-
沿面放电是破坏绝缘系统性能的原因之一. 聚酰亚胺常用于高频电力设备的气-固绝缘中, 为此利用密度泛函理论, 从原子分子层面探讨了在外电场下聚酰亚胺及其受极性基团OH–影响后的单分子链结构、能级与态密度、静电势、激发态等微观参数对陷阱形成以及沿面放电的影响. 结果表明, 外电场下, 聚酰亚胺分子结构卷曲, 偶极矩增加, 易于积聚电荷形成空间电荷中心, 尤属引入极性基团OH–后变化较明显; 聚酰亚胺分子中, 苯环区域形成空穴陷阱, 酰亚胺环区域形成电子陷阱, 且电子陷阱能级的数量较多, 其中空间电荷陷阱深度随外电场的增加逐渐变深; 聚酰亚胺分子在引入极性基团OH–后激发能降低, 使得分子内部的电子变得容易被激发; 电子与空穴的空间分离度随电场增加而降低, 利于空穴与电子的复合而发出光子.Surface discharge is one of the reasons for insulation failure. Polyimide (PI) is used in gas-solid insulation of high-frequency electric power equipment. Therefore, based on density functional theory, the effects of single molecular chain structure, energy level, density of states, electrostatic potential, excited state and other micro parameters under external electric field on trap formation and surface discharge of both PI and polar- group- OH– affected PI are discussed from the atomic and molecular level. The results show that the structure of PI is crimped and the dipole moment increases under external electric field, which is easy to accumulate charges to form space charge center, especially after the introduction of polar group OH–. In the PI molecules, hole traps are formed in the benzene ring region, and electron traps are formed in the imide ring region. The number of electron trap energy levels is large, in which the space charge trap depth gradually deepens with the increase of external electric field. After the introduction of polar group OH–, the excitation energy of PI molecules decreases, which makes the electrons inside the molecules excited easily. The spatial separation of electrons and holes decreases with the increase of electric field, which is conducive to the recombination of holes and electrons to emit photons.
-
Keywords:
- density functional theory /
- trap /
- excited state /
- surface discharge
[1] 黄旭炜, 刘涛, 舒想, 李庆民, 王忠东 2020 高电压技术 46 215Google Scholar
Huang X W, Liu T, Shu X, Li Q M, Wang Z D 2020 High Voltage Eng. 46 215Google Scholar
[2] 胡一卓, 董明, 谢佳成, 何文林, 汪可, 李金忠 2020 电网技术 44 1276Google Scholar
Hu Y Z, Dong M, Xie J C, He W L, Wang K, Li J Z 2020 Power System Technology 44 1276Google Scholar
[3] 董国静, 刘涛, 李庆民 2020 电工技术学报 35 2006Google Scholar
Dong G J, Liu T, Li Q M 2020 Trans. China Electrotechnical. Soc. 35 2006Google Scholar
[4] 刘涛, 韩帅, 李庆民, 鲁旭, 黄旭炜 2016 电工技术学报 31 199Google Scholar
Liu T, Han S, Li Q M, Lu X, Huang X W 2016 Trans. China Electrotechnical. Soc. 31 199Google Scholar
[5] 张开放, 张黎, 李宗蔚, 赵彤, 邹亮 2019 电工技术学报 34 3275Google Scholar
Zhang K F, Zhang L, Li Z W, Zhao T, Zhou L 2019 Trans. China Electrotechnical. Soc. 34 3275Google Scholar
[6] 罗杨, 吴广宁, 刘继午, 曹开江, 彭佳, 张依强, 朱光亚 2013 中国电机工程学报 33 187Google Scholar
Luo Y, Wu G Y, Liu J W, Cao K J, Peng J, Zhang Y Q, Zhu G Y 2013 Chin. Soc. Elec. Eng. 33 187Google Scholar
[7] 赵义焜, 张国强, 韩冬, 杨富尧, 刘洋 2019 电工技术学报 34 3464Google Scholar
Zhao Y K, Zhang G Q, Han D, Yang F Y, Liu Y 2019 Trans. China Electrotechnical. Soc. 34 3464Google Scholar
[8] 田付强, 彭潇 2017 电工技术学报 32 3Google Scholar
Tian F Q, Peng X 2017 Trans. China Electrotechnical. Soc. 32 3Google Scholar
[9] 汪佛池, 律方成, 徐志钮, 张沛红 2007 高电压技术 33 30Google Scholar
Wang F C, Lu F C, Xu Z N, Zhang P H 2007 High Voltage Eng. 33 30Google Scholar
[10] 刘涛, 董国静, 李庆民, 任瀚文, 王健, 王忠东 2020 高电压技术 46 2504Google Scholar
Liu T, Dong G J, Li Q M, Ren H W, Wang J, Wang Z D 2020 High Voltage Eng. 46 2504Google Scholar
[11] Boufayed F, Teyssedre G, Laurent C, Roy Le S, Dissado L A, Ségur P, Montanari G C 2006 J. Appl. Phys. 100 104Google Scholar
[12] 罗杨, 吴广宁, 曹开江, 辛正亮, 张依强, 徐慧慧 2012 高电压技术 38 2707Google Scholar
Luo Y, Wu G Y, Cao K J, Xin Z L, Zhang Y Q, Xu H H 2012 High Voltage Eng. 38 2707Google Scholar
[13] 鲁旭, 韩帅, 李庆民, 黄旭炜, 王学磊, 王高勇 2016 电工技术学报 31 14Google Scholar
Lu X, Han S, Li Q M, Huang X W, Wang X L, Wang G Y 2016 Trans. China Electrotechnical. Soc. 31 14Google Scholar
[14] Sarathi R, Thangabalan B, Harid N, Griffiths H 2020 IET Nanodielectrics 3 44
[15] 李亚莎, 谢云龙, 黄太焕, 徐程, 刘国成 2018 物理学报 67 183101Google Scholar
Li Y S, Xie Y L, Huang T H, Xu C, Liu G C 2018 Acta Phys. Sin. 67 183101Google Scholar
[16] 李亚莎, 孙林翔, 周筱, 陈凯, 汪辉耀 2020 物理学报 69 013101Google Scholar
Li Y S, Sun L X, Zhou X, Chen K, Wang H Y 2020 Acta Phys. Sin. 69 013101Google Scholar
[17] 李进, 赵仁勇, 杜伯学, 苏金刚, 韩晨磊, 高田达雄 2020 高电压技术 46 772Google Scholar
Li J, Zhao R Y, Du B X, Su J G, Han C L, Takada T 2020 High Voltage Eng. 46 772Google Scholar
[18] Frish M J, Trucks G W, Schlegal H B 2010 Gaussian 09 (Revision B01) (Walling ford: Gaussian Inc. )
[19] 梅金硕, 杨红军, 殷景华, 雷清泉 2006 哈尔滨理工大学学报 11 50Google Scholar
Mei J S, Yang H J, Yin J H, Lei Q Q 2006 Journal of Harbin University of Science and Technology 11 50Google Scholar
[20] 吴旭辉, 吴广宁, 杨雁, 张兴涛, 雷毅鑫, 钟鑫, 朱健 2018 中国电机工程学报 38 3410Google Scholar
Wu X H, Wu G N, Yang Y, Zhang X T, Lei Y X, Zhong X, Zhu J 2018 Chin. Soc. Elec. Eng. 38 3410Google Scholar
[21] 李欢, 徐磊, 刘涛, 杨章勇 2021 电力工程技术 5 54Google Scholar
Li H, Xu L, Liu T, Yang Z Y 2021 Electric Power Eng. Technology 5 54Google Scholar
[22] 张兴涛, 吴广宁, 杨雁, 吴旭辉, 雷毅鑫, 钟鑫 2018 高电压技术 44 3097Google Scholar
Zhang X T, Wu G N, Yang Y, Wu X H, Lei Y X, Zhong X 2018 High Voltage Eng. 44 3097Google Scholar
[23] Lu T, Chen F W 2012 J. Mol. Graph Model. 38 31Google Scholar
[24] LU T, Chen F 2012 J. Comput. Chem. 33 580Google Scholar
[25] 查俊伟, 田娅娅, 刘雪洁, 董晓迪, 郑明胜 2021 高电压技术 47 1759Google Scholar
Cha J W, Tian Y Y, Liu X J, Dong X D 2021 High Voltage Eng. 47 1759Google Scholar
[26] 廖瑞金, 陆云才, 杨丽君, 李剑, 孙才新 2006 绝缘材料 39 51Google Scholar
Liao R J, Lu Y C, Yang L J, Li J, Sun C X 2006 Insulating Materials 39 51Google Scholar
[27] 林家齐, 李兰地, 何霞霞, 杨文龙, 迟庆国, 张昌海, 谢志滨, 雷清泉 2017 电机与控制学报 21 89
Lin J Q, Li L D, He X X, Yang W L, Chi Q G, Zhang C H, Xie Z B, Lei Q Q 2017 Electric Machines and Control 21 89
[28] 李盛涛, 黄奇峰, 孙健, 张拓, 李建英 2010 物理学报 59 422Google Scholar
Li S T, Huang Q F, Sun J, Zhang T, Li J Y 2010 Acta Phys. Sin. 59 422Google Scholar
[29] 黄炳融, 王威望, 李盛涛, 李欣原, 蒋起航, 聂永杰, 邓云坤 2021 电气工程学报 16 25Google Scholar
Huang B R, Wang W W, Li S T, Li X Y, Jiang Q H, Nie Y J, Deng Y K 2021 J. Electrical Eng. 16 25Google Scholar
[30] 罗龙波, 叶信合, 易江, 李科, 刘向阳 2021 高分子学报 52 363Google Scholar
Luo L B, Ye X H, Yi J, Li K, Liu X Y 2021 Acta Polymerica Sinica 52 363Google Scholar
-
表 1 聚酰亚胺片断部分键长与键角
Table 1. Partial bond length and bond angle of polyimide fragments.
N R(13, 14)/nm R(9, 10)/nm R(7, 9)/nm A(13, 14, 15)/(°) A(9, 7, 8)/(°) A(4, 5, 6)/(°) N = 1 1.391 1.422 1.422 121.041 126.108 114.756 N = 2 1.389 1.423 1.422 121.099 126.045 114.894 N = 3 1.389 1.421 1.422 121.115 126.011 114.883 表 2 不同外电场下分子的几何结构
Table 2. Molecular geometry under different external electric fields.
F/a.u. PI PI-OH R(50, 55)/nm A(63, 70, 71)/(°) R(46, 51)/nm A(59, 66, 67)/(°) 0 1.411 121.099 1.420 121.162 0.001 1.411 121.330 1.420 121.145 0.002 1.423 121.472 1.421 121.117 0.003 1.424 121.501 1.426 120.049 0.004 1.425 121.534 1.426 119.595 0.005 1.426 121.580 1.427 118.302 0.006 1.428 121.669 1.428 117.915 0.007 1.430 121.707 1.428 116.818 0.008 1.433 121.761 1.429 116.387 0.009 1.436 121.792 1.430 116.008 0.010 1.440 121.917 1.432 115.833 表 3 不同外电场下分子前线轨道能级的变化
Table 3. Changes of molecular frontier orbital energy levels under different external electric fields.
F/a.u PI PI-OH EH/eV EL/eV EG/eV EH/eV EL/eV EG/eV 0 –7.661 –2.739 4.922 –7.487 –3.018 4.469 0.001 –7.666 –2.765 4.901 –7.451 –3.070 4.381 0.002 –7.674 –2.791 4.883 –7.405 –3.102 4.303 0.003 –7.655 –2.810 4.845 –7.326 –3.146 4.180 0.004 –7.638 –2.817 4.821 –7.285 –3.252 4.033 0.005 –7.602 –2.836 4.766 –7.039 –3.433 3.606 0.006 –7.564 –2.855 4.709 –6.902 –3.546 3.356 0.007 –7.535 –2.871 4.664 –6.645 –3.788 2.857 0.008 –7.502 –2.891 4.611 –6.438 –3.938 2.500 0.009 –7.495 –2.914 4.581 –6.259 –4.067 2.192 0.010 –7.499 –2.939 4.560 –6.116 –4.202 1.914 表 4 电场下空间电荷陷阱深度的变化
Table 4. Changes of space charge trap depth under electric field.
E/eV F/a.u. 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010 PI EEA(a) 2.834 2.765 2.679 2.594 2.498 2.388 2.264 2.126 1.974 1.806 1.622 EEA(b) 2.721 2.639 2.204 2.116 1.899 1.701 1.509 1.279 1.006 0.718 0.408 Etrap 0.113 0.126 0.475 0.479 0.599 0.687 0.755 0.847 0.968 1.089 1.214 PI-OH EEA(a) 2.965 2.864 2.776 2.643 2.488 2.330 2.127 1.932 1.687 1.170 0.898 EEA(b) 2.639 2.503 2.258 2.008 1.798 1.571 1.329 1.063 0.781 0.482 0.164 Etrap 0.326 0.361 0.518 0.635 0.691 0.758 0.799 0.869 0.906 0.688 0.734 表 5 PI和PI-OH单链分子的前8个激发能
Table 5. Top 8 excitation energies of PI and PI-OH single molecules.
Eex/eV N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 PI 3.369 3.476 3.770 3.813 3.821 3.912 3.913 3.990 PI-OH 3.091 3.325 3.381 3.727 3.730 3.897 3.942 3.951 表 6 激发态S(0)→S(1)的各类参数
Table 6. Various parameters of excited state S(0)→S(1).
F/a.u. Sr/a.u. D/Å t/Å Orbital contribution(hole) Orbital contribution(electron) 0 0.383 3.998 1.665 MO 195-12.33% MO 197-76.94% MO 198-95.01% 0.010 0.409 3.628 1.234 MO 197-77.56% MO198-94.7% 注: MO代表分子轨道. -
[1] 黄旭炜, 刘涛, 舒想, 李庆民, 王忠东 2020 高电压技术 46 215Google Scholar
Huang X W, Liu T, Shu X, Li Q M, Wang Z D 2020 High Voltage Eng. 46 215Google Scholar
[2] 胡一卓, 董明, 谢佳成, 何文林, 汪可, 李金忠 2020 电网技术 44 1276Google Scholar
Hu Y Z, Dong M, Xie J C, He W L, Wang K, Li J Z 2020 Power System Technology 44 1276Google Scholar
[3] 董国静, 刘涛, 李庆民 2020 电工技术学报 35 2006Google Scholar
Dong G J, Liu T, Li Q M 2020 Trans. China Electrotechnical. Soc. 35 2006Google Scholar
[4] 刘涛, 韩帅, 李庆民, 鲁旭, 黄旭炜 2016 电工技术学报 31 199Google Scholar
Liu T, Han S, Li Q M, Lu X, Huang X W 2016 Trans. China Electrotechnical. Soc. 31 199Google Scholar
[5] 张开放, 张黎, 李宗蔚, 赵彤, 邹亮 2019 电工技术学报 34 3275Google Scholar
Zhang K F, Zhang L, Li Z W, Zhao T, Zhou L 2019 Trans. China Electrotechnical. Soc. 34 3275Google Scholar
[6] 罗杨, 吴广宁, 刘继午, 曹开江, 彭佳, 张依强, 朱光亚 2013 中国电机工程学报 33 187Google Scholar
Luo Y, Wu G Y, Liu J W, Cao K J, Peng J, Zhang Y Q, Zhu G Y 2013 Chin. Soc. Elec. Eng. 33 187Google Scholar
[7] 赵义焜, 张国强, 韩冬, 杨富尧, 刘洋 2019 电工技术学报 34 3464Google Scholar
Zhao Y K, Zhang G Q, Han D, Yang F Y, Liu Y 2019 Trans. China Electrotechnical. Soc. 34 3464Google Scholar
[8] 田付强, 彭潇 2017 电工技术学报 32 3Google Scholar
Tian F Q, Peng X 2017 Trans. China Electrotechnical. Soc. 32 3Google Scholar
[9] 汪佛池, 律方成, 徐志钮, 张沛红 2007 高电压技术 33 30Google Scholar
Wang F C, Lu F C, Xu Z N, Zhang P H 2007 High Voltage Eng. 33 30Google Scholar
[10] 刘涛, 董国静, 李庆民, 任瀚文, 王健, 王忠东 2020 高电压技术 46 2504Google Scholar
Liu T, Dong G J, Li Q M, Ren H W, Wang J, Wang Z D 2020 High Voltage Eng. 46 2504Google Scholar
[11] Boufayed F, Teyssedre G, Laurent C, Roy Le S, Dissado L A, Ségur P, Montanari G C 2006 J. Appl. Phys. 100 104Google Scholar
[12] 罗杨, 吴广宁, 曹开江, 辛正亮, 张依强, 徐慧慧 2012 高电压技术 38 2707Google Scholar
Luo Y, Wu G Y, Cao K J, Xin Z L, Zhang Y Q, Xu H H 2012 High Voltage Eng. 38 2707Google Scholar
[13] 鲁旭, 韩帅, 李庆民, 黄旭炜, 王学磊, 王高勇 2016 电工技术学报 31 14Google Scholar
Lu X, Han S, Li Q M, Huang X W, Wang X L, Wang G Y 2016 Trans. China Electrotechnical. Soc. 31 14Google Scholar
[14] Sarathi R, Thangabalan B, Harid N, Griffiths H 2020 IET Nanodielectrics 3 44
[15] 李亚莎, 谢云龙, 黄太焕, 徐程, 刘国成 2018 物理学报 67 183101Google Scholar
Li Y S, Xie Y L, Huang T H, Xu C, Liu G C 2018 Acta Phys. Sin. 67 183101Google Scholar
[16] 李亚莎, 孙林翔, 周筱, 陈凯, 汪辉耀 2020 物理学报 69 013101Google Scholar
Li Y S, Sun L X, Zhou X, Chen K, Wang H Y 2020 Acta Phys. Sin. 69 013101Google Scholar
[17] 李进, 赵仁勇, 杜伯学, 苏金刚, 韩晨磊, 高田达雄 2020 高电压技术 46 772Google Scholar
Li J, Zhao R Y, Du B X, Su J G, Han C L, Takada T 2020 High Voltage Eng. 46 772Google Scholar
[18] Frish M J, Trucks G W, Schlegal H B 2010 Gaussian 09 (Revision B01) (Walling ford: Gaussian Inc. )
[19] 梅金硕, 杨红军, 殷景华, 雷清泉 2006 哈尔滨理工大学学报 11 50Google Scholar
Mei J S, Yang H J, Yin J H, Lei Q Q 2006 Journal of Harbin University of Science and Technology 11 50Google Scholar
[20] 吴旭辉, 吴广宁, 杨雁, 张兴涛, 雷毅鑫, 钟鑫, 朱健 2018 中国电机工程学报 38 3410Google Scholar
Wu X H, Wu G N, Yang Y, Zhang X T, Lei Y X, Zhong X, Zhu J 2018 Chin. Soc. Elec. Eng. 38 3410Google Scholar
[21] 李欢, 徐磊, 刘涛, 杨章勇 2021 电力工程技术 5 54Google Scholar
Li H, Xu L, Liu T, Yang Z Y 2021 Electric Power Eng. Technology 5 54Google Scholar
[22] 张兴涛, 吴广宁, 杨雁, 吴旭辉, 雷毅鑫, 钟鑫 2018 高电压技术 44 3097Google Scholar
Zhang X T, Wu G N, Yang Y, Wu X H, Lei Y X, Zhong X 2018 High Voltage Eng. 44 3097Google Scholar
[23] Lu T, Chen F W 2012 J. Mol. Graph Model. 38 31Google Scholar
[24] LU T, Chen F 2012 J. Comput. Chem. 33 580Google Scholar
[25] 查俊伟, 田娅娅, 刘雪洁, 董晓迪, 郑明胜 2021 高电压技术 47 1759Google Scholar
Cha J W, Tian Y Y, Liu X J, Dong X D 2021 High Voltage Eng. 47 1759Google Scholar
[26] 廖瑞金, 陆云才, 杨丽君, 李剑, 孙才新 2006 绝缘材料 39 51Google Scholar
Liao R J, Lu Y C, Yang L J, Li J, Sun C X 2006 Insulating Materials 39 51Google Scholar
[27] 林家齐, 李兰地, 何霞霞, 杨文龙, 迟庆国, 张昌海, 谢志滨, 雷清泉 2017 电机与控制学报 21 89
Lin J Q, Li L D, He X X, Yang W L, Chi Q G, Zhang C H, Xie Z B, Lei Q Q 2017 Electric Machines and Control 21 89
[28] 李盛涛, 黄奇峰, 孙健, 张拓, 李建英 2010 物理学报 59 422Google Scholar
Li S T, Huang Q F, Sun J, Zhang T, Li J Y 2010 Acta Phys. Sin. 59 422Google Scholar
[29] 黄炳融, 王威望, 李盛涛, 李欣原, 蒋起航, 聂永杰, 邓云坤 2021 电气工程学报 16 25Google Scholar
Huang B R, Wang W W, Li S T, Li X Y, Jiang Q H, Nie Y J, Deng Y K 2021 J. Electrical Eng. 16 25Google Scholar
[30] 罗龙波, 叶信合, 易江, 李科, 刘向阳 2021 高分子学报 52 363Google Scholar
Luo L B, Ye X H, Yi J, Li K, Liu X Y 2021 Acta Polymerica Sinica 52 363Google Scholar
计量
- 文章访问数: 4794
- PDF下载量: 100
- 被引次数: 0