搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应

王波云 朱子豪 高有康 曾庆栋 刘洋 杜君 王涛 余华清

引用本文:
Citation:

基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应

王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清

Plasmon induced transparency effect based on graphene nanoribbon waveguide side-coupled with rectangle cavities system

Wang Bo-Yun, Zhu Zi-Hao, Gao You-Kang, Zeng Qing-Dong, Liu Yang, Du Jun, Wang Tao, Yu Hua-Qing
PDF
HTML
导出引用
  • 为了减小器件尺寸、实现超快速响应和动态可调谐, 研究了基于石墨烯纳米条波导边耦合矩形腔的单波段和双波段的等离子体诱导透明(PIT)效应, 通过耦合模式理论和时域有限差分法从数值计算和模拟仿真两方面分析了模型的慢光特性. 通过调节石墨烯矩形腔的化学势, 同时实现了单波段、双波段PIT模型的谐振波长和透射峰值的可调谐性. 当石墨烯的化学势增加时, 各个波段PIT窗口的谐振波长逐渐减小, 发生蓝移. 此外, 通过动态调谐石墨烯矩形腔的谐振波长, 当石墨烯矩形腔的化学势为0.41—0.44 eV时, 单PIT系统的群折射率控制在79.2—28.3之间, 可调谐带宽为477 nm; 当石墨烯矩形腔1, 2, 3的化学势分别为0.39—0.42 eV, 0.40—0.43 eV, 0.41—0.44 eV时, 双PIT系统的群折射率控制在143.2—108.6之间. 并且, 整个系统的尺寸小于0.5 μm2. 研究结果对于超快速、超紧凑型和动态可调谐的光传感、光滤波、慢光和光存储器件的设计和制作具有一定的参考意义.
    In order to reduce the size of the device and realize the ultrafast response time and dynamic tunableness, the single-band and dual-band plasmon induced transparency (PIT) effect are investigated based on graphene nanoribbon waveguide side-coupled rectangle cavity. The slow light properties of the model are analyzed numerically and theoretically by coupled mode theory and finite difference time domain method. With controlling the chemical potential of the graphene rectangle cavity, the tunability of the resonant wavelength and the transmission peak can be achieved simultaneously in single-band and dual-band PIT model. As the chemical potential of graphene increases, the resonant wavelength of each transmission window of PIT effect decreases gradually and presents the blue shift. In addition, through dynamically tuning the resonant wavelength of the graphene rectangle cavity, when the chemical potential of the graphene rectangle cavity increases from 0.41 to 0.44 eV, the group index of single PIT system is controlled to be between 79.2 and 28.3, and the tunable bandwidth is 477 nm. Moreover, the group index of dual PIT system is controlled to be between 143.2 and 108.6 when the chemical potentials of graphene rectangle cavities 1, 2, and 3 are 0.39–0.42 eV, 0.40–0.43 eV, and 0.41–0.44 eV, respectively. The size of the entire PIT structure is <0.5 μm2. The research results here in this work are of reference significance in designing and fabricating the optical sensors, optical filters, slow light and light storage devices with ultrafast, ultracompact and dynamic tunableness.
      通信作者: 王波云, wangboyun@alumni.hust.edu.cn ; 余华清, yuhuaqing@hbeu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11647122, 61705064)、湖北省自然科学基金(批准号: 2018CFB672, 2018CFB773)、湖北省教育厅计划项目(批准号: B2021215, T201617)和孝感市自然科学基金(批准号: XGKJ2021010002)资助的课题.
      Corresponding author: Wang Bo-Yun, wangboyun@alumni.hust.edu.cn ; Yu Hua-Qing, yuhuaqing@hbeu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11647122, 61705064), the Natural Science Foundation of Hubei Province, China (Grant Nos. 2018CFB672, 2018CFB773), the Project of Hubei Province Department of Education, China (Grant Nos. B2021215, T201617), and the Natural Science Foundation of Xiaogan City, China (Grant No. XGKJ2021010002).
    [1]

    Gao E D, Liu Z M, Li H J, Xu H, Zhang Z B, Luo X, Xiong C X, Liu C, Zhang B H, Zhou F Q 2019 Opt. Express 27 13884Google Scholar

    [2]

    Liu J H, Yu Y F, Zhang Z M 2019 Opt. Express 27 15382Google Scholar

    [3]

    Ziemkiewicz D, Slowik K, Zielinska-Raczynska S 2018 Opt. Lett. 43 490Google Scholar

    [4]

    Neubert T J, Wehrhold M, Kaya N S, Balasubramanian K 2020 Nanotechnology 31 405201Google Scholar

    [5]

    Li H J, Wang L L, Sun B, Huang Z R, Zhai X 2016 Plasmonics 11 87Google Scholar

    [6]

    Zhang T, Zhou J Z, Dai J, Dai Y T, Han X, Li J Q, Yin F F, Zhou Y, Xu K 2018 J. Phys. D:Appl. Phys. 51 055103Google Scholar

    [7]

    Liu Y C, Li B B, Xiao Y F 2017 Nanophotonics 6 789Google Scholar

    [8]

    Wang B Y, Zeng Q D, Xiao S Y, Xu C, Xiong L B, Lv H, Du J, Yu H Q 2017 J. Phys. D:Appl. Phys. 50 455107Google Scholar

    [9]

    Xiong C X, Li H J, Xu H, Zhao M Z, Zhang B H, Liu C, Wu K 2019 Opt. Express 27 17718Google Scholar

    [10]

    Han X, Wang T, Li X M, Zhu Y J 2015 J. Phys. D:Appl. Phys. 48 235102Google Scholar

    [11]

    Xu H, Xiong C X, Chen Z Q, Zheng M F, Zhao M Z, Zhang B H, Li H J 2018 J. Opt. Soc. Am. B 35 1463Google Scholar

    [12]

    Liu Z M, Zhang X 2020 New J. Phys. 22 083006Google Scholar

    [13]

    Huang H L, Xia H, Guo Z B, Li H J, Xie D 2018 Opt. Commun. 424 163Google Scholar

    [14]

    Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401Google Scholar

    [15]

    Zhang B H, Li H J, Xu H, Zhao M Z, Xiong C X, Liu C, Wu K 2019 Opt. Express 27 3598Google Scholar

    [16]

    Cen H F, Wang F Q, Liang R S, Wei Z C, Meng H Y, Jiang L H, Dong H G, Qin S J, Wang L, Wang C L 2018 Opt. Commun. 420 78Google Scholar

    [17]

    Qiu P P, Qiu W B, Lin Z L, Chen H B, Ren J B, Wang J X, Kan Q, Pan J Q 2017 Nanoscale Res. Lett. 12 374Google Scholar

    [18]

    Sun C, Si J N, Dong Z W, Deng X X 2016 Opt. Express 24 11466Google Scholar

    [19]

    Fan C Z, Jia Y L, Ren P W, Jia W 2021 J. Phys. D: Appl. Phys. 54 035107Google Scholar

    [20]

    Li J B, Xiao X J, Tan Y, Guo Q Q, Liang S, Xiao S, Zhong H H, He M D, Liu L H, Luo J H, Chen L Q 2020 Opt. Express 28 3136Google Scholar

    [21]

    Zhang T, Liu Q, Dan Y H, Yu S, Han X, Dai J, Xu K 2020 Opt. Express 28 18899Google Scholar

    [22]

    Wang B Y, Zhu Y H, Zhang J, Zeng Q D, Du J, Wang T, Yu H Q 2020 Chin. Phys. B 29 377

    [23]

    Karampitsos N, Kyrginas D, Couris S 2020 Opt. Lett. 45 1814Google Scholar

    [24]

    Baudisch M, Marini A, Cox J D, Zhu T, Silva F, Teichmann S, Massicotte M, Koppens F, Levitov L S, Abajo F J G, Biegert J 2018 Nat. Commun. 9 1018Google Scholar

    [25]

    Xiao B G, Zhu J F, Xiao L H 2020 Appl. Opt. 59 6041Google Scholar

    [26]

    Xu H, Zhao M Z, Zheng M F, Xiong C X, Zhang B H, Peng Y Y, Li H J 2019 J. Phys. D:Appl. Phys. 52 025104Google Scholar

    [27]

    胡宝晶, 黄铭, 黎鹏, 杨晶晶 2020 物理学报 69 174201Google Scholar

    Hu B J, Huang M, Li P, Yang J J 2020 Acta Phys. Sin. 69 174201Google Scholar

    [28]

    Zhan S, Li H, Cao G, He Z, Li B, Yang H 2014 J. Phys. D:Appl. Phys. 47 205101Google Scholar

    [29]

    Chen Z, Chen H, Yin J, Zhang R, Jile H, Xu D, Yi Z, Zhou Z, Cai S, Yan P 2021 Diamond Relat. Mater. 116 108393Google Scholar

    [30]

    Chen Z, Chen H, Jile H, Xu D, Yi Z, Lei Y, Chen X, Zhou Z, Cai S, Li G 2021 Diamond Relat. Mater. 115 108374Google Scholar

    [31]

    Jiang L, Yuan C, Li Z, Su J, Yi Z, Yao W, Wu P, Liu Z, Cheng S, Pan M 2021 Diamond Relat. Mater. 111 108227Google Scholar

  • 图 1  双石墨烯矩形腔边耦合波导系统结构示意图, 失谐方式为双腔之间的频率失谐

    Fig. 1.  Schematic of two graphene rectangle cavities side-coupled to a waveguide system. Detuning method is the frequency detuning between two cavities.

    图 2  当石墨烯的化学势为0.39, 0.40, 0.41, 0.42, 0.43, 0.44 eV时, 本征Q值与波长的关系

    Fig. 2.  Relationship between the intrinsic quality factor and the wavelength for different chemical potential of the graphene EF = 0.39, 0.40, 0.41, 0.42, 0.43 and 0.44 eV, respectively.

    图 3  单PIT效应的实现原理示意图

    Fig. 3.  Schematic diagram of realizing principle of single PIT effect.

    图 4  单PIT效应仿真分析 (a1)—(d1)单PIT效应透射光谱; (a2)—(d2)相应的相移响应和群折射率

    Fig. 4.  Single PIT effect simulation analysis: (a1)–(d1) The transmission spectra of single PIT effect; (a2)–(d2) corresponding phase shift responses and group index.

    图 5  单PIT效应透射凹陷((a), (c))和峰值波长((b))处的|Hz|2磁场分布

    Fig. 5.  |Hz|2 magneticfield distributions of single PIT effect at transmission dips ((a) and (c)) and the peak wavelength ((b)).

    图 6  在PIT峰值波长处, 群折射率与石墨烯化学势的关系

    Fig. 6.  Relationship between the group index and the chemical potential of the graphene under the peak wavelength of the PIT.

    图 7  三石墨烯矩形腔边耦合波导系统结构示意图

    Fig. 7.  Schematic of triple graphene rectangle cavities side-coupled to a waveguide system.

    图 8  双PIT效应的实现原理示意图

    Fig. 8.  Schematic diagram of realizing principle of dual PIT effect.

    图 9  双PIT效应仿真分析 (a1)—(d1)双PIT效应透射光谱; (a2)—(d2)相应的相移响应和群折射率

    Fig. 9.  Dual PIT effect simulation analysis: (a1)–(d1) Transmission spectra of dual PIT effect; (a2)–(d2) corresponding phase shift responses and group index.

    图 10  双PIT效应峰值波长处的|Hz|2磁场分布

    Fig. 10.  |Hz|2 magnetic field distributions of dual PIT effect at the peak wavelength.

    表 1  PIT峰值波长处, 不同石墨烯矩形腔化学势、泵浦光强下的PIT系统最大群折射率

    Table 1.  The maximum group index of the PIT system under different chemical potentials of graphene rectangle cavities and pump light intensity at the peak wavelength of PIT.

    调谐方式相关参数PIT系统最大群折射率
    石墨烯化学势EF1 = 0.39 eV, EF2 = 0.40 eV, EF3 = 0.41 eV143.2
    EF1 = 0.40 eV, EF2 = 0.41 eV, EF3 = 0.42 eV
    127.3
    EF1 = 0.41 eV, EF2 = 0.42 eV, EF3 = 0.43 eV116.2
    EF1 = 0.42 eV, EF2 = 0.43 eV, EF3 = 0.44 eV108.6
    泵浦光强I = 11.7 MW·cm–214.5 [10]
    下载: 导出CSV
  • [1]

    Gao E D, Liu Z M, Li H J, Xu H, Zhang Z B, Luo X, Xiong C X, Liu C, Zhang B H, Zhou F Q 2019 Opt. Express 27 13884Google Scholar

    [2]

    Liu J H, Yu Y F, Zhang Z M 2019 Opt. Express 27 15382Google Scholar

    [3]

    Ziemkiewicz D, Slowik K, Zielinska-Raczynska S 2018 Opt. Lett. 43 490Google Scholar

    [4]

    Neubert T J, Wehrhold M, Kaya N S, Balasubramanian K 2020 Nanotechnology 31 405201Google Scholar

    [5]

    Li H J, Wang L L, Sun B, Huang Z R, Zhai X 2016 Plasmonics 11 87Google Scholar

    [6]

    Zhang T, Zhou J Z, Dai J, Dai Y T, Han X, Li J Q, Yin F F, Zhou Y, Xu K 2018 J. Phys. D:Appl. Phys. 51 055103Google Scholar

    [7]

    Liu Y C, Li B B, Xiao Y F 2017 Nanophotonics 6 789Google Scholar

    [8]

    Wang B Y, Zeng Q D, Xiao S Y, Xu C, Xiong L B, Lv H, Du J, Yu H Q 2017 J. Phys. D:Appl. Phys. 50 455107Google Scholar

    [9]

    Xiong C X, Li H J, Xu H, Zhao M Z, Zhang B H, Liu C, Wu K 2019 Opt. Express 27 17718Google Scholar

    [10]

    Han X, Wang T, Li X M, Zhu Y J 2015 J. Phys. D:Appl. Phys. 48 235102Google Scholar

    [11]

    Xu H, Xiong C X, Chen Z Q, Zheng M F, Zhao M Z, Zhang B H, Li H J 2018 J. Opt. Soc. Am. B 35 1463Google Scholar

    [12]

    Liu Z M, Zhang X 2020 New J. Phys. 22 083006Google Scholar

    [13]

    Huang H L, Xia H, Guo Z B, Li H J, Xie D 2018 Opt. Commun. 424 163Google Scholar

    [14]

    Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401Google Scholar

    [15]

    Zhang B H, Li H J, Xu H, Zhao M Z, Xiong C X, Liu C, Wu K 2019 Opt. Express 27 3598Google Scholar

    [16]

    Cen H F, Wang F Q, Liang R S, Wei Z C, Meng H Y, Jiang L H, Dong H G, Qin S J, Wang L, Wang C L 2018 Opt. Commun. 420 78Google Scholar

    [17]

    Qiu P P, Qiu W B, Lin Z L, Chen H B, Ren J B, Wang J X, Kan Q, Pan J Q 2017 Nanoscale Res. Lett. 12 374Google Scholar

    [18]

    Sun C, Si J N, Dong Z W, Deng X X 2016 Opt. Express 24 11466Google Scholar

    [19]

    Fan C Z, Jia Y L, Ren P W, Jia W 2021 J. Phys. D: Appl. Phys. 54 035107Google Scholar

    [20]

    Li J B, Xiao X J, Tan Y, Guo Q Q, Liang S, Xiao S, Zhong H H, He M D, Liu L H, Luo J H, Chen L Q 2020 Opt. Express 28 3136Google Scholar

    [21]

    Zhang T, Liu Q, Dan Y H, Yu S, Han X, Dai J, Xu K 2020 Opt. Express 28 18899Google Scholar

    [22]

    Wang B Y, Zhu Y H, Zhang J, Zeng Q D, Du J, Wang T, Yu H Q 2020 Chin. Phys. B 29 377

    [23]

    Karampitsos N, Kyrginas D, Couris S 2020 Opt. Lett. 45 1814Google Scholar

    [24]

    Baudisch M, Marini A, Cox J D, Zhu T, Silva F, Teichmann S, Massicotte M, Koppens F, Levitov L S, Abajo F J G, Biegert J 2018 Nat. Commun. 9 1018Google Scholar

    [25]

    Xiao B G, Zhu J F, Xiao L H 2020 Appl. Opt. 59 6041Google Scholar

    [26]

    Xu H, Zhao M Z, Zheng M F, Xiong C X, Zhang B H, Peng Y Y, Li H J 2019 J. Phys. D:Appl. Phys. 52 025104Google Scholar

    [27]

    胡宝晶, 黄铭, 黎鹏, 杨晶晶 2020 物理学报 69 174201Google Scholar

    Hu B J, Huang M, Li P, Yang J J 2020 Acta Phys. Sin. 69 174201Google Scholar

    [28]

    Zhan S, Li H, Cao G, He Z, Li B, Yang H 2014 J. Phys. D:Appl. Phys. 47 205101Google Scholar

    [29]

    Chen Z, Chen H, Yin J, Zhang R, Jile H, Xu D, Yi Z, Zhou Z, Cai S, Yan P 2021 Diamond Relat. Mater. 116 108393Google Scholar

    [30]

    Chen Z, Chen H, Jile H, Xu D, Yi Z, Lei Y, Chen X, Zhou Z, Cai S, Li G 2021 Diamond Relat. Mater. 115 108374Google Scholar

    [31]

    Jiang L, Yuan C, Li Z, Su J, Yi Z, Yao W, Wu P, Liu Z, Cheng S, Pan M 2021 Diamond Relat. Mater. 111 108227Google Scholar

  • [1] 高丰, 李欢庆, 宋卓, 赵宇宏. 三模晶体相场法研究应变诱导石墨烯晶界位错演化. 物理学报, 2024, 73(24): . doi: 10.7498/aps.73.20241368
    [2] 王伟华. 二维有限元方法研究石墨烯环中磁等离激元. 物理学报, 2023, 72(8): 087301. doi: 10.7498/aps.72.20222467
    [3] 谷馨, 张惠芳, 李明雨, 陈俊雅, 何英. 三椭圆谐振腔耦合波导中可调谐双重等离子体诱导透明效应的理论分析. 物理学报, 2022, 71(24): 247301. doi: 10.7498/aps.71.20221365
    [4] 朱子豪, 高有康, 曾严, 程政, 马洪华, 易煦农. 基于四盘形谐振腔耦合波导的三波段等离子体诱导透明效应. 物理学报, 2022, 71(24): 244201. doi: 10.7498/aps.71.20221397
    [5] 赵雯琪, 张岱, 崔明慧, 杜颖, 张树宇, 区琼荣. 等离子体对石墨烯的功能化改性. 物理学报, 2021, 70(9): 095208. doi: 10.7498/aps.70.20202078
    [6] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211397
    [7] 崔树稳, 李璐, 魏连甲, 钱萍. 双层石墨烯层间限域CO氧化反应的密度泛函研究. 物理学报, 2019, 68(21): 218101. doi: 10.7498/aps.68.20190447
    [8] 郭伟玲, 邓杰, 王嘉露, 王乐, 邰建鹏. 具有石墨烯/铟锑氧化物复合透明电极的GaN发光二极管. 物理学报, 2019, 68(24): 247303. doi: 10.7498/aps.68.20190983
    [9] 陈颖, 谢进朝, 周鑫德, 张灿, 杨惠, 李少华. 基于表面等离子体诱导透明的半封闭T形波导侧耦合圆盘腔的波导滤波器. 物理学报, 2019, 68(23): 237301. doi: 10.7498/aps.68.20191068
    [10] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计. 物理学报, 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [11] 宁仁霞, 鲍婕, 焦铮. 基于石墨烯超表面的宽带电磁诱导透明研究. 物理学报, 2017, 66(10): 100202. doi: 10.7498/aps.66.100202
    [12] 吴春艳, 杜晓薇, 周麟, 蔡奇, 金妍, 唐琳, 张菡阁, 胡国辉, 金庆辉. 顶栅石墨烯离子敏场效应管的表征及其初步应用. 物理学报, 2016, 65(8): 080701. doi: 10.7498/aps.65.080701
    [13] 张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨. 基于石墨烯互补超表面的可调谐太赫兹吸波体. 物理学报, 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [14] 李志全, 张明, 彭涛, 岳中, 顾而丹, 李文超. 基于导模共振效应提高石墨烯表面等离子体的局域特性. 物理学报, 2016, 65(10): 105201. doi: 10.7498/aps.65.105201
    [15] 李丹, 刘勇, 王怀兴, 肖龙胜, 凌福日, 姚建铨. 太赫兹波段石墨烯等离子体的增益特性. 物理学报, 2016, 65(1): 015201. doi: 10.7498/aps.65.015201
    [16] 龚健, 张利伟, 陈亮, 乔文涛, 汪舰. 石墨烯基双曲色散特异材料的负折射与体等离子体性质. 物理学报, 2015, 64(6): 067301. doi: 10.7498/aps.64.067301
    [17] 张保磊, 王家序, 肖科, 李俊阳. 石墨烯-纳米探针相互作用有限元准静态计算. 物理学报, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [18] 邓伟胤, 朱瑞, 邓文基. 有限尺寸石墨烯的电子态. 物理学报, 2013, 62(8): 087301. doi: 10.7498/aps.62.087301
    [19] 张玉萍, 刘陵玉, 陈琦, 冯志红, 王俊龙, 张晓, 张洪艳, 张会云. 具有分离门电抽运石墨烯中电子-空穴等离子体的冷却效应. 物理学报, 2013, 62(9): 097202. doi: 10.7498/aps.62.097202
    [20] 魏兵, 董宇航, 王飞, 李存志. 基于移位算子时域有限差分的色散薄层节点修正算法. 物理学报, 2010, 59(4): 2443-2450. doi: 10.7498/aps.59.2443
计量
  • 文章访问数:  4535
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-29
  • 修回日期:  2021-09-22
  • 上网日期:  2021-10-09
  • 刊出日期:  2022-01-20

/

返回文章
返回