搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧气空心阴极放电模拟

赵立芬 哈静 王非凡 李庆 何寿杰

引用本文:
Citation:

氧气空心阴极放电模拟

赵立芬, 哈静, 王非凡, 李庆, 何寿杰

Simulation of hollow cathode discharge in oxygen

Zhao Li-Fen, Ha Jing, Wang Fei-Fan, Li Qing, He Shou-Jie
PDF
HTML
导出引用
  • 本文利用流体模型对气压为266 Pa的氧气环境下空心阴极放电的放电特性及不同粒子的生成损耗机制进行了模拟研究. 模型中包含11种粒子和48个反应. 在该模拟条件下, 周围阴极所对应的负辉区产生重叠, 表明放电中存在较强的空心阴极效应. 计算得到了不同带电粒子与活性粒子的密度分布. 带电粒子密度主要位于放电单元中心区域, 电子和负氧离子O是放电体系中主要的负电荷, 其密度峰值分别达到5.0 × 1011 cm–3和1.6 × 1011 cm–3; ${\rm{O}}_2^+ $是放电体系中主要的正电荷, 其密度峰值为6.5 × 1011 cm–3. 放电体系中同时存在丰富的活性氧粒子, 并且其密度远高于带电粒子, 按其密度高低依次为基态氧原子O、单重激发态氧分子O2(a1Δg)、激发态氧原子O(1D)、臭氧分子O3. 对电子、O${\rm{O}}_2^+ $的生成和损耗的反应动力学过程进行了深入分析, 同时给出了不同活性氧粒子的生成损耗路径概要图. 结果表明各粒子之间存在一个复杂的相互耦合的过程, 每一个反应在生成某种粒子的同时也在消耗相应的其他粒子, 最终各种粒子密度达到一个动态平衡.
    The characteristics, the formations and loss mechanisms of different particles of hollow cathode discharge in oxygen at 266 Pa are investigated by using the fluid model. The model contains 11 kinds of particles and 48 reactions. Under this simulation condition, the negative glow regions corresponding to the surrounding cathodes overlap. The results show that there is a strong hollow cathode effect. The density distributions of different charged and active particles are calculated. The charged particle density is located mainly in the central region of the discharge cell. Electrons and O are the main ingredients of negative charges in the discharge system, and their density peaks are 5.0 × 1011 cm–3 and 1.6 × 1011 cm–3, respectively and ${\rm{O}}_2^+ $ is a main composition of positive charge in the discharge system with a peak density of 6.5 × 1011 cm–3. Abundant active oxygen particles exist in the discharge system, and their density is much higher than those of other charged particles. According to the densities of active particles, their magnitudes are ranked in the small-to-large order as O, O2(a1Δg), O(1D) and O3. Furthermore, the generation and consumption mechanism of electrons, O and ${\rm{O}}_2^+ $ are calculated in detail, and the generation and consumption paths of different active oxygen particles are also given. The results show that there is a complex coupling process among these particles. Each reaction generates a certain number of particles and consumes other particles at the same time, resulting in a dynamic balance among these particles.
      通信作者: 何寿杰, heshouj@hbu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51777051)、河北省高等学校科学研究项目(批准号: ZD2020197)和河北省自然科学基金 (批准号: E2021201037)资助的课题
      Corresponding author: He Shou-Jie, heshouj@hbu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51777051), the Science and Technology Research Projects of Colleges and Universities in Hebei Province, China (Grant No. ZD2020197), and the Science Foundation of Hebei Province, China (Grant No. E2021201037)
    [1]

    Nakagawa Y, Kawakita T, Uchida S, Tochikubo F 2020 J. Phys. D: Appl. Phys. 53 135201Google Scholar

    [2]

    Babu S K, Kelly S, Kechkar S, Swift P, Daniels S, Turner M M 2019 Plasma Sources Sci. Technol. 28 115008Google Scholar

    [3]

    Vagin N P, Ionin A A, Kochetov I V, Napartovich A P, Sinitsyn D V, Yuryshev N N 2017 Plasma Phys. Rep. 43 330Google Scholar

    [4]

    陈维, 黄骏, 李辉, 吕国华, 王兴权, 张国权, 王鹏业, 杨思泽 2012 物理学报 61 185203Google Scholar

    Chen W, Huang J, Li H, Lv G H, Wang X Q, Zhang G Q, Wang P Y, Yang S Z 2012 Acta Phys. Sin. 61 185203Google Scholar

    [5]

    欧阳吉庭, 张晨阳, 张宇, 刘思含, 缪劲松 2020 北京理工大学学报 40 908Google Scholar

    Ouyang J T, Zhang C Y, Zhang Y, Liu S H, Miao J S 2020 J. B. Inst. Techno. 40 908Google Scholar

    [6]

    Bakeev I Y, Klimov A S, Oks E M, Zenin A A 2021 Vacuum 187 110161

    [7]

    Hou X Y, Zou X B, Li Y T, Zhang L W, Wang X X 2019 High Volt. 4 217Google Scholar

    [8]

    Korolev Y D, Koval N N 2018 J. Phys. D: Appl. Phys. 51 323001Google Scholar

    [9]

    Boeuf J P, Pitchford L C 2005 Appl. Phys. Lett. 86 071501Google Scholar

    [10]

    Fu Y Y, Verboncoeur J P, Christlieb A J 2017 Phys. Plasmas 24 103514Google Scholar

    [11]

    Cong S Y, Wu R H, Mu L, Sun J Z, Wang D Z 2019 J. Phys. D: Appl. Phys. 52 045205Google Scholar

    [12]

    Jiang X X, He F, Chen Q, Ge T, Ouyang J T 2014 Phys. Plasmas 21 033508Google Scholar

    [13]

    夏广庆, 薛伟华, 陈茂林, 朱雨, 朱国强 2011 物理学报 60 015201Google Scholar

    Xia G Q, Xue W H, Chen M L, Zhu Y, Zhu G Q 2011 Acta Phys. Sin. 60 015201Google Scholar

    [14]

    Wei H C, Wang N, Duan Z C, He F 2018 Phys. Plasmas 25 123513Google Scholar

    [15]

    Hou X Y, Fu Y Y, Wang H, Zou X B, Luo H Y, Wang X X 2017 Phys. Plasmas 24 083506Google Scholar

    [16]

    何寿杰, 张钊, 赵雪娜, 李庆 2017 物理学报 66 055101Google Scholar

    He S J, Zhang Zhao, Zhao X N, Li Q 2017 Acta Phys. Sin. 66 055101Google Scholar

    [17]

    Lavrukevich Y, Ryabtsev A, Tsiolko V 2017 Probl. At. Sci. Technol. 107 215

    [18]

    Bazhenov V Y, Matsevich S V, Piun V M, Tsiolko V V 2015 Probl. At. Sci. Technol. 98 177

    [19]

    Yamatake A, Yasuoka K, Ishii S 2004 Jpn. J. Appl. Phys. 43 6381Google Scholar

    [20]

    Qin Y, He F, Jiang X X, Xie K, Ouyang J T 2014 Phys. Plasmas 21 073501Google Scholar

    [21]

    Matsui M, Ikemoto T, Takayanagi H, Komurasaki K, Arakawa Y 2006 Vacuum 80 1161Google Scholar

    [22]

    He S J, Ha J, Liu S M, Ouyang J T 2013 Phys. Plasmas 20 123504Google Scholar

    [23]

    He J, Zhang Y T T 2012 Plasma Processes Polym. 9 919Google Scholar

    [24]

    Hsu C C, Nierode M A, Coburn J W, Graves D B 2006 J. Phys. D: Appl. Phys. 39 3272Google Scholar

    [25]

    Park G, Lee H, Kim G, Lee J K 2008 Plasma Processes Polym. 5 569Google Scholar

    [26]

    Sakiyama Y, Graves D B, Chang H W, Shimizu T, Morfill G E 2012 J. Phys. D: Appl. Phys. 45 425201Google Scholar

    [27]

    Baulch D L, Cox R A, Crutzen P J, Hampson R F, Kerr J A, Troe J, Watson R T 1982 J. Phys. Chem. Ref. Data 11 327Google Scholar

    [28]

    Stafford D S, Kushner M J 2004 J. Appl. Phys. 96 2451Google Scholar

    [29]

    冯静 2018 硕士学位论文 (大连: 大连理工大学)

    Feng J 2018 M. S. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [30]

    Kossyi I A, Kostinsky A Y, Matveyev A A 1992 Plasma Sources Sci. Technol. 1 207Google Scholar

    [31]

    Yanallah K, Pontiga F, Fernández-Rueda A, Castellanos A, Belasri A 2008 J. Phys. D: Appl. Phys. 41 195206Google Scholar

    [32]

    Soria C, Pontiga F, Castellanos A 2004 Plasma Sources Sci. Technol. 13 95Google Scholar

    [33]

    Bogdanov E A, Kudryavtsev A A, Tsendin L D, Arslanbekov R R, Kolobov V I, Kudryavtsev V V 2003 Tech. Phys. 48 983Google Scholar

    [34]

    Xu J Z, Zhong P, Li J L, Lin J, Diao Y, Zhang J 2010 Plasma Sci. Technol. 12 601Google Scholar

    [35]

    Gaens W V, Bogaerts A 2013 J. Phys. D:Appl. Phys. 46 275201

    [36]

    Lazzaroni C, Chabert P 2016 Plasma Sources Sci. Technol. 25 065015Google Scholar

    [37]

    Donkó Z 1998 Phys. Rev. E 57 7126Google Scholar

    [38]

    Wei L S, Peng B F, Li M, Zhang Y F 2016 Vacuum 125 123Google Scholar

    [39]

    Pan G S, Tan Z Y, Pan J, Wang X L, Shan C H 2016 Phys. Plasmas 23 043508Google Scholar

    [40]

    Duran-Olivencia F J, Pontiga F, Castellanos A 2014 J. Phys. D:Appl. Phys. 47 415203Google Scholar

    [41]

    Hagelaar G J, Hoog F J, Kroesen G M 2000 Phys. Rev. E 62 1452Google Scholar

    [42]

    Laca M, Morávek M J, Schmiedt, Luká, Hrachová V, Kaňka A 2017 Contrib. Plasma Phys. 57 336Google Scholar

    [43]

    周志向 2020 硕士学位论文 (保定: 河北大学)

    Zhou Z X 2020 M. S. Dissertation (Baoding: Hebei University) (in Chinese)

    [44]

    Costin C, Minea T M, Popa G, Gousset G 2010 J. Vac. Sci. Technol. A 28 322Google Scholar

    [45]

    Yang A J, Wang X H, Rong M Z, Liu D X, Iza F, Kong M G 2011 Phys. Plasmas 18 113503

    [46]

    洪布双, 苑涛, 邹帅, 唐中华, 徐东升, 虞一青, 王栩生, 辛煜 2013 物理学报 62 115202Google Scholar

    Hong B S, Yuan T, Zou S, Tang Z H, Xu D S, Yu Y Q, Wang X S, Xin Y 2013 Acta Phys. Sin. 62 115202Google Scholar

    [47]

    王晓龙, 谭震宇, 潘光胜, 单春虹 2018 高电压技术 44 904Google Scholar

    Wang X L, Tan Z Y, Pan G S, Shan C H 2018 High Volt. Engineer. 44 904Google Scholar

  • 图 1  圆柱形空心阴极放电单元截面图(虚线z = 5.5 mm)

    Fig. 1.  Cross section of cylindrical hollow cathode discharge (dashed line z = 5.5 mm).

    图 2  (a) 电势二维分布图; (b) z = 5.5 mm (图 (a) 虚线)处径向电场分布图

    Fig. 2.  (a) Two dimensional potential distribution; (b) radial electric field distribution at z = 5.5 mm (dashed line in (a)).

    图 3  二维空间粒子密度分布图 (a)电子; (b) O; (c)${\rm{O}}_2^+ $

    Fig. 3.  Two dimensional particles density distribution: (a) Electron; (b) O; (c) ${\rm{O}}_2^+ $.

    图 4  z = 5.5 mm时, 粒子密度径向分布图 (a) 带电粒子; (b) 活性氧粒子

    Fig. 4.  Radial distribution of particle density when z = 5.5 mm: (a) Charged particles; (b) reactive oxygen species.

    图 5  二维粒子密度分布图 (a) O; (b) O2 (a1Δg)

    Fig. 5.  Two dimensional particles density distribution: (a) O; (b) O2 (a1Δg).

    图 6  z = 5.5 mm处, 电负度$ \alpha $径向分布图

    Fig. 6.  Radial distribution of electronegativity at z = 5.5 mm

    图 7  z = 5.5 mm处, 电子(a)生成与(b)消耗反应速率的径向分布图

    Fig. 7.  Radial distribution of reaction rates of (a) generation and (b) consumption of electronics at z = 5.5 mm.

    图 8  z = 5.5 mm处, 平均电子能量和电子密度一维径向分布图

    Fig. 8.  One dimensional radial distribution of average electron energy and electron density at z = 5.5 mm.

    图 9  z = 5.5 mm处, O离子(a)生成与(b)消耗反应速率的径向分布图

    Fig. 9.  Radial distribution of reaction rates of (a) formation and (b) consumption of O at z = 5.5 mm.

    图 10  z = 5.5 mm处, ${\rm{O} }_2^+ $离子(a)生成与(b)消耗反应速率的径向分布图

    Fig. 10.  Radial distribution of reaction rates of (a) formation and (b) consumption of ${\rm{O} }_2^+ $ at z = 5.5 mm.

    图 11  z = 5.5 mm处, 氧原子(a)生成与(b)消耗反应速率的径向分布图

    Fig. 11.  Radial distribution of reaction rates of (a) formation and (b) consumption of oxygen atom O at z = 5.5 mm.

    图 12  活性粒子生成、损耗路径概要图(实线箭头所指方向为生成粒子, 虚线箭头离开方向为损耗粒子)

    Fig. 12.  Outline of active particle generation and consumption path (the direction indicated by the solid line arrow is the generated particle, and the direction left by the dotted line arrow is the loss particle).

    表 1  放电反应类型

    Table 1.  Discharge reactions in the model.

    反应标号 反应方程 反应标号 反应方程
    G1 e + O2 → 2O + e[23] G25 O3 + O(1D) → O2 + 2O[26]
    G2 e + O2 → ${\rm{O}}_2^+ $ + 2e [23] G26 O3 + O(1D) → 2O2[26]
    G3 e + O → O + 2e [23] G27 ${\rm{O}}_2^ + $ + O2 + O2 → ${\rm{O}}_4^+ $ + O2[29]
    G4 e + O2 →O + O(1D) + e[23] G28 ${\rm{O}}_4^+$ + O2 → ${\rm{O}}_2^ + $ + O2 + O2[30]
    G5 e + O → O(1D) + e[23] G29 ${\rm{O}}_4^ + $ + O → ${\rm{O}}_2^ + $ + O3[29]
    G6 e + O2(a1g) → 2O + e[24] G30 e + O(1D) → O + e[23]
    G7 e + O2 → O + O[23] G31 O3 + O2 → 2O2 + O[25]
    G8 e + O3 → ${\rm{O}}_2^ -$ + O[23] G32 O + O2(a1g) → O3 + e[23]
    G9 e + ${\rm{O} }_2^ +$ → 2O[25] G33 O + O2(a1g) → ${\rm{O}}_2^ - $ + O[23]
    G10 O + ${\rm{O} }_2^+$ → 3O[25] G34 O3 + O → O2(a1g) + O2 [31]
    G11 O + O → e + O2[25] G35 O3 + O(1D) → O2(a1g) + O2[32]
    G12 O + O2 → O3 + e[25] G36 O3 + O(1D) → 2O2(a1g) [32]
    G13 ${\rm{O}}_2^ + $ + ${\rm{O}}_2^ - $ → 2O2 [26] G37 ${\rm{O}}_4^ + $ + ${\rm{O}}_3^ - $ → 3O2 + O[33]
    G14 O3 + O → 2O2[25] G38 ${\rm{O}}_4^ + $ + O→ O2 + O3[33]
    G15 O3 + ${\rm{O}}_2^ - $→ ${\rm{O}}_3^ - $ + O2[26] G39 ${\rm{O}}_4^ + $ + O2(a1g) → ${\rm{O}}_2^ + $ + O2 + O2[29]
    G16 O + O3 → ${\rm{O}}_3^ - $ + O[26] G40 e +${\rm{O}}_4^ + $ → O2 + O2[34]
    G17 ${\rm{O}}_3^ - $ + O → ${\rm{O}}_2^ - $ + O2[27] G41 ${\rm{O}}_4^ + $ + ${\rm{O}}_2^ - $→ 3O2[33]
    G18 ${\rm{O}}_3^ - $ + ${\rm{O}}_2^+ $ → O3 + 2O[28] G42 ${\rm{O}}_4^ + $ + O→ O + O2 + O2[35]
    G19 O2(a1g) + O2 → 2O2[25] G43 ${\rm{O}}_4^ + $ + ${\rm{O}}_2^ - $ → O + O + O2 + O2[35]
    G20 O2(a1g) + O → O + O2[25] G44 ${\rm{O}}_4^ + $ + ${\rm{O}}_3^ - $→ O3 + O2 + O2[35]
    G21 O(1D) + O → 2O[23] G45 ${\rm{O}}_2^ - $ + O → O + O2[32]
    G22 O(1D) + O2 → O + O2[26] G46 O + O + O2 → O + O3[36]
    G23 O(1D) + O2 → O + O2(a1g)[26] G47 O + O2 + O2 → O2 + O3[36]
    G24 O3 + O2(a1g) → 2O2 + O[25] G48 O + O2 + O3 → O3 + O3[36]
    下载: 导出CSV

    表 2  电子生成与消耗反应的相应贡献

    Table 2.  The ratio of electron generation and consumption for different reactions.

    电子生成反应贡献/%电子消耗反应贡献/%
    G2: e + O2 → ${\rm{O}}_2^+ $+ 2e99.875G7: e + O2 → O+ O42.418
    G11: O + O → e + O20.114G40: e + ${\rm{O}}_4^+ $→ O2 + O231.748
    G12: O + O2 → O3 + e0.008G9: e + ${\rm{O}}_2^+ $ → 2O25.808
    G32: O + O2(a1g) → O3 + e0.002G8: e + O3 → ${\rm{O}}_2^- $ + O0.026
    G3: e + O → O + 2e7.0 × 10–4
    下载: 导出CSV

    表 3  O生成与消耗反应的相应贡献

    Table 3.  Ratio of Ogeneration and consumption for different reactions.

    O生成反应贡献/%O消耗反应贡献/%
    G7: e + O2 → O + O99.998G10: O +${\rm{O} }_2^+ $ → 3O86.712
    G45: ${\rm{O} }_2^- $ + O → O + O20.002G11: O + O → e + O28.548
    G38: ${\rm{O} }_4^+ $ + O → O2 + O33.809
    G12: O + O2 → O3 + e0.631
    G32: O + O2(a1g) → O3 + e0.135
    G42: ${\rm{O} }_4^+ $ + O → O + O2 + O20.055
    G3: e + O → O + 2e0.055
    G33: O + O2(a1g) → ${\rm{O} }_2^- $ + O0.045
    G16: O + O3 → ${\rm{O} }_3^- $ + O0.011
    下载: 导出CSV

    表 4  ${\rm{O} }_2^+ $生成与消耗反应的相应贡献

    Table 4.  The ratio of ${\rm{O} }_2^+ $ generation and consumption for different reactions.

    ${\rm{O} }_2^+ $生成反应贡献/%${\rm{O} }_2^+ $消耗反应贡献/%
    G2: e + O2 → ${\rm{O} }_2^+ $ + 2e99.993G27: ${\rm{O} }_2^+ $ + O2 + O2 → ${\rm{O} }_4^+ $ + O244.657
    G28: ${\rm{O} }_4^+ $ + O2 → ${\rm{O} }_2^+ $ + O2 + O20.007G9: e + ${\rm{O} }_2^+ $ → 2O30.675
    G29: ${\rm{O} }_4^+ $ + O → ${\rm{O} }_2^+ $ + O35.8×10–4G10: O + ${\rm{O} }_2^+ $ → 3O24.634
    G39: ${\rm{O} }_4^+ $ + O2(a1g)→${\rm{O} }_2^+ $ + O2 + O26.9×10–6G13: ${\rm{O} }_2^+ $ + ${\rm{O} }_2^- $ → 2O20.032
    G18: ${\rm{O} }_3^-$ +${\rm{O} }_2^+ $ → O3 + 2O0.002
    下载: 导出CSV

    表 5  O生成与消耗反应的相应贡献

    Table 5.  Ratio of O generation and consumption for different reactions.

    O生成反应贡献/%O消耗反应贡献/%
    G4: e + O2 → O + O(1D) + e45.255G5: e + O → O(1D) + e56.855
    G22: O(1D) + O2 → O + O239.217G11: O + O → e + O226.231
    G1: e + O2 → 2O + e8.725G47: O2 + O2 + O → O2 + O316.765
    G23:O(1D) + O2→O + O2(a1g)5.602G29: ${\rm{O} }_4^+ $ + O → ${\rm{O} }_2^+ $ + O30.135
    G7: e + O2 → O + O0.567G45: ${\rm{O} }_2^-$ + O→ O + O20.012
    G9: e +${\rm{O} }_2^+ $ → 2O0.345G46: O + O + O2 → O + O30.001
    G10: O + ${\rm{O} }_2^+ $ → 3O0.277G17: ${\rm{O} }_3^- $ + O → ${\rm{O} }_2^- $ + O27.7 × 10–4
    其他0.012G14: O3 + O → 2O23.4 × 10–4
    G34: O3 + O→O2(a1g) + O21.9 × 10–4
    G48: O + O2 + O3 → O3 + O36.0 × 10–7
    下载: 导出CSV
  • [1]

    Nakagawa Y, Kawakita T, Uchida S, Tochikubo F 2020 J. Phys. D: Appl. Phys. 53 135201Google Scholar

    [2]

    Babu S K, Kelly S, Kechkar S, Swift P, Daniels S, Turner M M 2019 Plasma Sources Sci. Technol. 28 115008Google Scholar

    [3]

    Vagin N P, Ionin A A, Kochetov I V, Napartovich A P, Sinitsyn D V, Yuryshev N N 2017 Plasma Phys. Rep. 43 330Google Scholar

    [4]

    陈维, 黄骏, 李辉, 吕国华, 王兴权, 张国权, 王鹏业, 杨思泽 2012 物理学报 61 185203Google Scholar

    Chen W, Huang J, Li H, Lv G H, Wang X Q, Zhang G Q, Wang P Y, Yang S Z 2012 Acta Phys. Sin. 61 185203Google Scholar

    [5]

    欧阳吉庭, 张晨阳, 张宇, 刘思含, 缪劲松 2020 北京理工大学学报 40 908Google Scholar

    Ouyang J T, Zhang C Y, Zhang Y, Liu S H, Miao J S 2020 J. B. Inst. Techno. 40 908Google Scholar

    [6]

    Bakeev I Y, Klimov A S, Oks E M, Zenin A A 2021 Vacuum 187 110161

    [7]

    Hou X Y, Zou X B, Li Y T, Zhang L W, Wang X X 2019 High Volt. 4 217Google Scholar

    [8]

    Korolev Y D, Koval N N 2018 J. Phys. D: Appl. Phys. 51 323001Google Scholar

    [9]

    Boeuf J P, Pitchford L C 2005 Appl. Phys. Lett. 86 071501Google Scholar

    [10]

    Fu Y Y, Verboncoeur J P, Christlieb A J 2017 Phys. Plasmas 24 103514Google Scholar

    [11]

    Cong S Y, Wu R H, Mu L, Sun J Z, Wang D Z 2019 J. Phys. D: Appl. Phys. 52 045205Google Scholar

    [12]

    Jiang X X, He F, Chen Q, Ge T, Ouyang J T 2014 Phys. Plasmas 21 033508Google Scholar

    [13]

    夏广庆, 薛伟华, 陈茂林, 朱雨, 朱国强 2011 物理学报 60 015201Google Scholar

    Xia G Q, Xue W H, Chen M L, Zhu Y, Zhu G Q 2011 Acta Phys. Sin. 60 015201Google Scholar

    [14]

    Wei H C, Wang N, Duan Z C, He F 2018 Phys. Plasmas 25 123513Google Scholar

    [15]

    Hou X Y, Fu Y Y, Wang H, Zou X B, Luo H Y, Wang X X 2017 Phys. Plasmas 24 083506Google Scholar

    [16]

    何寿杰, 张钊, 赵雪娜, 李庆 2017 物理学报 66 055101Google Scholar

    He S J, Zhang Zhao, Zhao X N, Li Q 2017 Acta Phys. Sin. 66 055101Google Scholar

    [17]

    Lavrukevich Y, Ryabtsev A, Tsiolko V 2017 Probl. At. Sci. Technol. 107 215

    [18]

    Bazhenov V Y, Matsevich S V, Piun V M, Tsiolko V V 2015 Probl. At. Sci. Technol. 98 177

    [19]

    Yamatake A, Yasuoka K, Ishii S 2004 Jpn. J. Appl. Phys. 43 6381Google Scholar

    [20]

    Qin Y, He F, Jiang X X, Xie K, Ouyang J T 2014 Phys. Plasmas 21 073501Google Scholar

    [21]

    Matsui M, Ikemoto T, Takayanagi H, Komurasaki K, Arakawa Y 2006 Vacuum 80 1161Google Scholar

    [22]

    He S J, Ha J, Liu S M, Ouyang J T 2013 Phys. Plasmas 20 123504Google Scholar

    [23]

    He J, Zhang Y T T 2012 Plasma Processes Polym. 9 919Google Scholar

    [24]

    Hsu C C, Nierode M A, Coburn J W, Graves D B 2006 J. Phys. D: Appl. Phys. 39 3272Google Scholar

    [25]

    Park G, Lee H, Kim G, Lee J K 2008 Plasma Processes Polym. 5 569Google Scholar

    [26]

    Sakiyama Y, Graves D B, Chang H W, Shimizu T, Morfill G E 2012 J. Phys. D: Appl. Phys. 45 425201Google Scholar

    [27]

    Baulch D L, Cox R A, Crutzen P J, Hampson R F, Kerr J A, Troe J, Watson R T 1982 J. Phys. Chem. Ref. Data 11 327Google Scholar

    [28]

    Stafford D S, Kushner M J 2004 J. Appl. Phys. 96 2451Google Scholar

    [29]

    冯静 2018 硕士学位论文 (大连: 大连理工大学)

    Feng J 2018 M. S. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [30]

    Kossyi I A, Kostinsky A Y, Matveyev A A 1992 Plasma Sources Sci. Technol. 1 207Google Scholar

    [31]

    Yanallah K, Pontiga F, Fernández-Rueda A, Castellanos A, Belasri A 2008 J. Phys. D: Appl. Phys. 41 195206Google Scholar

    [32]

    Soria C, Pontiga F, Castellanos A 2004 Plasma Sources Sci. Technol. 13 95Google Scholar

    [33]

    Bogdanov E A, Kudryavtsev A A, Tsendin L D, Arslanbekov R R, Kolobov V I, Kudryavtsev V V 2003 Tech. Phys. 48 983Google Scholar

    [34]

    Xu J Z, Zhong P, Li J L, Lin J, Diao Y, Zhang J 2010 Plasma Sci. Technol. 12 601Google Scholar

    [35]

    Gaens W V, Bogaerts A 2013 J. Phys. D:Appl. Phys. 46 275201

    [36]

    Lazzaroni C, Chabert P 2016 Plasma Sources Sci. Technol. 25 065015Google Scholar

    [37]

    Donkó Z 1998 Phys. Rev. E 57 7126Google Scholar

    [38]

    Wei L S, Peng B F, Li M, Zhang Y F 2016 Vacuum 125 123Google Scholar

    [39]

    Pan G S, Tan Z Y, Pan J, Wang X L, Shan C H 2016 Phys. Plasmas 23 043508Google Scholar

    [40]

    Duran-Olivencia F J, Pontiga F, Castellanos A 2014 J. Phys. D:Appl. Phys. 47 415203Google Scholar

    [41]

    Hagelaar G J, Hoog F J, Kroesen G M 2000 Phys. Rev. E 62 1452Google Scholar

    [42]

    Laca M, Morávek M J, Schmiedt, Luká, Hrachová V, Kaňka A 2017 Contrib. Plasma Phys. 57 336Google Scholar

    [43]

    周志向 2020 硕士学位论文 (保定: 河北大学)

    Zhou Z X 2020 M. S. Dissertation (Baoding: Hebei University) (in Chinese)

    [44]

    Costin C, Minea T M, Popa G, Gousset G 2010 J. Vac. Sci. Technol. A 28 322Google Scholar

    [45]

    Yang A J, Wang X H, Rong M Z, Liu D X, Iza F, Kong M G 2011 Phys. Plasmas 18 113503

    [46]

    洪布双, 苑涛, 邹帅, 唐中华, 徐东升, 虞一青, 王栩生, 辛煜 2013 物理学报 62 115202Google Scholar

    Hong B S, Yuan T, Zou S, Tang Z H, Xu D S, Yu Y Q, Wang X S, Xin Y 2013 Acta Phys. Sin. 62 115202Google Scholar

    [47]

    王晓龙, 谭震宇, 潘光胜, 单春虹 2018 高电压技术 44 904Google Scholar

    Wang X L, Tan Z Y, Pan G S, Shan C H 2018 High Volt. Engineer. 44 904Google Scholar

  • [1] 魏振宇, 刘亚坤. 不同氧浓度混合气体二次流注放电下激发态氧原子生成特性与影响因素研究. 物理学报, 2025, 74(3): . doi: 10.7498/aps.74.20241550
    [2] 李晨璞, 吴魏霞, 张礼刚, 胡金江, 谢革英, 郑志刚. 具有不同扩散系数的活性手征粒子分离. 物理学报, 2024, 73(20): 200201. doi: 10.7498/aps.73.20240686
    [3] 艾飞, 刘志兵, 张远涛. 结合机器学习的大气压介质阻挡放电数值模拟研究. 物理学报, 2022, 71(24): 245201. doi: 10.7498/aps.71.20221555
    [4] 齐兵, 田晓, 王静, 王屹山, 司金海, 汤洁. 射频/直流驱动大气压氩气介质阻挡放电的一维仿真研究. 物理学报, 2022, 71(24): 245202. doi: 10.7498/aps.71.20221361
    [5] 王倩, 赵江山, 范元媛, 郭馨, 周翊. 不同缓冲气体中ArF准分子激光系统放电特性分析. 物理学报, 2020, 69(17): 174207. doi: 10.7498/aps.69.20200087
    [6] 廖晶晶, 蔺福军. 混合手征活性粒子在时间延迟反馈下的扩散和分离. 物理学报, 2020, 69(22): 220501. doi: 10.7498/aps.69.20200505
    [7] 何寿杰, 周佳, 渠宇霄, 张宝铭, 张雅, 李庆. 氩气空心阴极放电复杂动力学过程的模拟研究. 物理学报, 2019, 68(21): 215101. doi: 10.7498/aps.68.20190734
    [8] 赵曰峰, 王超, 王伟宗, 李莉, 孙昊, 邵涛, 潘杰. 大气压甲烷针-板放电等离子体中粒子密度和反应路径的数值模拟. 物理学报, 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [9] 姚聪伟, 马恒驰, 常正实, 李平, 穆海宝, 张冠军. 大气压介质阻挡辉光放电脉冲的阴极位降区特性及其影响因素的数值仿真. 物理学报, 2017, 66(2): 025203. doi: 10.7498/aps.66.025203
    [10] 何寿杰, 张钊, 赵雪娜, 李庆. 微空心阴极维持辉光放电的时空特性. 物理学报, 2017, 66(5): 055101. doi: 10.7498/aps.66.055101
    [11] 董烨, 董志伟, 周前红, 杨温渊, 周海京. 沿面闪络流体模型电离参数粒子模拟确定方法. 物理学报, 2014, 63(6): 067901. doi: 10.7498/aps.63.067901
    [12] 李元, 穆海宝, 邓军波, 张冠军, 王曙鸿. 正极性纳秒脉冲电压下变压器油中流注放电仿真研究. 物理学报, 2013, 62(12): 124703. doi: 10.7498/aps.62.124703
    [13] 何寿杰, 哈静, 刘志强, 欧阳吉庭, 何锋. 流体-亚稳态原子传输混合模型模拟空心阴极放电特性. 物理学报, 2013, 62(11): 115203. doi: 10.7498/aps.62.115203
    [14] 张增辉, 张冠军, 邵先军, 常正实, 彭兆裕, 许昊. 大气压Ar/NH3介质阻挡辉光放电的仿真研究. 物理学报, 2012, 61(24): 245205. doi: 10.7498/aps.61.245205
    [15] 张增辉, 邵先军, 张冠军, 李娅西, 彭兆裕. 大气压氩气介质阻挡辉光放电的一维仿真研究. 物理学报, 2012, 61(4): 045205. doi: 10.7498/aps.61.045205
    [16] 邵先军, 马跃, 李娅西, 张冠军. 低气压氙气介质阻挡放电的一维仿真研究. 物理学报, 2010, 59(12): 8747-8754. doi: 10.7498/aps.59.8747
    [17] 周俐娜, 王新兵. 微空心阴极放电的流体模型模拟. 物理学报, 2004, 53(10): 3440-3446. doi: 10.7498/aps.53.3440
    [18] 刘成森, 王德真. 空心圆管端点附近等离子体源离子注入过程中鞘层的时空演化. 物理学报, 2003, 52(1): 109-114. doi: 10.7498/aps.52.109
    [19] 余建华, 赖建军, 黄建军, 王新兵, 丘军林. 槽型空心阴极放电中槽底阴极面的电子发射对放电的影响. 物理学报, 2002, 51(9): 2080-2085. doi: 10.7498/aps.51.2080
    [20] 赖建军, 余建华, 黄建军, 王新兵, 丘军林. 空心阴极直流放电的二维自洽模型描述和阴极溅射分析. 物理学报, 2001, 50(8): 1528-1533. doi: 10.7498/aps.50.1528
计量
  • 文章访问数:  5212
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-18
  • 修回日期:  2021-09-12
  • 上网日期:  2022-01-10
  • 刊出日期:  2022-01-20

/

返回文章
返回