搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于熔融玻璃的预沉积法生长毫米级单晶MoS2及WS2-MoS2异质结

费翔 张秀梅 付泉桂 蔡正阳 南海燕 顾晓峰 肖少庆

引用本文:
Citation:

基于熔融玻璃的预沉积法生长毫米级单晶MoS2及WS2-MoS2异质结

费翔, 张秀梅, 付泉桂, 蔡正阳, 南海燕, 顾晓峰, 肖少庆

Milimeter-level MoS2 monolayers and WS2-MoS2 heterojunctions grown on molten glass by pre-chemical vapor deposition

Fei Xiang, Zhang Xiu-Mei, Fu Quan-Gui, Cai Zheng-Yang, Nan Hai-Yan, Gu Xiao-Feng, Xiao Shao-Qing
PDF
HTML
导出引用
  • MoS2是一种具有优异光电性能和奇特物理性质的二维材料,在电子器件领域具有巨大的应用潜力. 高效可控生长出大尺寸单晶MoS2是该材料进入产业应用所必须克服的重大难关, 而化学气相沉积技术被认为是工业化生产二维材料的最有效手段. 本文介绍了一种利用磁控溅射预沉积钼源至熔融玻璃上,通过快速升温的化学气相沉积技术生长出尺寸达1 mm的单晶MoS2的方法, 并通过引入WO3粉末生长出了二硫化钼与二硫化钨的横向异质结(WS2-MoS2). 拉曼和荧光光谱仪测试表明所生长的样品具有较好的晶体质量. 利用转移电极技术制备出了背栅器件样品并对其进行了电学测试, 在室温常压下开关比可达105, 迁移率可达4.53 cm2/(V·s). 这种低成本高质量的大尺寸材料生长方法为二维材料电子器件的大规模应用找到了出路.
    Molybdenum disulfide (MoS2), as a kind of two-dimensional(2D) material with novel physical properties and excellent electrical performances, has great potential applications in electronic devices. Efficient and controllable growth of large-size single crystal MoS2 is a major difficulty that must be overcome towards scalable production. Chemical vapor deposition (CVD) is considered as the most promising means for industrial production of 2D materials. Here in this work, the high-quality and millimeter-level single crystal MoS2monolayer grows on molten glass by the pre-chemical vapor deposition, in which MoO3 film deposited on the molten glass is used as Mo precursor instead of MoO3 powder. In addition, by introducing WO3 powder into such a CVD system, MoS2-WS2 lateral heterojunctions can also be obtained. Raman and PL measurements indicate that the as-grown MoS2 monolayer samples possess high quality. The Back-gate FETs are fabricated on SiO2/Si substrates by using transferring elelctrode methods to investigate the electrical properties of the as-grown MoS2 crystals. At room temperature and atmosphere pressure, the on-off ratio can reach 105 and the carrier mobility can arrive at 4.53 cm2/(V·s). The low-cost and high-quality large-size material growth method pave the way for the scalable production of such a 2D material based electronic devices.
      通信作者: 肖少庆, xiaosq@jiangnan.edu.cn
    • 基金项目: 国家自然科学基金项目(批准号: 62074070, 62104084, 11704159)、江苏省自然科学基金项目(批准号: BK20170167)和中央高校基本科研业务费专项资金资助项目(批准号: JUSRP221015)资助的课题.
      Corresponding author: Xiao Shao-Qing, xiaosq@jiangnan.edu.cn
    • Funds: Project supported by the National Nature Science Foundation (Grant Nos. 62074070, 62104084, 11704159), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20170167), and the Fundamental Research Funds for the Central Universities of China (Grant No. JUSRP221015) .
    [1]

    Hynek D J, Singhania R M, Xu S, Davis B, Wang L, Yarali M, Pondick J V, Woods J M, Strandwitz N C, Cha J J 2021 ACS Nano 15 410Google Scholar

    [2]

    Susarla S, Kutana A, Hachtel J A, Kochat V, Apte A, Vajtai R, Idrobo J C, Yakobson B I, Tiwary C S, Ajayan P M 2017 Advan. Mater. 29 1702457Google Scholar

    [3]

    Huo N, Yang Y, Li J 2017 J. Semicond. 38 031002Google Scholar

    [4]

    Cheng P, Tang C, Ahmed S, Qiao J, Zeng L, Tsang Y 2020 Nanotechnology 32 055201

    [5]

    Wu Y, Lin Y M, Bol A A, Jenkins K A, Xia F, Farmer D B, Zhu Y, Avouris P 2011 Nature 472 74Google Scholar

    [6]

    Sarkar D, Xie X, Liu W, Cao W, Kang J, Gong Y, Kraemer S, Ajayan P M, Banerjee K 2015 Nature 526 91Google Scholar

    [7]

    Jia S, Jin Z, Zhang J, Yuan J, Chen W, Feng W, Hu P, Ajayan P M, Lou J 2020 Small 16 2002263Google Scholar

    [8]

    Akinwande D, Petrone N, Hone J 2014 Nat. Commun. 5 5678Google Scholar

    [9]

    Chang H Y, Yang S, Lee J, Tao L, Hwang W S, Jena D, Lu N, Akinwande D 2013 ACS Nano 7 5446Google Scholar

    [10]

    Lee G H, Yu Y J, Cui X, Petrone N, Lee C H, Choi M S, Lee D Y, Lee C, Yoo W J, Watanabe K, Taniguchi T, Nuckolls C, Kim P, Hone J 2013 ACS Nano 7 7931Google Scholar

    [11]

    Das S, Gulotty R, Sumant A V, Roelofs A 2014 Nano Lett. 14 2861Google Scholar

    [12]

    Xiao X, Chen M, Zhang J, Zhang T, Zhang L, Jin Y, Wang J, Jiang K, Fan S, Li Q 2019 ACS Appl. Mater. Inter. 11 11612Google Scholar

    [13]

    董艳芳, 何大伟, 王永生, 许海腾, 巩哲 2016 物理学报 65 128101Google Scholar

    Dong Y F, He D W, Wang Y S, Xu H T, Gong Z 2016 Acta Phys. Sin. 65 128101Google Scholar

    [14]

    王铄, 王文辉, 吕俊鹏, 倪振华 2021 物理学报 70 026802

    Wang S, Wang W H, Lv J P, Ni Z H 2021 Acta Phys. Sin. 70 026802

    [15]

    Yang P, Zou X, Zhang Z, Hong M, Shi J, Chen S, Shu J, Zhao L, Jiang S, Zhou X, Huan Y, Xie C, Gao P, Chen Q, Zhang Q, Liu Z, Zhang Y 2018 Nat. Commun. 9 979Google Scholar

    [16]

    Zhang Z, Xu X, Song J, Gao Q, Li S, Hu Q, Li X, Wu Y 2018 Appl. Phys. Lett. 113 202103Google Scholar

    [17]

    Chen J, Zhao X, Tan S J R, Xu H, Wu B, Liu B, Fu D, Fu W, Geng D, Liu Y, Liu W, Tang W, Li L, Zhou W, Sum T C, Loh K P 2017 J. Am. Chem. Soc. 139 1073Google Scholar

    [18]

    Tang L, Tan J, Nong H, Liu B, Cheng H M 2021 Acc. Mater. Res. 2 36Google Scholar

    [19]

    Wan X, Miao X, Yao J, Wang S, Shao F, Xiao S, Zhan R, Chen K, Zeng X, Gu X, Xu J 2021 Advan. Mater. 33 2100260Google Scholar

    [20]

    Zhang X, Nan H, Xiao S, Wan X, Gu X, Du A, Ni Z, Ostrikov K 2019 Nat. Commun. 10 598Google Scholar

    [21]

    Wang Z, Xie Y, Wang H, Wu R, Nan T, Zhan Y, Sun J, Jiang T, Zhao Y, Lei Y, Yang M, Wang W, Zhu Q, Ma X, Hao Y 2017 Nanotechnology 28 325602Google Scholar

    [22]

    Park J H, Lu A Y, Shen P C, Shin B G, Wang H, Mao N, Xu R, Jung S J, Ham D, Kern K, Han Y, Kong J 2021 Small Methods 5 2000720Google Scholar

    [23]

    王璐, 高俊峰, 丁峰 2014 化学学报 72 345Google Scholar

    Wang L, Gao J F, Ding F 2014 Acta Chim. Sin. 72 345Google Scholar

    [24]

    Wang J, Cai X, Shi R, Wu Z, Wang W, Long G, Tang Y, Cai N, Ouyang W, Geng P, Chandrashekar B N, Amini A, Wang N, Cheng C 2018 ACS Nano 12 635Google Scholar

    [25]

    Yang P, Zhang S, Pan S, Tang B, Liang Y, Zhao X, Zhang Z, Shi J, Huan Y, Shi Y, Pennycook S J, Ren Z, Zhang G, Chen Q, Zou X, Liu Z, Zhang Y 2020 ACS Nano 14 5036Google Scholar

    [26]

    Withanage S S, Khondaker S I 2019 MRS Advan. 4 587Google Scholar

  • 图 1  (a)生长MoS2的实验装置示意图; (b)生长WS2-MoS2的实验装置示意图

    Fig. 1.  Schematic illustrations of the experimental set-up for (a) MoS2 and (b) MoS2-WS2 heterostructure.

    图 2  (a)熔融玻璃衬底上CVD过程的示意图; (b)尺寸500 μm的MoS2的光镜图; (c)毫米级的MoS2的光镜图

    Fig. 2.  (a) Schematic illustration of CVD reaction process of the as-grown MoS2 films on the soda-lime glass; (b) optical images of MoS2 with size of 500 μm, (c) optical images of MoS2 with size of 1 mm.

    图 3  转移至硅衬底上的MoS2及相应的拉曼荧光表征 (a)(b)转移后的MoS2光镜图; (c)(d)为(b)中样品的拉曼与荧光表征; (e)所生长MoS2的AFM图像; (f)生长MoS2的HRTEM, 内插图为相应的SAED

    Fig. 3.  MoS2 films transfered onto the Si/SiO2 substrates and its Raman spectrum: (a) (b) Optical images of transfered MoS2; (c) (d)single-point Raman and PL spectrum of the as-grown MoS2films in (b); (e) AFM image of as-grown MoS2; (f) HRTEM of as-grown MoS2, the inset image is the SAED pattern of as-grown MoS2.

    图 4  所生长MoS2薄膜的拉曼与荧光 mapping测试(a) MoS2薄膜光镜图; (b)图(a)中蓝框区域拉曼峰$ \rm E^1_{\rm 2g} $的mapping图像; (c)拉曼峰A1g的mapping图像; (d)荧光峰1.85 eV处的mapping图像

    Fig. 4.  Raman mapping test of as-grown MoS2 film: (a) Optical image of a selected MoS2 films; (b) Raman intensity mapping of $ \rm E^1_{\rm 2g} $ peak (blue area in Fig. (a)); (c) Raman intensity mapping of A1g (blue area in Fig. (a)) ; (d) PL intensity mapping of PL peak at 1.85 eV (blue area in Fig. (a)).

    图 5  (a) MoS2场效应管的3D模型以及真实器件的光镜图; (b) MoS2场效应管的输出曲线; (c) MoS2场效应管的线性转移曲线; (d) MoS2场效应管的指数转移曲线

    Fig. 5.  (a) Schematic of MoS2 FET and a typical optical image of the devices; (b) output curves (Ids-Vds) of a typical MoS2 FET device; (c) liner transfer curves of a typical MoS2 FET device; (d) semilog transfer curves of a typical MoS2 FET device.

    图 6  (a)熔融玻璃上生长的WS2-MoS2异质结的光镜图; (b) WS2-MoS2相应区域的拉曼表征; (c)异质结对应于350 cm–1处的拉曼强度mapping; (d)异质结对应于403 cm–1处的拉曼强度mapping

    Fig. 6.  (a) Optical image of the as-grown WS2-MoS2 heterostructures on soda-lime glass; (b) single-point Raman spectra of the as-grown WS2-MoS2 heterostructures, (c) Raman intensity mapping of the heterostructure region at 350 cm–1; (d) Raman intensity mapping of the heterostructure region at 403 cm–1.

    表 1  不同CVD法生长的MoS2的各项性能对比

    Table 1.  MoS2 FET performance of different kinds of CVD.

    生长方法温度生长衬底单晶尺寸迁移率开关比
    μm(cm2·V–1·s–1)
    预沉积CVD本文1100钠钙玻璃10004.5105
    普通CVD[16]800钠钙玻璃5024108
    预沉积CVD[26]750蓝宝石25
    MOCVD[22]320氧化硅12068>105
    下载: 导出CSV
  • [1]

    Hynek D J, Singhania R M, Xu S, Davis B, Wang L, Yarali M, Pondick J V, Woods J M, Strandwitz N C, Cha J J 2021 ACS Nano 15 410Google Scholar

    [2]

    Susarla S, Kutana A, Hachtel J A, Kochat V, Apte A, Vajtai R, Idrobo J C, Yakobson B I, Tiwary C S, Ajayan P M 2017 Advan. Mater. 29 1702457Google Scholar

    [3]

    Huo N, Yang Y, Li J 2017 J. Semicond. 38 031002Google Scholar

    [4]

    Cheng P, Tang C, Ahmed S, Qiao J, Zeng L, Tsang Y 2020 Nanotechnology 32 055201

    [5]

    Wu Y, Lin Y M, Bol A A, Jenkins K A, Xia F, Farmer D B, Zhu Y, Avouris P 2011 Nature 472 74Google Scholar

    [6]

    Sarkar D, Xie X, Liu W, Cao W, Kang J, Gong Y, Kraemer S, Ajayan P M, Banerjee K 2015 Nature 526 91Google Scholar

    [7]

    Jia S, Jin Z, Zhang J, Yuan J, Chen W, Feng W, Hu P, Ajayan P M, Lou J 2020 Small 16 2002263Google Scholar

    [8]

    Akinwande D, Petrone N, Hone J 2014 Nat. Commun. 5 5678Google Scholar

    [9]

    Chang H Y, Yang S, Lee J, Tao L, Hwang W S, Jena D, Lu N, Akinwande D 2013 ACS Nano 7 5446Google Scholar

    [10]

    Lee G H, Yu Y J, Cui X, Petrone N, Lee C H, Choi M S, Lee D Y, Lee C, Yoo W J, Watanabe K, Taniguchi T, Nuckolls C, Kim P, Hone J 2013 ACS Nano 7 7931Google Scholar

    [11]

    Das S, Gulotty R, Sumant A V, Roelofs A 2014 Nano Lett. 14 2861Google Scholar

    [12]

    Xiao X, Chen M, Zhang J, Zhang T, Zhang L, Jin Y, Wang J, Jiang K, Fan S, Li Q 2019 ACS Appl. Mater. Inter. 11 11612Google Scholar

    [13]

    董艳芳, 何大伟, 王永生, 许海腾, 巩哲 2016 物理学报 65 128101Google Scholar

    Dong Y F, He D W, Wang Y S, Xu H T, Gong Z 2016 Acta Phys. Sin. 65 128101Google Scholar

    [14]

    王铄, 王文辉, 吕俊鹏, 倪振华 2021 物理学报 70 026802

    Wang S, Wang W H, Lv J P, Ni Z H 2021 Acta Phys. Sin. 70 026802

    [15]

    Yang P, Zou X, Zhang Z, Hong M, Shi J, Chen S, Shu J, Zhao L, Jiang S, Zhou X, Huan Y, Xie C, Gao P, Chen Q, Zhang Q, Liu Z, Zhang Y 2018 Nat. Commun. 9 979Google Scholar

    [16]

    Zhang Z, Xu X, Song J, Gao Q, Li S, Hu Q, Li X, Wu Y 2018 Appl. Phys. Lett. 113 202103Google Scholar

    [17]

    Chen J, Zhao X, Tan S J R, Xu H, Wu B, Liu B, Fu D, Fu W, Geng D, Liu Y, Liu W, Tang W, Li L, Zhou W, Sum T C, Loh K P 2017 J. Am. Chem. Soc. 139 1073Google Scholar

    [18]

    Tang L, Tan J, Nong H, Liu B, Cheng H M 2021 Acc. Mater. Res. 2 36Google Scholar

    [19]

    Wan X, Miao X, Yao J, Wang S, Shao F, Xiao S, Zhan R, Chen K, Zeng X, Gu X, Xu J 2021 Advan. Mater. 33 2100260Google Scholar

    [20]

    Zhang X, Nan H, Xiao S, Wan X, Gu X, Du A, Ni Z, Ostrikov K 2019 Nat. Commun. 10 598Google Scholar

    [21]

    Wang Z, Xie Y, Wang H, Wu R, Nan T, Zhan Y, Sun J, Jiang T, Zhao Y, Lei Y, Yang M, Wang W, Zhu Q, Ma X, Hao Y 2017 Nanotechnology 28 325602Google Scholar

    [22]

    Park J H, Lu A Y, Shen P C, Shin B G, Wang H, Mao N, Xu R, Jung S J, Ham D, Kern K, Han Y, Kong J 2021 Small Methods 5 2000720Google Scholar

    [23]

    王璐, 高俊峰, 丁峰 2014 化学学报 72 345Google Scholar

    Wang L, Gao J F, Ding F 2014 Acta Chim. Sin. 72 345Google Scholar

    [24]

    Wang J, Cai X, Shi R, Wu Z, Wang W, Long G, Tang Y, Cai N, Ouyang W, Geng P, Chandrashekar B N, Amini A, Wang N, Cheng C 2018 ACS Nano 12 635Google Scholar

    [25]

    Yang P, Zhang S, Pan S, Tang B, Liang Y, Zhao X, Zhang Z, Shi J, Huan Y, Shi Y, Pennycook S J, Ren Z, Zhang G, Chen Q, Zou X, Liu Z, Zhang Y 2020 ACS Nano 14 5036Google Scholar

    [26]

    Withanage S S, Khondaker S I 2019 MRS Advan. 4 587Google Scholar

  • [1] 王爱伟, 祝鲁平, 单衍苏, 刘鹏, 曹学蕾, 曹丙强. 利用脉冲激光沉积外延制备CsSnBr3/Si异质结高性能光电探测器. 物理学报, 2024, 73(5): 058503. doi: 10.7498/aps.73.20231645
    [2] 姜舟, 蒋雪, 赵纪军. 二维kagome晶格过渡金属酞菁基异质结的电子性质. 物理学报, 2023, 72(24): 247502. doi: 10.7498/aps.72.20230921
    [3] 邓霖湄, 司君山, 吴绪才, 张卫兵. 过渡金属二硫化物/三卤化铬范德瓦耳斯异质结的反折叠能带. 物理学报, 2022, 71(14): 147101. doi: 10.7498/aps.71.20220326
    [4] 郝国强, 张瑞, 张文静, 陈娜, 叶晓军, 李红波. 非对称氧掺杂对石墨烯/二硒化钼异质结肖特基势垒的调控. 物理学报, 2022, 71(1): 017104. doi: 10.7498/aps.71.20210238
    [5] 王奋陶, 樊腾, 张仕雄, 孙真昊, 付雷, 贾伟, 沈波, 唐宁. 单层MoS2薄膜的NaCl双辅助生长方法. 物理学报, 2022, 71(12): 128104. doi: 10.7498/aps.71.20220273
    [6] 傅群东, 王小伟, 周修贤, 朱超, 刘政. 硅基底上二维硒氧化铋的化学气相沉积法合成及其光电探测应用. 物理学报, 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [7] 姚文乾, 孙健哲, 陈建毅, 郭云龙, 武斌, 刘云圻. 二维平面和范德瓦耳斯异质结的可控制备与光电应用. 物理学报, 2021, 70(2): 027901. doi: 10.7498/aps.70.20201419
    [8] 王铄, 王文辉, 吕俊鹏, 倪振华. 化学气相沉积法制备大面积二维材料薄膜: 方法与机制. 物理学报, 2021, 70(2): 026802. doi: 10.7498/aps.70.20201398
    [9] 龙慧, 胡建伟, 吴福根, 董华锋. 基于二维材料异质结可饱和吸收体的超快激光器. 物理学报, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [10] 郭丽娟, 胡吉松, 马新国, 项炬. 二硫化钨/石墨烯异质结的界面相互作用及其肖特基调控的理论研究. 物理学报, 2019, 68(9): 097101. doi: 10.7498/aps.68.20190020
    [11] 刘乐, 汤建, 王琴琴, 时东霞, 张广宇. 石墨烯封装单层二硫化钼的热稳定性研究. 物理学报, 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [12] 魏争, 王琴琴, 郭玉拓, 李佳蔚, 时东霞, 张广宇. 高质量单层二硫化钼薄膜的研究进展. 物理学报, 2018, 67(12): 128103. doi: 10.7498/aps.67.20180732
    [13] 危阳, 马新国, 祝林, 贺华, 黄楚云. 二硫化钼/石墨烯异质结的界面结合作用及其对带边电位影响的理论研究. 物理学报, 2017, 66(8): 087101. doi: 10.7498/aps.66.087101
    [14] 张理勇, 方粮, 彭向阳. 单层二硫化钼多相性质及相变的第一性原理研究. 物理学报, 2016, 65(12): 127101. doi: 10.7498/aps.65.127101
    [15] 董艳芳, 何大伟, 王永生, 许海腾, 巩哲. 一种简单的化学气相沉积法制备大尺寸单层二硫化钼. 物理学报, 2016, 65(12): 128101. doi: 10.7498/aps.65.128101
    [16] 张理勇, 方粮, 彭向阳. 金衬底调控单层二硫化钼电子性能的第一性原理研究. 物理学报, 2015, 64(18): 187101. doi: 10.7498/aps.64.187101
    [17] 魏晓旭, 程英, 霍达, 张宇涵, 王军转, 胡勇, 施毅. Au的金属颗粒对二硫化钼发光增强. 物理学报, 2014, 63(21): 217802. doi: 10.7498/aps.63.217802
    [18] 董海明. 低温下二硫化钼电子迁移率研究. 物理学报, 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [19] 吴木生, 徐波, 刘刚, 欧阳楚英. 应变对单层二硫化钼能带影响的第一性原理研究. 物理学报, 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [20] 刘 鲁, 范广涵, 廖常俊, 曹明德, 陈贵楚, 陈练辉. AlGaInP四元系材料渐变异质结及其在高亮度发光二级管器件中的应用. 物理学报, 2003, 52(5): 1264-1271. doi: 10.7498/aps.52.1264
计量
  • 文章访问数:  3928
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-17
  • 修回日期:  2021-10-07
  • 上网日期:  2022-02-16
  • 刊出日期:  2022-02-20

/

返回文章
返回