J, Liu J S, Liu X M 2018 Biomed. Opt. Express 9 3998Google Scholar

    [51]

    Wilmink G J, Ibey B L, Roth C L, Vincelette R L, Rivest B D, Horn C B, Bernhard J, Roberson D, Roach W P 2010 Proc. SPIE 7562 75620KGoogle Scholar

    [52]

    Govorun V M, Tretiakov V E, Tulyakov N N, Fleurov V B, Demin A I, Volkov A Y, Batanov V A, Kapitanov A B 1991 Intl J. Infra. Millimeter. Waves 12 1469Google Scholar

    [53]

    Lundholm I V, Rodilla H, Wahlgren W Y, Duelli A, Bourenkov I G, Vukusic J, Friedman R, Stake J, Schneider T, Katona G 2015 Struct. Dyn. 2 054702Google Scholar

    [54]

    Wang K C, Yang L X, Wang S M, Guo L H, Ma J L, Tang J C, Bo W F, Wu Z, Zeng B Q, Gong Y B 2020 Phys. Chem. Chem. Phys. 22 9316Google Scholar

    [55]

    Korenstein-Ilan A, Barbul A, Hasin P, Eliran A, Govern A, Korenstein R 2008 Radiat. Res. 170 224Google Scholar

    [56]

    Homenko A, Kapilevich B, Kornstein R, Firer M A 2009 Bioelectromagnetics 30 167Google Scholar

    [57]

    Titova L V, Ayesheshim A K, Golubov A, Rodriguez-Juarez R, Woycicki R, Hegmann F A, Kovalcuk O 2013 Sci. Rep. 3 2363Google Scholar

    [58]

    Echchgadda I, Cerna C Z, Sloan M A, Elam D P, Ibey B L 2014 Proc. SPIE. 9321 93210QGoogle Scholar

    [59]

    Zhao J W, He M X, Dong L J, Li S X, Liu L Y, Bu S C, Ouyang C M, Wang P F, Sun L L 2019 Chin. Phys. B 28 048703Google Scholar

    [60]

    Shang S, Wu X J, Zhang Q, Zhao J P, Hu E L, Wang L L, Lu X Y 2021 Biomed. Opt. Express 12 3729Google Scholar

    [61]

    Titova L V, Ayesheshim A K, Golubov A, Fogen D, Rodriguez-Juarez R, Hegmann F A, Kovalchuk O 2013 Biomed. Opt. Express 4 559Google Scholar

    [62]

    Cheon H, Paik J H, Choi M, Yang H J, Son J H 2019 Sci. Rep. 9 6413Google Scholar

    [63]

    Cheon H, Yang H J, Choi M, Son J H 2019 Biomed. Opt. Express 10 4931Google Scholar

    [64]

    Romanenko S, Begley R, Harvey A R, Hool L, Wallace V P 2017 J. R. Soc. Interface 14 0585

  • 图 1  DNA/RNA其中3种碱基的太赫兹波吸收光谱[8] (a) 腺嘌呤; (b)鸟嘌呤 ; (c) 胞嘧啶

    Fig. 1.  Absorption spectra of three DNA/RNA nucleobases [8]: (a) Adenine; (b) Guanine; (c) Cytosine.

    图 2  肿瘤分别受频率为(a) 0.203 THz和(b) 0.107 THz的太赫兹波辐照后与对照肿瘤的生长曲线图[19]

    Fig. 2.  Growth curves of the tumors after the irradiation at (a) 0.203 THz and (b) 0.107 THz compared with that of the control tumors, respectively [19].

    图 3  小鼠干细胞受太赫兹辐照后发生形态变化的显微镜照片 (a)对照组; (b) 宽带太赫兹波辐照2 h; (c) 宽带太赫兹波辐照9 h; (d) 单频连续波太赫兹波辐照2 h; 图(c)中的箭头表示细胞中含有大量的脂滴包涵含物 [43]

    Fig. 3.  Light microscopy image: (a) Control cultures; mouse stem cells after (b) 2 h and (c) 9 hours of pulsed broad-band irradiation; (d) mouse stem cells after 2 h of irradiation from the CW laser source. The arrows in panel (c) indicate cells with an elevated number of lipid droplets inclusions [43].

    图 4  PC12细胞受太赫兹波辐照10 min后纳米球的摄入情况. 共聚焦激光扫描显微图像显示受太赫兹波辐照的细胞中摄入了纳米球, 而未受辐照的对照组细胞没有摄入任何纳米球[14]

    Fig. 4.  Nanosphere internalization of PC12 cells following a 10 min exposure of THz radiation. Confocal laser scanning microscopy (CLSM) images illustrate the uptake of silica nanospheres by the THz treated cells whereas the untreated control does not exhibit any nanosphere uptake[14].

    图 5  太赫兹波辐照效应对精子细胞内钙浓度的影响[50]

    Fig. 5.  Effect of terahertz irradiation on the intracellular calcium concentration in sperm[50].

    图 6  样品中存活细胞、早凋亡细胞、晚凋亡细胞与太赫兹波辐照时间的关系[13]

    Fig. 6.  Number of live cells and cells at early and late stages of apoptosis in the sample in relation of the THz radiation exposure time[13].

    图 7  强太赫兹脉冲诱导的人类皮肤的基因表达. 维恩图概括了EpiDermFT组织受1.0 μJ或者0.1 μJ太赫兹脉冲辐照后基因表达的变化[57]

    Fig. 7.  Intense THz-pulse-induced gene expression in human skin. Venn diagrams summarizing differentially-expressed genes in EpiDermFT tissues exposed to either 1.0 μJ or 0.1 μJ THz pulses[57].

    图 8  黑色素瘤细胞内DNA去甲基化程度随太赫兹波辐照时间的变化曲线[63]

    Fig. 8.  THz demethylation dependence on exposure time in M-293T DNA[63].

    图 9  包括太赫兹波主要生物效应的本文逻辑结构图

    Fig. 9.  Logical structure diagram including the main bio-effects of THz waves summarized in this paper.

  • [1]

    Yi W T, Yu J P, Xu Y T, Wang F, Yu Q, Sun H J, Xu L, Liu Y F, Jiang L 2016 Instrum. Sci. Technol. 45 423Google Scholar

    [2]

    Shi C C, Ma Y T, Zhang J, Wei D S, Wang H B, Peng X Y, Tang M J, Yan S H, Zuo G K, Du C L, Cui H L 2018 Biomed. Opt. Express 9 1350Google Scholar

    [3]

    El-Shenawee M, Vohra N, Bowman T, Bailey K 2019 Biomed. Spectrosc. Imaging 8 1Google Scholar

    [4]

    Ladanyi B M, Skaf M S 1993 Annu. Rev. Phys. Chem. 44 335Google Scholar

    [5]

    Russo D, Hura G, Head-Gordon T 2004 Biophys. J. 86 1852Google Scholar

    [6]

    Yada H, Nagai M, Tanaka K 2008 Chem. Phys. Lett. 464 166Google Scholar

    [7]

    Kristensen T T, Withayachumnankul W, Jepsen P U, et al. 2010 Opt. Express 18 4727Google Scholar

    [8]

    Yu M, Yan S, Sun Y Q, Sheng W, Tang F, Peng X Y, Hu Y 2019 Sensors 19 1148Google Scholar

    [9]

    Pal S K, Zewail A H 2004 Chem. Rev. 104 2099Google Scholar

    [10]

    Alexandrov B S, Gelev V, Bishop A R, Usheva A, Rasmussen K Ø 2010 Phys. Lett. A 374 1214Google Scholar

    [11]

    Fischer B M, Walther M, Uhd J P 2002 Phys. Med. Biol. 47 3807Google Scholar

    [12]

    Cherkasova O P, Fedorov V I, Nemova E F, Pogodin A S 2009 Opt. Spectrosc. 107 534Google Scholar

    [13]

    Borovkova M, Serebriakova M, Fedorov V, Sedykh E, Vaks V, Lichutin A, Salnikova A, Khodzitsky M 2017 Biomed. Opt. Express 8 273Google Scholar

    [14]

    Perera P G T, Appadoo D R T, Cheeseman S, Wandiyanto J V, Linklater D, Dekiwadia C, Truong V K, Tobin M J, Vongsvivut J, Bazaka O, Bazaka K, Croft R J, Crawford R J, Ivanova E P 2019 Cancers 11 162Google Scholar

    [15]

    Kampfrath T, Tanaka K, Nelson K A 2013 Nat. Photonics 7 680Google Scholar

    [16]

    Liao G, Li Y, Liu H, Scott G G, Neely D, Zhang Y, Zhu B, Zhang Z, Armstrong C, Zemaityte E, Bradford P, Huggard P G, Rusby D R, McKenna P, Brenner Ce M, Woolsey N C, Wang W, Sheng Z, Zhang J 2019 Proc. Natl. Acad. Sci. U. S. A. 116 3994Google Scholar

    [17]

    Zhang D, Fakhari M, Cankaya H, Calendron A L, Matlis N H, Kärtner F X 2020 Phys. Rev. X 10 011067Google Scholar

    [18]

    Williams R, Schofield A, Holder G, Downes J, Edgar D, Harrison P, Siggel-King M, Surman M, Dunning D, Hill S, Holder D, Jackson F, Jones J, McKenzie J, Saveliev Y, Thomsen N, Williams P, Weightman P 2013 Phys. Med. Biol. 58 373

    [19]

    Miyoshi N, Idehara T, Khutoryan E, Fukunaga Y, Bibin A B, Ito S, Sabchevski S P 2016 J. Infrared Millimeter Terahz Waves 37 805Google Scholar

    [20]

    Song T, Qi X, Yan Z, Liang P S, Zhang C, Huang J, Wang W, Zhang K C, Hu M, Wu Z H, Zhao T, Liu D W 2021 IEEE Electron. Device Lett. 42 1232Google Scholar

    [21]

    Doria A, Gallerano G P, Giovenale E, Messina G, Spassovsky I 2004 Phys. Rev. Lett. 93 264801Google Scholar

    [22]

    Grosse E 2002 Phys. Med. Biol. 47 3755Google Scholar

    [23]

    Glyavin M Y, Luchiniin A G, Golubiatnikov G Y 2008 Phys. Rev. Lett. 100 015101Google Scholar

    [24]

    Daranciang D, Goodfellow J, Fuchs M, Wen H, Ghimire S, Reis D A, Loos H, Fisher A S, Lindenberg A M 2011 Appl. Phys. Lett. 99 141117Google Scholar

    [25]

    Tian Q L, Xu H X, Wang Y, Liang Y F, Tan Y M, Ning X N, Yan L X, Du Y C, Li R K, Hua J F, Huang W H, Tang C X 2021 Opt. Express 29 9624Google Scholar

    [26]

    Zhang B H, Ma Z Z, Ma J L, Wu X J, Ouyang C, Kong D Y, Hong T S, Wang X, Yang P D, Chen L M, Li Y T, Zhang J 2021 Laser & Photonics Rev. 15 2000295Google Scholar

    [27]

    Sheng W, Tang F, Zhang Z L, Chen Y P, Peng X Y, Sheng Z M 2021 Opt. Express 29 8676Google Scholar

    [28]

    Oh T I, You Y S, Jhajj N, Rosenthal E W, Milchberg H M, Kim K Y 2013 New J. Phys. 15 075002Google Scholar

    [29]

    余争平, 张蕾 2020 第三军医大学学报 42 2259Google Scholar

    Yu Z P, Zhang L 2020 J. Third Mil. Med. Univ. 42 2259Google Scholar

    [30]

    Bondar N P, Kovalenko I L, Avgustinovich D F, Khamoyan A G, Kudryavtseva N N 2008 Bull. Exp. Biol. Med. 145 401

    [31]

    Kirichuk V F, Antipova O N, Krylova Y A 2014 Bull. Exp. Biol. Med. 157 184Google Scholar

    [32]

    Kirichuk V F, Efimova N V, Andronov E V 2009 Bull. Exp. Biol. Med. 148 746Google Scholar

    [33]

    Ostrovskiy N V, Nikituk C M, Kirichuk V F, Krenitskiy A P, Majborodin A V, Tupikin V D, Shub G M 2005 Joint 30th International Conference on Infrared and Millimeter Waves and 13 th International Conference on Terahertz Electronics Williamsburg, USA, September 19–23, 2005 p301

    [34]

    Weismana N Y, Fedorov V I, Nemovab E F, Nikolaev N A 2013 Adv. Gerontology 26 631Google Scholar

    [35]

    Wilmink G J, Grundt J E 2011 J. Infrared. Millimeter Terahz Waves 32 1074Google Scholar

    [36]

    Bottauscio O, Chiampi M, Zilberti L 2015 IEEE 3 51Google Scholar

    [37]

    Dalzell D R, Quade J M, Vincelette R, Ibey B, Payne J, Thomas R, Roach W P, Roth C L, Wilmink G J 2010 Proc. SPIE 7562 75620Google Scholar

    [38]

    陈纯海, 马秦龙, 陶嘉雯, 卢永辉, 林敏, 高鹏, 邓平, 何旻蒂, 皮会丰, 张蕾, 张彦文, 余争平 2020 第三军医大学学报 42 2282Google Scholar

    Chen C H, Ma Q L, Tao J W, Lu Y H, Lin M, Gao P, Deng P, He M D, Pi H F, Zhang L, Zhang Y W, Yu Z P 2020 J. Third Mil. Med. Univ. 42 2282Google Scholar

    [39]

    高鹏, 卢永辉, 马秦龙, 李敏, 陈纯海, 何旻蒂, 余争平 2020 第三军医大学学报 42 2290Google Scholar

    Gao P, Lu Y H, Ma Q L, Li M, Chen C H, He M D, Yu Z P 2020 J. Third Mil. Med. Univ. 42 2290Google Scholar

    [40]

    Hwang Y, Ahn J, Mun J, Bae S, Uk J Y, Vinokurov N A, Kim P 2014 Opt. Express 22 11465Google Scholar

    [41]

    Zhou J, Ge Z Z, Jiang P D, Rao X, Wu S T, Qian J J, Wu D, Li P, Zhang P, Yan L G, Li M 2021 Proc. SPIE 11909 119090ZGoogle Scholar

    [42]

    Ge Z Z, Zhou J, Wu S T, Rao X, Qian J J, Zhu Z 2021 Proc. SPIE 11909 119090YGoogle Scholar

    [43]

    Alexandrov B S, Rasmussen K Ø, Bishop A R, Usheva A, Alexandrov L B, Chong S, Dagon Y, Booshehri L G, Mielke C H, Phipps M L, Martinez J S, Chen H T, Rodriguez G 2011 Biomed. Opt. Express 2 2679Google Scholar

    [44]

    马秦龙, 陈纯海, 林敏, 陶嘉雯, 邓平, 高鹏, 卢永辉, 皮会丰, 何旻蒂, 张蕾, 张彦文, 余争平 2020 第三军医大学学报 42 2267Google Scholar

    Ma Q L, Chen C H, Lin M, Tao J W, Deng P, Gao P, Lu Y H, Pi H F, He M D, Zhang L, Zhang Y W, Yu Z P 2020 J. Third Mil. Med. Univ. 42 2267Google Scholar

    [45]

    Ramundo-Orlando A, Gallerano G P, Stano P, Doria A, Giovenale E, Messina G, Cappelli M, D’Arienzo M, Spassovsky I 2007 Bioelectromagnetics 28 587Google Scholar

    [46]

    Ramundo-Orlando A, Gallerano G P 2009 J. Infrared Millimeter Terahz Waves 30 1308Google Scholar

    [47]

    Fedorov V I, Khamoyan A G, Shevela E Y, Chernykh E R 2007 Proc. SPIE. 6734 673404Google Scholar

    [48]

    Olshevskaya J S, Ratushnyak A S, Petrov A K, Kozlov A S, Zapara T A 2008 IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering Novosibirsk, Russia, July 21–25, 2008 p210

    [49]

    Hintzsche H, Jastrow C, Kleine-Ostmann T, Stopper H, Schmidc E, Schrader T 2011 Radiat. Res. 175 569Google Scholar

    [50]

    Wei C, Zhang Y C, Li R, Wang S G, Wang T, Liu J H, Liu Z, Wang K J, Liu J S, Liu X M 2018 Biomed. Opt. Express 9 3998Google Scholar

    [51]

    Wilmink G J, Ibey B L, Roth C L, Vincelette R L, Rivest B D, Horn C B, Bernhard J, Roberson D, Roach W P 2010 Proc. SPIE 7562 75620KGoogle Scholar

    [52]

    Govorun V M, Tretiakov V E, Tulyakov N N, Fleurov V B, Demin A I, Volkov A Y, Batanov V A, Kapitanov A B 1991 Intl J. Infra. Millimeter. Waves 12 1469Google Scholar

    [53]

    Lundholm I V, Rodilla H, Wahlgren W Y, Duelli A, Bourenkov I G, Vukusic J, Friedman R, Stake J, Schneider T, Katona G 2015 Struct. Dyn. 2 054702Google Scholar

    [54]

    Wang K C, Yang L X, Wang S M, Guo L H, Ma J L, Tang J C, Bo W F, Wu Z, Zeng B Q, Gong Y B 2020 Phys. Chem. Chem. Phys. 22 9316Google Scholar

    [55]

    Korenstein-Ilan A, Barbul A, Hasin P, Eliran A, Govern A, Korenstein R 2008 Radiat. Res. 170 224Google Scholar

    [56]

    Homenko A, Kapilevich B, Kornstein R, Firer M A 2009 Bioelectromagnetics 30 167Google Scholar

    [57]

    Titova L V, Ayesheshim A K, Golubov A, Rodriguez-Juarez R, Woycicki R, Hegmann F A, Kovalcuk O 2013 Sci. Rep. 3 2363Google Scholar

    [58]

    Echchgadda I, Cerna C Z, Sloan M A, Elam D P, Ibey B L 2014 Proc. SPIE. 9321 93210QGoogle Scholar

    [59]

    Zhao J W, He M X, Dong L J, Li S X, Liu L Y, Bu S C, Ouyang C M, Wang P F, Sun L L 2019 Chin. Phys. B 28 048703Google Scholar

    [60]

    Shang S, Wu X J, Zhang Q, Zhao J P, Hu E L, Wang L L, Lu X Y 2021 Biomed. Opt. Express 12 3729Google Scholar

    [61]

    Titova L V, Ayesheshim A K, Golubov A, Fogen D, Rodriguez-Juarez R, Hegmann F A, Kovalchuk O 2013 Biomed. Opt. Express 4 559Google Scholar

    [62]

    Cheon H, Paik J H, Choi M, Yang H J, Son J H 2019 Sci. Rep. 9 6413Google Scholar

    [63]

    Cheon H, Yang H J, Choi M, Son J H 2019 Biomed. Opt. Express 10 4931Google Scholar

    [64]

    Romanenko S, Begley R, Harvey A R, Hool L, Wallace V P 2017 J. R. Soc. Interface 14 0585

  • [1] 何宇, 陈伟斌, 洪宾, 黄文涛, 张昆, 陈磊, 冯学强, 李博, 刘菓, 孙笑寒, 赵萌, 张悦. 热效应在电流驱动反铁磁/铁磁交换偏置场翻转中的显著作用. 物理学报, 2024, 73(2): 027501. doi: 10.7498/aps.73.20231374
    [2] 连天虹, 窦逸群, 周磊, 刘芸, 寇科, 焦明星. 热效应作用下高功率薄片涡旋激光器的模场结构. 物理学报, 2024, 73(16): 164206. doi: 10.7498/aps.73.20240757
    [3] 张玫玫, 吴意赟, 于洁, 屠娟, 章东. 脉冲占空比对磁性微泡介导的聚焦超声温升效应的影响. 物理学报, 2023, 72(8): 084301. doi: 10.7498/aps.72.20230068
    [4] 陈乐迪, 范仁浩, 刘雨, 唐贡惠, 马中丽, 彭茹雯, 王牧. 基于柔性超构材料宽带调控太赫兹波的偏振态. 物理学报, 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [5] 彭晓昱, 周欢. 太赫兹波生物效应. 物理学报, 2022, (): . doi: 10.7498/aps.71.20211996
    [6] 王红霞, 张清华, 侯维君, 魏一苇. 不同模态沙尘暴对太赫兹波的衰减分析. 物理学报, 2021, 70(6): 064101. doi: 10.7498/aps.70.20201393
    [7] 李郝, 杨鑫, 张正平. THz波在不同角度磁化的非均匀磁化等离子体中的传输特性分析. 物理学报, 2021, 70(7): 075202. doi: 10.7498/aps.70.20201450
    [8] 陈伟, 郭立新, 李江挺, 淡荔. 时空非均匀等离子体鞘套中太赫兹波的传播特性. 物理学报, 2017, 66(8): 084102. doi: 10.7498/aps.66.084102
    [9] 陈桂波, 张佳佳, 王超群, 毕娟. 一种基于激光辐照热效应的薄膜参数反演方法. 物理学报, 2016, 65(12): 124401. doi: 10.7498/aps.65.124401
    [10] 胡淼, 张慧, 张飞, 刘晨曦, 徐国蕊, 邓晶, 黄前锋. 用于光生毫米波的双频微片激光器热致频差特性研究. 物理学报, 2013, 62(20): 204205. doi: 10.7498/aps.62.204205
    [11] 周英, 戴玉, 姚淑娜, 刘军, 陈家斌, 陈淑芬, 辛建国. 激光二极管抽运Nd:YVO4晶体的三维热效应分析. 物理学报, 2013, 62(2): 024210. doi: 10.7498/aps.62.024210
    [12] 郑灵, 赵青, 刘述章, 邢晓俊. 太赫兹波在非磁化等离子体中的传输特性研究. 物理学报, 2012, 61(24): 245202. doi: 10.7498/aps.61.245202
    [13] 王玥, 吴群, 吴昱明, 傅佳辉, 王东兴, 王岩, 李乐伟. 碳纳米管辐射太赫兹波的理论分析与数值验证. 物理学报, 2011, 60(5): 057801. doi: 10.7498/aps.60.057801
    [14] 刘全喜, 钟鸣. 激光二极管阵列端面抽运复合棒状激光器热效应的有限元法分析. 物理学报, 2010, 59(12): 8535-8541. doi: 10.7498/aps.59.8535
    [15] 王玥, 吴群, 施卫, 贺训军, 殷景华. 基于纳观域碳纳米管的太赫兹波天线研究. 物理学报, 2009, 58(2): 919-924. doi: 10.7498/aps.58.919
    [16] 宋小鹿, 过振, 李兵斌, 王石语, 蔡德芳, 文建国. 脉冲激光二极管侧面抽运Nd∶YAG激光器晶体时变热效应. 物理学报, 2009, 58(3): 1700-1708. doi: 10.7498/aps.58.1700
    [17] 董浩, 任敏, 张磊, 邓宁, 陈培毅. 电流驱动磁化翻转中的热效应. 物理学报, 2009, 58(10): 7176-7182. doi: 10.7498/aps.58.7176
    [18] 王立世, 潘春旭, 蔡启舟, 魏伯康. 等离子体电解氧化过程中单个稳态微放电的热效应研究. 物理学报, 2007, 56(9): 5341-5346. doi: 10.7498/aps.56.5341
    [19] 吴 坚. AlInGaAs垂直谐振腔顶面发射半导体激光器横向温度效应的解析热模型及其表征. 物理学报, 2006, 55(11): 5848-5854. doi: 10.7498/aps.55.5848
    [20] 季小玲, 陶向阳, 吕百达. 光束控制系统热效应与球差对激光光束质量的影响. 物理学报, 2004, 53(3): 952-960. doi: 10.7498/aps.53.952
计量
  • 文章访问数:  11506
  • PDF下载量:  348
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-27
  • 修回日期:  2021-12-04
  • 上网日期:  2021-12-10
  • 刊出日期:  2021-12-20

/

返回文章
返回