搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非对称共轴腔结构色产生与调控

钱其升 刘慧研 查永鹏 倪海彬

引用本文:
Citation:

非对称共轴腔结构色产生与调控

钱其升, 刘慧研, 查永鹏, 倪海彬

Generation and control of structural color in asymmetric coaxial cavity

Qian Qi-Sheng, Liu Hui-Yan, Zha Yong-Peng, Ni Hai-Bin
PDF
HTML
导出引用
  • 金属纳米结构应用于产生和调控结构色有巨大的潜力. 本文设计了一种基于银纳米非对称共轴腔的阵列结构, 研究环形腔在非对称情况下对于结构色产生和调控的影响, 通过时域有限差分的方法对非对称共轴腔有序阵列进行仿真计算, 得到了结构几何参数对结构色的影响. 结果表明, 调节共轴腔深度、开口大小和厚度都能产生丰富的结构色. 实验与仿真结果基本一致. 相比对称式结构的共轴腔, 本文提出的非对称金属纳米结构在颜色显示方面具有更好的可调性, 在彩色成像、高分辨率成像、防伪等方面有潜在应用.
    Metal nanostructures have great potential for generating and regulating structural color. In this paper, an array structure based on silver nano asymmetric coaxial cavity is designed to study the influence of ring cavity on the generation and regulation of structural color. The ordered array of asymmetric coaxial cavity is simulated by the finite difference time domain method, and the influence of structural parameters on structural color is obtained. The results show that by adjusting the depth, opening size and thickness of coaxial cavity, the rich structural colors can be produced. The experimental results and the simulation results are basically consistent with each other. Compared with the coaxial cavity with symmetrical structure, the asymmetric metal nanostructure proposed in this work has good adjustability in color display, and has potential applications in color imaging, high-resolution imaging, anti-counterfeiting, and so on.
      通信作者: 倪海彬, nihaibin@nuist.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61605082, 61875089)、江苏省自然科学基金(批准号: BK20160969)、江苏省高等学校重点学科建设项目(PAPD)、中国博士后科学基金 (批准号: 2017M611654)和江苏省博士后科研基金(批准号: 1701074B)资助的课题.
      Corresponding author: Ni Hai-Bin, nihaibin@nuist.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61605082, 61875089), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20160969), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (PAPD), the China Postdoctoral Science Foundation (Grant No. 2017M611654), and the Jiangsu Provincial Postdoctoral Sustentation Fund, China (Grant No. 1701074B ).
    [1]

    Kolle M, Pedro M S, Maik R J S 2010 Nat. Nanotechnol. 5 511Google Scholar

    [2]

    Noh H, Liew S F, Saranathan V 2010 Adv. Mater. 22 2871Google Scholar

    [3]

    Rassart M, Simonis P, Bay A 2009 Phys. Rev. E 80 031910Google Scholar

    [4]

    Parker A R, Welch V L, Driver D 2003 Nature 426 786Google Scholar

    [5]

    Roberts A S, Pors A, Albrektsen O, Bozhevolnyi S I 2014 Nano Lett. 14 783Google Scholar

    [6]

    VarPhilips R W, Bleikolm A F 1996 Appl. Opt. 35 5529Google Scholar

    [7]

    Liu X Y, Zhu S M, Zhang D 2010 Mater. Lett. 64 2745Google Scholar

    [8]

    Guo D Z, Hou S M, Xue Z Q 2002 Chin. Phys. Lett. 19 385Google Scholar

    [9]

    成建新, 周 盈, 常建华, 倪海彬 2021 光通信研究与应用 47 41

    Cheng J X, Zhou Y, Chang J H, Ni H B 2021 Study on Optical Communications 47 41

    [10]

    Murphy A, Sonnefraud Y, Krasavin A V, Ginzburg P, Morgan F, McPhillips J, Wurtz G, Maier S A, Zayats A V, Pollard R 2013 Appl. Phys. Lett. 102 103103Google Scholar

    [11]

    Dong Z, Ho J, Yu Y F, Fu Y H, Paniagua-Dominguez R, Wang S, Kuznetsov A I, Yang J K W 2017 Nano Lett. 17 7620Google Scholar

    [12]

    Vandehaar M A, Maas R, Brenny B, Polman A 2016 New J. Phys. 18 043016Google Scholar

    [13]

    Ni H B, Wang M, Shen T, Zhou J 2015 ACS Nano 9 1913Google Scholar

    [14]

    戴琦, 付娆, 邓联贵, 李嘉鑫, 郑国兴 2019 应用光学 40 1045Google Scholar

    Dai Q, Fu R, Deng L G, Li J X, Zheng G X 2019 Appl. Opt. 40 1045Google Scholar

    [15]

    杨悦, 王珏玉, 赵敏, 崔岱宗 2019 化学进展 31 1007

    Yang Y, Wang J Y, Zhao M, Cui D Z 2019 Prog Chem. 31 1007

    [16]

    Karmakar S, Behera D 2019 Ceram. Int. 45 237

    [17]

    Abdolahi M, Jiang H, Kaminska B 2019 Nat. Nanotechnol. 30 405301Google Scholar

    [18]

    钟敏, 史先春 2020 红外与毫米波学报 39 576Google Scholar

    Zhong M, Shi X C 2020 J. Infrared Millimeter 39 576Google Scholar

    [19]

    张浩驰, 何沛航, 牛凌云, 张乐鹏, 崔铁军 2021 光学学报 41 372

    Zhang H C, He P H, Niu L Y, Zhang L P, Cui T J 2021 Acta Opt. Sin. 41 372

  • 图 1  模型结构示意图 (a) 三维图; (b) 剖面图

    Fig. 1.  Model structure diagram: (a) Three dimensional diagram; (b) section diagram.

    图 2  结构与仿真结果 (a) 具有指定几何参数的同轴纳米腔的结构参数示意图; (b) 当单个非对称共轴腔的结构参数为H = 150 nm, R = 55 nm, r = 35 nm, d = 10 nm, P = 250 nm的反射、透射、吸收谱光谱图; (c) λ1 = 490 nm和(d) λ2 = 610 nm共振波长处竖直截面的电场分布图

    Fig. 2.  Structure and simulation: (a) Single interface diagram of coaxial nano-cavity with specified geometric parameters; (b) reflection, transmission and absorption spectra of a single asymmetric coaxial cavity with H = 150 nm, R = 55 nm, r = 35 nm, d = 10 nm, P = 250 nm; cross section electric field distributions at (c) λ1 = 490 and (d) λ2 = 610 nm resonance wavelengths.

    图 3  实验图 (a)共轴腔结构SEM俯视图; (b)共轴腔结构截面SEM图; (c)结构色显微镜图; (d)—(f) 实验与仿真反射光谱对照图

    Fig. 3.  SEM image of (a) coaxial cavity arrays and (b) cross section of coaxial cavities; (c) optical microscope image of coaxial cavi-ty arrays with different structure parameters; (d)–(f) comparison between experiments and simulation results.

    图 4  结构色及光谱图 (a) R = 75 nm, r = 35 nm, d = 30 nm, P = 250 nm时, 共轴腔深度H从40 nm增加到200 nm时结构色的变化; (b), (c)不同共轴腔深度H时的反射光谱; (d)与深度H变化对应的颜色变化路径图

    Fig. 4.  Structural color and reflectance spectrum comparison diagram: (a) When R = 75 nm, r = 35 nm, d = 30 nm, P = 250 nm, the structural color changes when the coaxial cavity depth H increases from 40 nm to 200 nm; (b) , (c) reflection spectra at different coaxial cavity depths H; (d) trace of displayed colors as H varies

    图 5  结构色及光谱对比图 (a) H = 150 nm, r = 35 nm, P = 250 nm时, 共轴腔上外半径R在70—100 nm范围内的结构色显示图; (b) 不同共轴腔上外半径的反射谱图; (c) 共轴腔上外半径R的对比反射光谱图; (d) 上外半径R对应的颜色路径图

    Fig. 5.  Structural color and spectrum contrast diagram: (a) Structural color display diagram of coaxial cavity with outer radius R from 70 to 100 nm; (b) reflection spectrums of different coaxial cavity depths; (c) contrast reflection spectra of outer radius R in coaxial cavity; (d) color path corresponding to upper outer radius R.

    图 6  结构色及光谱对比图 (a) H = 150 nm, r = 35 nm, P = 250 nm时, 共轴腔厚度d在10—45 nm范围内的结构色显示图; (b) 不同共轴腔厚度的反射谱图; (c) 共轴腔厚度d的对比反射光谱图; (d) 厚度d对应的颜色路径图

    Fig. 6.  Structural color and spectrum comparison diagram: (a) When H = 150 nm, R= 55 nm, r = 35 nm, P = 250 nm, the structure color display diagram of coaxial cavity thickness d from 10–45 nm; (b) reflection spectrums of different coaxial cavity depths; (d) color path corresponding to thickness d.

    图 7  结构色及光谱对比图 (a)对称结构截面图; (b) H = 200 nm, L = 60 nm, P = 250 nm时, 共轴腔厚度D从10—35 nm的结构色显示图; (c) 不同共轴腔厚度的反射谱图; (d) 共轴腔厚度D的对比反射光谱图; (e) 厚度D对应的颜色路径图

    Fig. 7.  Structural color and spectrum comparison diagram: (a) When H = 200 nm, L = 60 nm, P = 250 nm, the structure color display diagram of coaxial cavity thickness d from 10 ~ 35 nm; (b) structural color display diagram of coaxial cavity thickness D from 10 to 35 nm; (c) reflection spectrums of different coaxial cavity depths; (d) contrast reflection spectrogram of coaxial cavity thickness D; (e) color path corresponding to thickness D

  • [1]

    Kolle M, Pedro M S, Maik R J S 2010 Nat. Nanotechnol. 5 511Google Scholar

    [2]

    Noh H, Liew S F, Saranathan V 2010 Adv. Mater. 22 2871Google Scholar

    [3]

    Rassart M, Simonis P, Bay A 2009 Phys. Rev. E 80 031910Google Scholar

    [4]

    Parker A R, Welch V L, Driver D 2003 Nature 426 786Google Scholar

    [5]

    Roberts A S, Pors A, Albrektsen O, Bozhevolnyi S I 2014 Nano Lett. 14 783Google Scholar

    [6]

    VarPhilips R W, Bleikolm A F 1996 Appl. Opt. 35 5529Google Scholar

    [7]

    Liu X Y, Zhu S M, Zhang D 2010 Mater. Lett. 64 2745Google Scholar

    [8]

    Guo D Z, Hou S M, Xue Z Q 2002 Chin. Phys. Lett. 19 385Google Scholar

    [9]

    成建新, 周 盈, 常建华, 倪海彬 2021 光通信研究与应用 47 41

    Cheng J X, Zhou Y, Chang J H, Ni H B 2021 Study on Optical Communications 47 41

    [10]

    Murphy A, Sonnefraud Y, Krasavin A V, Ginzburg P, Morgan F, McPhillips J, Wurtz G, Maier S A, Zayats A V, Pollard R 2013 Appl. Phys. Lett. 102 103103Google Scholar

    [11]

    Dong Z, Ho J, Yu Y F, Fu Y H, Paniagua-Dominguez R, Wang S, Kuznetsov A I, Yang J K W 2017 Nano Lett. 17 7620Google Scholar

    [12]

    Vandehaar M A, Maas R, Brenny B, Polman A 2016 New J. Phys. 18 043016Google Scholar

    [13]

    Ni H B, Wang M, Shen T, Zhou J 2015 ACS Nano 9 1913Google Scholar

    [14]

    戴琦, 付娆, 邓联贵, 李嘉鑫, 郑国兴 2019 应用光学 40 1045Google Scholar

    Dai Q, Fu R, Deng L G, Li J X, Zheng G X 2019 Appl. Opt. 40 1045Google Scholar

    [15]

    杨悦, 王珏玉, 赵敏, 崔岱宗 2019 化学进展 31 1007

    Yang Y, Wang J Y, Zhao M, Cui D Z 2019 Prog Chem. 31 1007

    [16]

    Karmakar S, Behera D 2019 Ceram. Int. 45 237

    [17]

    Abdolahi M, Jiang H, Kaminska B 2019 Nat. Nanotechnol. 30 405301Google Scholar

    [18]

    钟敏, 史先春 2020 红外与毫米波学报 39 576Google Scholar

    Zhong M, Shi X C 2020 J. Infrared Millimeter 39 576Google Scholar

    [19]

    张浩驰, 何沛航, 牛凌云, 张乐鹏, 崔铁军 2021 光学学报 41 372

    Zhang H C, He P H, Niu L Y, Zhang L P, Cui T J 2021 Acta Opt. Sin. 41 372

  • [1] 罗宇轩, 程用志, 陈浮, 罗辉, 李享成. 基于沙漏形人工表面等离激元和交指电容结构的双频滤波器设计. 物理学报, 2023, 72(4): 044101. doi: 10.7498/aps.72.20221984
    [2] 王悦, 王伦, 孙柏逊, 郎鹏, 徐洋, 赵振龙, 宋晓伟, 季博宇, 林景全. 表面等离激元与入射光共同作用下的金纳米结构近场调控. 物理学报, 2023, 72(17): 175202. doi: 10.7498/aps.72.20230514
    [3] 岂云开, 杨淑敏, 李欣, 徐芹, 顾建军. 多能场复合电沉积对Al2O3-Co复合薄膜物性影响研究. 物理学报, 2022, 71(1): 017801. doi: 10.7498/aps.71.20211313
    [4] 岂云开, 杨淑敏, 李欣, Qin Xu, 顾建军. 多能场复合电沉积对Al2O3-Co复合薄膜物性影响研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211313
    [5] 刘亮, 韩德专, 石磊. 等离激元能带结构与应用. 物理学报, 2020, 69(15): 157301. doi: 10.7498/aps.69.20200193
    [6] 褚培新, 张玉斌, 陈俊学. 开口狭缝调制的耦合微腔中表面等离激元诱导透明特性. 物理学报, 2020, 69(13): 134205. doi: 10.7498/aps.69.20200369
    [7] 殷允桥, 吴宏伟. 基于人工表面等离激元结构的超表面磁镜. 物理学报, 2020, 69(23): 234101. doi: 10.7498/aps.69.20200514
    [8] 谌璐, 陈跃刚. 金属-光折变材料复合全息结构对表面等离激元的波前调控. 物理学报, 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [9] 权家琪, 圣宗强, 吴宏伟. 基于人工表面等离激元结构的全向隐身. 物理学报, 2019, 68(15): 154101. doi: 10.7498/aps.68.20190283
    [10] 周强, 林树培, 张朴, 陈学文. 旋转对称表面等离激元结构中极端局域光场的准正则模式分析. 物理学报, 2019, 68(14): 147104. doi: 10.7498/aps.68.20190434
    [11] 祁云平, 周培阳, 张雪伟, 严春满, 王向贤. 基于塔姆激元-表面等离极化激元混合模式的单缝加凹槽纳米结构的增强透射. 物理学报, 2018, 67(10): 107104. doi: 10.7498/aps.67.20180117
    [12] 王超, 李勇峰, 沈杨, 丰茂昌, 王甲富, 马华, 张介秋, 屈绍波. 基于人工表面等离激元的双通带频率选择结构设计. 物理学报, 2018, 67(20): 204101. doi: 10.7498/aps.67.20180696
    [13] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器. 物理学报, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [14] 张崇磊, 辛自强, 闵长俊, 袁小聪. 表面等离激元结构光照明显微成像技术研究进展. 物理学报, 2017, 66(14): 148701. doi: 10.7498/aps.66.148701
    [15] 李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星. 阿基米德螺旋微纳结构中的表面等离激元聚焦. 物理学报, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [16] 张永元, 罗李娜, 张中月. 十字结构银纳米线的表面等离极化激元分束特性. 物理学报, 2015, 64(9): 097303. doi: 10.7498/aps.64.097303
    [17] 杨淑敏, 韩伟, 顾建军, 李海涛, 岂云开. 虹彩环形结构色氧化铝薄膜的制备与研究. 物理学报, 2015, 64(7): 076102. doi: 10.7498/aps.64.076102
    [18] 胡梦珠, 周思阳, 韩琴, 孙华, 周丽萍, 曾春梅, 吴兆丰, 吴雪梅. 紫外表面等离激元在基于氧化锌纳米线的半导体-绝缘介质-金属结构中的输运特性研究. 物理学报, 2014, 63(2): 029501. doi: 10.7498/aps.63.029501
    [19] 杨 睿, 於文华, 鲍 洋, 张远宪, 普小云. 消逝场耦合圆柱形微腔中回音壁模式结构的实验研究. 物理学报, 2008, 57(10): 6412-6418. doi: 10.7498/aps.57.6412
    [20] 侯春风, 郭汝海. 椭圆柱形量子点的能级结构. 物理学报, 2005, 54(5): 1972-1976. doi: 10.7498/aps.54.1972
计量
  • 文章访问数:  3859
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-20
  • 修回日期:  2021-11-21
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-20

/

返回文章
返回