搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分子动力学模拟的石墨烯镁基复合材料力学行为

明知非 宋海洋 安敏荣

引用本文:
Citation:

基于分子动力学模拟的石墨烯镁基复合材料力学行为

明知非, 宋海洋, 安敏荣

Mechanical behavior of graphene magnesium matrix composites based on molecular dynamics simulation

Ming Zhi-Fei, Song Hai-Yang, An Min-Rong
PDF
HTML
导出引用
  • 镁合金因其低密度被视为最轻的工程结构金属材料, 但因较差的塑性变形行为限制了其广泛应用, 因此增强镁合金的综合力学性能已经成为当前材料领域的研究热点. 本文采用分子动力学模拟方法, 研究了在拉伸载荷下石墨烯对金属镁变形行为和力学性能的影响. 研究结果表明, 石墨烯的嵌入能够明显提升金属镁的强度和杨氏模量, 并对其塑性变形阶段的第二次应变强化产生较大影响. 研究指出, 石墨烯镁基(GR/Mg)复合材料和纯镁的塑性变形行为相同, 在塑性变形过程中均发生了从密排六方到体心立方再到密排六方结构的相变. 石墨烯嵌入位置对GR/Mg复合材料上下两部分镁基体的塑性变形行为有较大的影响. 当石墨烯嵌入高度较小时, 石墨烯下方的镁基体塑性变形能力较强, 容易发生位错滑移, 而当石墨烯嵌入高度较大时, 石墨烯上下方的两部分镁基体的塑性变形能力相当, 它们的塑性变形行为趋于同步. 此外, 本文对镁基体的相变机制也进行了详细分析. 本文的研究结果对于设计高性能的石墨烯金属基复合材料具有一定的理论指导意义.
    Magnesium alloy is regarded as a lightest engineering structural metal material due to its low density, but its wide application is limited due to poor plastic deformation behavior. Therefore, the comprehensive mechanical properties of enhanced magnesium alloy have become a research focus in the material science. Here, the effect of graphene on the deformation behavior and that on the mechanical properties of magnesium under tensile loading are studied by molecular dynamics simulation. The results show that the introduction of graphene can significantly improve the mechanical properties of pure magnesium. Comparing with pure magnesium, the Young's modulus and the first peak stress of the graphene magnesium matrix (GR/Mg) composites are increased by about 27.5% and 36.5% respectively, which is mainly due to the excellent mechanical properties of graphene. The results also indicate that the embedded position of graphene has little effect on the Young's modulus or peak stress of the GR/Mg composites, but it will significantly affect the plastic deformation behavior of the GR/Mg composites after the second peak stress. With the increase of the embedded height of graphene, the average flow stress of the GR/Mg composites first increases in the later stage of plastic deformation. When the embedded height reaches 0.4L, the average flow stress of the GR/Mg composites reaches a maximum value, and then decreases. This phenomenon of the Gr/Mg composites can be explained by the plastic deformation behavior of the magnesium matrix above and below graphene. The embedded position of graphene has a great influence on the plastic deformation behavior of the upper and lower magnesium matrix of the GR/Mg composites. When the embedded height of graphene is small, the plastic deformation capability of magnesium matrix under graphene is strong and dislocation slip is easy to occur. And when the embedded height of graphene is large, the plastic deformation capabilities of the two parts of magnesium matrix above and below graphene are equal, and their plastic deformation behavior tends to be synchronous. The results show that the plastic deformation behavior of the GR/Mg composite is the same as that of pure magnesium, and the phase transition from HCP to BCC and then to HCP occurs in the process of the plastic deformation. The phase transition mechanism of magnesium matrix is also analyzed in detail. The results of this study have certain theoretical guiding significance in designing the high performance graphene metal matrix composites.
      通信作者: 宋海洋, hysong@xsyu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11572259)、陕西省自然科学基金重点项目(批准号: 2021JZ-53)和西安石油大学研究生创新与实践能力培养资助项目(批准号: YCS20211044)资助的课题.
      Corresponding author: Song Hai-Yang, hysong@xsyu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11572259), the Key Project of the Natural Science Foundation of Shaanxi Province, China (Grant No. 2021JZ-53), and the Program for Graduate Innovation and Practical Ability Training Fund of Xi’an Shiyou University, China (Grant No. YCS20211044).
    [1]

    Song J, She J, Chen D, Pan F 2020 J. Magnes. Alloys 8 1Google Scholar

    [2]

    Meng L, Hu X, Wang X, Zhang C, Shi H, Xiang Y, Liu N, Wu K 2018 Mater. Sci. Eng. A 733 414Google Scholar

    [3]

    王宏明, 朱弋, 李桂荣, 郑瑞 2016 物理学报 65 146101Google Scholar

    Wang H M, Zhu Y, Li G R, Zheng R 2016 Acta Phys. Sin. 65 146101Google Scholar

    [4]

    Song H Y, Li Y L 2015 Phys. Lett. A 379 2087Google Scholar

    [5]

    Wu G, Chan K C, Zhu L, Sun L, Lu J 2017 Nature 545 80Google Scholar

    [6]

    Ding Z, Liu W, Sun H, Li S, Zhang D, Zhao Y, Lavernia E J, Zhu Y 2018 Acta Mater. 146 265Google Scholar

    [7]

    Huang H, Tang X, Chen F, Liu J, Li H, Chen D 2016 Sci. Rep. 6 39391Google Scholar

    [8]

    He Y, Huang F, Li H, Sui Y, Wei F, Meng Q 2016 Physica E 87 233Google Scholar

    [9]

    Long X J, Li B, Wang L, Huang J Y, Zhu J, Luo S N 2016 Carbon 103 457Google Scholar

    [10]

    汉芮岐, 宋海洋, 安敏荣, 李卫卫, 马佳丽 2021 物理学报 70 066201Google Scholar

    Han R Q, Song H Y, An M R, Li W W, Ma J L 2021 Acta Phys. Sin. 70 066201Google Scholar

    [11]

    Shen C, Oyadiji S O 2020 Mater. Today Phys. 15 100257Google Scholar

    [12]

    Tiwari S K, Sahoo S, Wang N, Huczko A 2020 J. Sci.-Adv. Mater. Devices. 5 10Google Scholar

    [13]

    周海涛, 熊希雅, 罗飞, 罗炳威, 刘大博, 申承民 2021 物理学报 70 086201Google Scholar

    Zhou H T, Xiong X Y, Luo F, Luo B W, Liu D B, Shen C M 2021 Acta Phys. Sin. 70 086201Google Scholar

    [14]

    Kim Y, Lee J, Yeom M S, Shin J W, Kim H, Cui Y, Kysar J W, Hone J, Jung Y, Jeon S, Han S M 2013 Nat. Commun. 4 2114Google Scholar

    [15]

    Rezaei R 2018 Comput. Mater. Sci. 151 181Google Scholar

    [16]

    Wang X, Xiao W, Wang L, Shi J, Sun L, Cui J, Wang J 2020 Physica E 123 114172Google Scholar

    [17]

    周霞, 刘霄霞 2020 金属学报 56 240Google Scholar

    Zhou X, Liu X 2020 Acta Metall. Sin. 56 240Google Scholar

    [18]

    Xiang S, Wang X, Gupta M, Wu K, Hu X, Zheng M 2016 Sci. Rep. 6 38824Google Scholar

    [19]

    Silvestre N, Faria B, Canongia Lopes J N 2014 Compos. Sci. Technol. 90 16Google Scholar

    [20]

    Du X, Du W, Wang Z, Liu K, Li S 2018 Mater. Sci. Eng., A. 711 633Google Scholar

    [21]

    Sun D Y, Mendelev M I, Becker C A, Kudin K, Haxhimali T, Asta M, Hoyt J J, Karma A, Srolovitz D J 2006 Phys. Rev. B 73 024116Google Scholar

    [22]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472Google Scholar

    [23]

    Zhou X, Song S, Li L, Zhang R 2015 J. Compos. Mater. 50 191Google Scholar

    [24]

    Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [25]

    Faken D, Jónsson H 1994 Comput. Mater. Sci. 2 279Google Scholar

    [26]

    An M R, Su M J, Deng Q, Song H Y, Wang C, Shang Y 2020 Chinese Phys. B 29 046201Google Scholar

    [27]

    Chen P, Wang F, Li B 2019 Acta Mater. 171 65Google Scholar

    [28]

    宋海洋, 李玉龙 2012 物理学报 61 226201Google Scholar

    Song H Y, Li Y L 2012 Acta Phys. Sin. 61 226201Google Scholar

    [29]

    Zhang C, Lu C, Pei L, Li J, Wang R, Tieu K 2019 Carbon 143 125Google Scholar

    [30]

    An M R, Song H Y, Deng Q, Su M J, Liu Y M 2019 J. Appl. Phys. 125 165307Google Scholar

  • 图 1  (a) GR/Mg复合材料的初始模型; (b) 嵌入石墨烯的原子快照图, 其中红色原子为镁原子, 灰白色原子为碳原子

    Fig. 1.  (a) The initial model of GR/Mg composites; (b) the atomic snapshots of embedded graphene. The red atom is magnesium atom, and the gray and white atom is carbon atom.

    图 2  GR/Mg复合材料和纯镁的应力应变曲线

    Fig. 2.  The stress-strain curves of GR/Mg composites and pure magnesium.

    图 3  GR0.5/Mg复合材料在拉伸过程中镁基体 (a)和嵌入石墨烯 (b)的应力-应变曲线

    Fig. 3.  The stress-strain curves of magnesium matrix (a) and embedded graphene (b) in the GR0.5/Mg composites.

    图 4  纯镁在不同应变下的原子快照图 (a) ε = 0.049; (b) ε = 0.056; (c) ε = 0.062; (d) ε = 0.185; (e) ε = 0.190; (f) ε = 0.218

    Fig. 4.  The atomic snapshots of pure magnesium under different strains: (a) ε = 0.049; (b) ε = 0.056; (c) ε = 0.062; (d) ε = 0.185; (e) ε = 0.190; (f) ε = 0.218.

    图 5  GR/Mg复合材料的平均流动应力随石墨烯嵌入高度的变化曲线

    Fig. 5.  The curve of the average flow stress of the GR/Mg composites with different graphene embedded heights.

    图 6  GR/Mg复合材料在不同应变下的原子快照图

    Fig. 6.  The atomic snapshots of the GR/Mg composites at different strains.

    图 7  GR0.5/Mg复合材料在不同应变下的结构快照图 (a) ε = 0.056; (b) ε = 0.062; (c) ε = 0.051; (d) ε = 0.056

    Fig. 7.  The structure snapshots of the GR0.5/Mg composites at different strains: (a) ε = 0.056; (b) ε = 0.062; (c) ε = 0.051; (d) ε = 0.056.

    图 8  不同石墨烯尺寸的GR0.5/Mg复合材料及纯镁的应力应变曲线

    Fig. 8.  The stress-strain curves of the GR0.5/Mg composites with different graphene sizes and pure Mg.

    图 9  (a)—(f) 镁基体中HCP→BCC相变的原理图; (g) GR0.5/Mg复合材料在0.059应变下的原子结构图

    Fig. 9.  (a)–(f) The schematic diagram of phase transformation of HCP→BCC in magnesium matrix; (g) the GR0.5/Mg composite with BCC structure at strain 0.059.

  • [1]

    Song J, She J, Chen D, Pan F 2020 J. Magnes. Alloys 8 1Google Scholar

    [2]

    Meng L, Hu X, Wang X, Zhang C, Shi H, Xiang Y, Liu N, Wu K 2018 Mater. Sci. Eng. A 733 414Google Scholar

    [3]

    王宏明, 朱弋, 李桂荣, 郑瑞 2016 物理学报 65 146101Google Scholar

    Wang H M, Zhu Y, Li G R, Zheng R 2016 Acta Phys. Sin. 65 146101Google Scholar

    [4]

    Song H Y, Li Y L 2015 Phys. Lett. A 379 2087Google Scholar

    [5]

    Wu G, Chan K C, Zhu L, Sun L, Lu J 2017 Nature 545 80Google Scholar

    [6]

    Ding Z, Liu W, Sun H, Li S, Zhang D, Zhao Y, Lavernia E J, Zhu Y 2018 Acta Mater. 146 265Google Scholar

    [7]

    Huang H, Tang X, Chen F, Liu J, Li H, Chen D 2016 Sci. Rep. 6 39391Google Scholar

    [8]

    He Y, Huang F, Li H, Sui Y, Wei F, Meng Q 2016 Physica E 87 233Google Scholar

    [9]

    Long X J, Li B, Wang L, Huang J Y, Zhu J, Luo S N 2016 Carbon 103 457Google Scholar

    [10]

    汉芮岐, 宋海洋, 安敏荣, 李卫卫, 马佳丽 2021 物理学报 70 066201Google Scholar

    Han R Q, Song H Y, An M R, Li W W, Ma J L 2021 Acta Phys. Sin. 70 066201Google Scholar

    [11]

    Shen C, Oyadiji S O 2020 Mater. Today Phys. 15 100257Google Scholar

    [12]

    Tiwari S K, Sahoo S, Wang N, Huczko A 2020 J. Sci.-Adv. Mater. Devices. 5 10Google Scholar

    [13]

    周海涛, 熊希雅, 罗飞, 罗炳威, 刘大博, 申承民 2021 物理学报 70 086201Google Scholar

    Zhou H T, Xiong X Y, Luo F, Luo B W, Liu D B, Shen C M 2021 Acta Phys. Sin. 70 086201Google Scholar

    [14]

    Kim Y, Lee J, Yeom M S, Shin J W, Kim H, Cui Y, Kysar J W, Hone J, Jung Y, Jeon S, Han S M 2013 Nat. Commun. 4 2114Google Scholar

    [15]

    Rezaei R 2018 Comput. Mater. Sci. 151 181Google Scholar

    [16]

    Wang X, Xiao W, Wang L, Shi J, Sun L, Cui J, Wang J 2020 Physica E 123 114172Google Scholar

    [17]

    周霞, 刘霄霞 2020 金属学报 56 240Google Scholar

    Zhou X, Liu X 2020 Acta Metall. Sin. 56 240Google Scholar

    [18]

    Xiang S, Wang X, Gupta M, Wu K, Hu X, Zheng M 2016 Sci. Rep. 6 38824Google Scholar

    [19]

    Silvestre N, Faria B, Canongia Lopes J N 2014 Compos. Sci. Technol. 90 16Google Scholar

    [20]

    Du X, Du W, Wang Z, Liu K, Li S 2018 Mater. Sci. Eng., A. 711 633Google Scholar

    [21]

    Sun D Y, Mendelev M I, Becker C A, Kudin K, Haxhimali T, Asta M, Hoyt J J, Karma A, Srolovitz D J 2006 Phys. Rev. B 73 024116Google Scholar

    [22]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472Google Scholar

    [23]

    Zhou X, Song S, Li L, Zhang R 2015 J. Compos. Mater. 50 191Google Scholar

    [24]

    Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [25]

    Faken D, Jónsson H 1994 Comput. Mater. Sci. 2 279Google Scholar

    [26]

    An M R, Su M J, Deng Q, Song H Y, Wang C, Shang Y 2020 Chinese Phys. B 29 046201Google Scholar

    [27]

    Chen P, Wang F, Li B 2019 Acta Mater. 171 65Google Scholar

    [28]

    宋海洋, 李玉龙 2012 物理学报 61 226201Google Scholar

    Song H Y, Li Y L 2012 Acta Phys. Sin. 61 226201Google Scholar

    [29]

    Zhang C, Lu C, Pei L, Li J, Wang R, Tieu K 2019 Carbon 143 125Google Scholar

    [30]

    An M R, Song H Y, Deng Q, Su M J, Liu Y M 2019 J. Appl. Phys. 125 165307Google Scholar

  • [1] 韦昭召. 不同取向B2结构FeAl合金纳米线弯曲行为的分子动力学模拟. 物理学报, 2025, 74(3): 036201. doi: 10.7498/aps.74.20241030
    [2] 韩同伟, 李选政, 赵泽若, 顾叶彤, 马川, 张小燕. 不同荷载作用下二维硼烯的力学性能及变形破坏机理. 物理学报, 2024, 73(11): 116201. doi: 10.7498/aps.73.20240066
    [3] 陈晶晶, 邱小林, 李柯, 周丹, 袁军军. 纳米晶CoNiCrFeMn高熵合金力学性能的原子尺度分析. 物理学报, 2022, 71(19): 199601. doi: 10.7498/aps.71.20220733
    [4] 安敏荣, 李思澜, 宿梦嘉, 邓琼, 宋海洋. 尺寸依赖的CoCrFeNiMn晶体/非晶双相高熵合金塑性变形机制的分子动力学模拟. 物理学报, 2022, 71(24): 243101. doi: 10.7498/aps.71.20221368
    [5] 刘青阳, 徐青松, 李瑞. 氮掺杂对石墨烯摩擦学特性影响的分子动力学模拟. 物理学报, 2022, 71(14): 146801. doi: 10.7498/aps.71.20212309
    [6] 申天展, 宋海洋, 安敏荣. 孪晶界对Cr26Mn20Fe20Co20Ni14高熵合金力学行为影响的分子动力学模拟. 物理学报, 2021, 70(18): 186201. doi: 10.7498/aps.70.20210324
    [7] 韩同伟, 李仁, 操淑敏, 张小燕. 官能化对五边形石墨烯力学性能的影响及机理研究. 物理学报, 2021, 70(22): 226201. doi: 10.7498/aps.70.20210764
    [8] 辛勇, 包宏伟, 孙志鹏, 张吉斌, 刘仕超, 郭子萱, 王浩煜, 马飞, 李垣明. U1–xThxO2混合燃料力学性能的分子动力学模拟. 物理学报, 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [9] 韦昭召, 马骁, 柯常波, 张新平. Fe合金FCC-BCC原子尺度台阶型马氏体相界面迁移行为的分子动力学模拟研究. 物理学报, 2020, 69(13): 136102. doi: 10.7498/aps.69.20191903
    [10] 周边, 杨亮. 分子动力学模拟冷却速率对非晶合金结构与变形行为的影响. 物理学报, 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [11] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [12] 史超, 林晨森, 陈硕, 朱军. 石墨烯表面的特征水分子排布及其湿润透明特性的分子动力学模拟. 物理学报, 2019, 68(8): 086801. doi: 10.7498/aps.68.20182307
    [13] 董若宇, 曹鹏, 曹桂兴, 胡帼杰, 曹炳阳. 直流电场下水中石墨烯定向行为研究. 物理学报, 2017, 66(1): 014702. doi: 10.7498/aps.66.014702
    [14] 韩同伟, 李攀攀. 石墨烯剪纸的大变形拉伸力学行为研究. 物理学报, 2017, 66(6): 066201. doi: 10.7498/aps.66.066201
    [15] 杨文龙, 韩浚生, 王宇, 林家齐, 何国强, 孙洪国. 聚酰亚胺/功能化石墨烯复合材料力学性能及玻璃化转变温度的分子动力学模拟. 物理学报, 2017, 66(22): 227101. doi: 10.7498/aps.66.227101
    [16] 王海燕, 胡前库, 杨文朋, 李旭升. 金属元素掺杂对TiAl合金力学性能的影响. 物理学报, 2016, 65(7): 077101. doi: 10.7498/aps.65.077101
    [17] 覃业宏, 唐超, 张春小, 孟利军, 钟建新. 硅晶体表面石墨烯褶皱形貌的分子动力学模拟研究. 物理学报, 2015, 64(1): 016804. doi: 10.7498/aps.64.016804
    [18] 马冰洋, 张安明, 尚海龙, 孙士阳, 李戈扬. 共溅射Al-Zr合金薄膜的非晶化及其力学性能. 物理学报, 2014, 63(13): 136801. doi: 10.7498/aps.63.136801
    [19] 苏锦芳, 宋海洋, 安敏荣. 金纳米管力学性能的分子动力学模拟. 物理学报, 2013, 62(6): 063103. doi: 10.7498/aps.62.063103
    [20] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能. 物理学报, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
计量
  • 文章访问数:  6058
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-21
  • 修回日期:  2021-12-21
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-20

/

返回文章
返回