搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维VOBr2单层的结构畸变及其磁性和铁电性

宋蕊 王必利 冯凯 王黎 梁丹丹

引用本文:
Citation:

二维VOBr2单层的结构畸变及其磁性和铁电性

宋蕊, 王必利, 冯凯, 王黎, 梁丹丹

Structural, magnetic and ferroelectric properties of VOBr2 monolayer: A first-principles study

Song Rui, Wang Bi-Li, Feng Kai, Wang Li, Liang Dan-Dan
PDF
HTML
导出引用
  • 借助第一性原理计算, 对VOBr2单层的结构、磁性以及铁电性进行了系统研究. 计算结果表明低温下VOBr2会产生自发铁电极化, 从高对称顺电相转变为铁电相结构. 与同族姊妹材料VOI2不同的是, V的二聚化现象不仅无法在VOBr2中稳定存在, 还会导致局域磁矩淬灭. 此外, VOBr2易磁化轴在面内a轴方向, 面内a, b轴上近邻磁矩均为反铁磁耦合. VOBr2中的铁电极化主要由V在a轴方向V—O—V链上的铁电位移产生, 大小约为40 μC/cm2. 与铁电同步翻转相比, 通过分步翻转不同链上的铁电极化, 可以有效降低铁电翻转能垒, 从而有望通过低能外场实现部分或个别链上的铁电翻转, 为低能耗高密度铁电存储器件设计提供新的思路和方向.
    On the basis of first-principles calculations, the structure, magnetism and ferroelectricity of VOBr2 monolayer are studied systematically in the present work. The calculation results indicate that a spontaneous ferroelectric distortion takes place at low temperature, causing the structure of VOBr2 to transform from a centrosymmetric paraelectric phase to a ferroelectric one. In contrast with its sister compound VOI2, the dimerization of V is unstable in VOBr2 and may quench the local magnetic moment on V ions. Additionally, the easy magnetization axis of VOBr2 monolayer is in-plane along the a-axis, and the magnetic coupling between adjacent local moments is antiferromagnetic both along the a-axis and along the b-axis. Moreover, the ferroelectric displacement of V ions occurs in the a-axis, along the V—O—V chains direction, resulting in a polarization of about 40 μC/cm2. Comparing with the ferro-to-paraelectric reversal pathway, the energy barrier can be effectively reduced for ferroelectric switching on partial or individual V—O—V chains. It is reasonable to believe that the dipole moment flipping on specific chain can be achieved through a moderate external field, thereby providing new direction for designing the low-energy-consumption and high-density ferroelectric memory device.
      通信作者: 宋蕊, snoopysr@163.com
      Corresponding author: Song Rui, snoopysr@163.com
    [1]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 P. Natl. Acad. Sci. USA 102 10451Google Scholar

    [2]

    Tang Q, Zhou Z 2013 Progr. Mat. Sci. 58 1244Google Scholar

    [3]

    Gupta A, Sakthivel T, Seal S 2015 Progr. Mat. Sci. 73 44Google Scholar

    [4]

    Duong D L, Yun S J, Lee Y H 2017 ACS Nano 11 11803Google Scholar

    [5]

    An M, Dong S 2020 APL Mater. 8 110704Google Scholar

    [6]

    Li P, Cai T Y 2020 J. Phys. Chem. C 124 12705Google Scholar

    [7]

    Li P, Cai T Y 2020 Phys. Chem. Chem. Phys. 22 549Google Scholar

    [8]

    Chang K, Liu J W, Lin H C, Wang N, Zhao K, Zhang A M, Jin F, Zhong Y, Hu X P, Duan W H, Zhang Q M, Fu L, Xue Q K, Chen X, Ji S H 2016 Science 353 274Google Scholar

    [9]

    Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [10]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [11]

    Hill N A 2000 J. Phys. Chem. B 104 6694Google Scholar

    [12]

    Liu X G, Pyatakov A P, Ren W 2020 Phys. Rev. Lett. 125 247601Google Scholar

    [13]

    Ju H, Lee Y, Kim K T, Choi I H, Roh C J, Son S, Park P, Kim J H, Jung T S, Kim J H, Kim K H, Park J G, Lee J S 2021 Nano Lett. 21 5126Google Scholar

    [14]

    Tan H X, Li M L, Liu H T, Liu Z R, Li Y C, Duan W H 2019 Phys. Rev. B 99 195434Google Scholar

    [15]

    Ding N, Chen J, Dong S, Stroppa A 2020 Phys. Rev. B 102 165129Google Scholar

    [16]

    Zhang Y, Lin L F, Moreo A, Alvarez G, Dagotto E 2021 Phys. Rev. B 103 L121114Google Scholar

    [17]

    You H P, Ding N, Chen J, Dong S 2020 Phys. Chem. Chem. Phys. 22 24109Google Scholar

    [18]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [19]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [20]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [21]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [22]

    Gonze X, Lee C 1997 Phys. Rev. B 55 10355Google Scholar

    [23]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [24]

    King-Smith R D, Vanderbilt D 1993 Phys. Rev. B 47 1651Google Scholar

    [25]

    Resta R 1994 Rev. Mod. Phys. 66 899Google Scholar

    [26]

    Orobengoa D, Capillas C, Aroyo M I, Perez-Mato J M 2009 J. Appl. Crystallogr. 42 820Google Scholar

    [27]

    Perez-Mato J M, Orobengoa D, Aroyo M I 2010 Acta Crystallogr. A 66 558Google Scholar

    [28]

    Goodenough J B 1958 J. Phys. Chem. Solids 6 287Google Scholar

    [29]

    Kanamori J 1959 J. Phys. Chem. Solids 10 87Google Scholar

    [30]

    Ogawa S 1960 J. Phys. Soc. Japan 15 1901Google Scholar

    [31]

    Poineau F, Johnstone E V, Czerwinski K R, Sattelberger A P 2014 Acc. Chem. Res. 47 624Google Scholar

    [32]

    McGuire M 2017 Crystals 7 121Google Scholar

    [33]

    Wieder H H 1955 Phys. Rev. 99 1161Google Scholar

    [34]

    Lin L F, Zhang Y, Moreo A, Dagotto E, Dong S 2019 Phys. Rev. Mater. 3 111401(RGoogle Scholar

  • 图 1  Br2单层高对称结构示意图(a)、轨道投影能带图(b)、态密度分布(c)

    Fig. 1.  (a) Structure diagram, (b) orbital-projected band, and (c) projected DOS of VOBr2 monolayer with high symmetry.

    图 2  (a)单层VOBr2高对称相下2 × 2 × 1超胞的声子谱; (b), (c)声子谱虚频对应的两种二聚化畸变模式Dim1和Dim2; (d), (e)声子谱虚频对应的两种铁电畸变模式FE和AFE

    Fig. 2.  (a) Calculated phonon spectrum of high symmetry VOBr2 2 × 2 × 1 supercell; (b), (c) two dimerization distortion modes Dim1 and Dim2; (d), (e) FE and AFE distortion modes, corresponding to the imaginary frequencies in the phonon spectrum.

    图 3  4种畸变结构的声子谱 (a) FE相; (b) AFE相; (c) Dim1相; (d) Dim2相

    Fig. 3.  Calculated phonon spectrum of the four structural phases: (a) FE; (b) AFE; (c) Dim1; (d) Dim2.

    图 4  (a)单层VOBr2 2 × 2 × 1超胞的畸变模式分析; (b) FE1和AFE1畸变结构的声子谱

    Fig. 4.  (a) Distortion mode analysis of 2 × 2 × 1 super cell of VOBr2 monolayer; (b) calculated phonon spectra of VOBr2 monolayer in FE1 and AFE1 distortion modes.

    图 5  (a)含磁优化计算考虑的4种常见磁序: FM表示近邻V离子自旋平行排列, 即铁磁序; aAbF表示近邻V离子自旋沿a轴反平行排列, 沿b轴平行排列; aFbA表示V离子自旋沿a轴平行排列, 沿b轴反平行排列; GAFM表示近邻V离子间自旋均反平行排列; (b) FE相GAFM磁基态下的投影态密度分布

    Fig. 5.  (a) Four magnetic orders considered in the magnetic ground state calculations. FM denotes the spin parallel arrangement, aAbF denotes the antiferromagnetic (ferromagnetic) coupling between neighbouring V ions along a (b)-axis, aFbA represents the ferromagnetic (antiferromagnetic) coupling along a (b)-axis, and GAFM denotes the antiferromagnetic coupling between neighbouring V ions along both directions. (b) Projected DOS of the GAFM ground state within the FE structural phase.

    图 6  (a)单层VOBr2的铁电极化; (b)两种铁电翻转路径下的能垒, 红色表示途径PE的路径, 蓝色对应途径AFE的翻转路径

    Fig. 6.  (a) Polarization of VOBr2 monolayer. (b) Energy barriers of two ferroelectric flipping paths: FE-PE-FE (red) and FE-AFE-FE (blue).

    表 1  含磁优化结果对比汇总表

    Table 1.  Summary of the main results of structural and magnetic optimization.

    a, bGround stateLocal moment/μBGap/eVEnergy difference
    /(eV·f.u.–1)
    FE7.59, 7.15GAFM0.960.870.0
    AFE7.59, 7.16aFbA0.980.745.9
    FE17.54, 6.830.000.4671.7
    AFE17.57, 6.820.000.4484.8
    下载: 导出CSV
  • [1]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 P. Natl. Acad. Sci. USA 102 10451Google Scholar

    [2]

    Tang Q, Zhou Z 2013 Progr. Mat. Sci. 58 1244Google Scholar

    [3]

    Gupta A, Sakthivel T, Seal S 2015 Progr. Mat. Sci. 73 44Google Scholar

    [4]

    Duong D L, Yun S J, Lee Y H 2017 ACS Nano 11 11803Google Scholar

    [5]

    An M, Dong S 2020 APL Mater. 8 110704Google Scholar

    [6]

    Li P, Cai T Y 2020 J. Phys. Chem. C 124 12705Google Scholar

    [7]

    Li P, Cai T Y 2020 Phys. Chem. Chem. Phys. 22 549Google Scholar

    [8]

    Chang K, Liu J W, Lin H C, Wang N, Zhao K, Zhang A M, Jin F, Zhong Y, Hu X P, Duan W H, Zhang Q M, Fu L, Xue Q K, Chen X, Ji S H 2016 Science 353 274Google Scholar

    [9]

    Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [10]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [11]

    Hill N A 2000 J. Phys. Chem. B 104 6694Google Scholar

    [12]

    Liu X G, Pyatakov A P, Ren W 2020 Phys. Rev. Lett. 125 247601Google Scholar

    [13]

    Ju H, Lee Y, Kim K T, Choi I H, Roh C J, Son S, Park P, Kim J H, Jung T S, Kim J H, Kim K H, Park J G, Lee J S 2021 Nano Lett. 21 5126Google Scholar

    [14]

    Tan H X, Li M L, Liu H T, Liu Z R, Li Y C, Duan W H 2019 Phys. Rev. B 99 195434Google Scholar

    [15]

    Ding N, Chen J, Dong S, Stroppa A 2020 Phys. Rev. B 102 165129Google Scholar

    [16]

    Zhang Y, Lin L F, Moreo A, Alvarez G, Dagotto E 2021 Phys. Rev. B 103 L121114Google Scholar

    [17]

    You H P, Ding N, Chen J, Dong S 2020 Phys. Chem. Chem. Phys. 22 24109Google Scholar

    [18]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [19]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [20]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [21]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [22]

    Gonze X, Lee C 1997 Phys. Rev. B 55 10355Google Scholar

    [23]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [24]

    King-Smith R D, Vanderbilt D 1993 Phys. Rev. B 47 1651Google Scholar

    [25]

    Resta R 1994 Rev. Mod. Phys. 66 899Google Scholar

    [26]

    Orobengoa D, Capillas C, Aroyo M I, Perez-Mato J M 2009 J. Appl. Crystallogr. 42 820Google Scholar

    [27]

    Perez-Mato J M, Orobengoa D, Aroyo M I 2010 Acta Crystallogr. A 66 558Google Scholar

    [28]

    Goodenough J B 1958 J. Phys. Chem. Solids 6 287Google Scholar

    [29]

    Kanamori J 1959 J. Phys. Chem. Solids 10 87Google Scholar

    [30]

    Ogawa S 1960 J. Phys. Soc. Japan 15 1901Google Scholar

    [31]

    Poineau F, Johnstone E V, Czerwinski K R, Sattelberger A P 2014 Acc. Chem. Res. 47 624Google Scholar

    [32]

    McGuire M 2017 Crystals 7 121Google Scholar

    [33]

    Wieder H H 1955 Phys. Rev. 99 1161Google Scholar

    [34]

    Lin L F, Zhang Y, Moreo A, Dagotto E, Dong S 2019 Phys. Rev. Mater. 3 111401(RGoogle Scholar

计量
  • 文章访问数:  3526
  • PDF下载量:  159
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-17
  • 修回日期:  2021-10-08
  • 上网日期:  2022-01-20
  • 刊出日期:  2022-02-05

/

返回文章
返回