搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耦合诱导的四分之一波长超导谐振器微波传输透明

高海燕 杨欣达 周波 贺青 韦联福

引用本文:
Citation:

耦合诱导的四分之一波长超导谐振器微波传输透明

高海燕, 杨欣达, 周波, 贺青, 韦联福

Coupling-induced microwave transmission transparency with quarter-wavelength superconducting resonators

Gao Hai-Yan, Yang Xin-Da, Zhou Bo, He Qing, Wei Lian-Fu
PDF
HTML
导出引用
  • 类似于利用强泵浦光调控介质光学性质实现对原共振吸收光的诱导透明, 本文利用实空间量子散射理论研究了如何实现波导光子从全反射到透射的转变. 结果表明, 通过引入辅助四分之一波长谐振器的耦合, 可实现原四分之一波长谐振器对共振微波全反射的透射. 利用微纳加工工艺制备了对应上述理论模型的四分之一波长谐振器样品, 在极低温条件下对该样品的微波传输特性进行了实验测试, 观测到了理论预言的微波波段类电磁诱导透明的部分现象, 证实了耦合谐振器的模式重整理论.
    The electromagnetic induced transparency (EIT) to atomic systems and its various applications have been extensively investigated, both theoretically and experimentally. In this paper, we study how to similarly verify these phenomena in the waveguide coupled to the transmission line resonators. By making use of real space quantum scattering theory, we calculate the transmission spectrum of the waveguide photons scattered by a single quarter-wavelength transmission line resonator. Our experimental results show that the resonant microwave transporting along the feedline is completely reflected by the resonator. This is similar to the situation of the light absorbed by the resonant atomic medium, and thus its transmission is significantly suppressed.Like the EIT phenomena in atomic gas, wherein the resonant absorption can be significantly suppressed by applying a strong pumping light to control the optical properties of medium, the transport properties of the resonant microwave can be investigated by coupling it into an auxiliary quarter-wavelength resonator in this paper. If the frequency of the auxiliary quarter-wavelength resonator is different from the resonant frequency, the calculated transmission spectrum shows that the coupling with auxiliary quarter-wavelength resonator induces the complete transmission of the resonant microwave. This is one of the features of the EIT-like effect, and can be simply explained as the frequency renormalization of the coupling resonators. Also, by adjusting the coupling strength between the resonators, the width of the microwave transmission spectrum window can be manipulated. Our experimental observations verify such an argument, but the phase shift mutation (another typical signs of the EIT effect) of the resonant microwave cannot be observed. In physics, this is because the interference between the transmitted microwave and the reflected micowave with different frequencies does not take place in the coupling region between the two resonators.It is expected that the effects with the complete EIT-like phenomena can be observed, in future, by fabricating the sample of two quarter-wavelength transmission line resonators with the same frequency, and thus the coupling between the two resonators can be controlled.
      通信作者: 韦联福, lfwei@swjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11974290)资助的课题.
      Corresponding author: Wei Lian-Fu, lfwei@swjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11974290).
    [1]

    Harris S E 1989 Phys. Rev. Lett. 62 1033Google Scholar

    [2]

    Boller K J, Imamoğlu A, Harris S E 1991 Phys. Rev. Lett. 66 2593

    [3]

    Guo Y H, Yan L S, Pan W, Luo B, Wen K H, Guo Z, Luo X G 2012 Opt. Express 20 24348Google Scholar

    [4]

    Wang T L, Cao M Y, Zhang Y P, Zhang H Y 2019 Opt. Mater. Express 9 1562Google Scholar

    [5]

    Di K, Xie C D, Zhang J 2011 Phys. Rev. Lett. 106 153602Google Scholar

    [6]

    Zhao C Y, Zhang L, Zhang C M 2019 Pramana-J. Phys. 92 37Google Scholar

    [7]

    Yan B, Gao F, Xu T, Ma H F, Zhong K S, Zheng Z X 2019 Mater. Res. Express. 6 115802Google Scholar

    [8]

    邸克 2013 博士学位论文 (太原: 山西大学)

    Di K 2013 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)

    [9]

    詹孝贵 2013 博士学位论文 (武汉: 华中科技大学)

    Zhan X G 2013 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [10]

    Zheng C, Jiang X S, Hua S Y, Chang L, Li G Y, Fan H B, Xiao M 2012 Opt. Express 20 18319Google Scholar

    [11]

    赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰 2021 物理学报 70 103201Google Scholar

    Zhao J D, Zhang H, Yang W G, Zhao J H, Jing M Y, Zhang L J 2021 Acta Phys. Sin. 70 103201Google Scholar

    [12]

    Zang T C, Chen Y Q, Ding Y Q, Sun Y, Wu Q Y 2020 AIP Adv. 10 115002Google Scholar

    [13]

    Abdul J, Rashad R, Omar S, Muhammad A, Farooq A T 2021 Sci. Rep. 11 2983Google Scholar

    [14]

    Li H J, Wang Y W, Wei L F, Zhou P J, Wei Q, Cao C H, Fang Y R, Yu Y, Wu P H 2013 Chin. Sci. Bull. 58 2413

    [15]

    Liu X, Guo W, Wang Y, Dai M, Wei L F, Dober B, McKenney C M, Hilton G C, Hubmayr J, Austermann J E, Ullom J N, Gao J, Vissers M R 2017 Appl. Phys. Lett. 111 252601Google Scholar

    [16]

    Gao J S 2008 Ph. D. Dissertation (Pasadena: California Institute of Technology)

    [17]

    Gao H Y, Zhai D H, Gao J S, Wei L F 2020 J. Appl. Phys. 128 214302Google Scholar

    [18]

    Srinivasan K, Painter O 2007 Nuture 450 862Google Scholar

    [19]

    Choi Y S, Davano M, Lee K H 2007 Appd. Phys. Lett. 90 191108Google Scholar

    [20]

    Shen J T, Fan S 2009 Phys. Rev. A. 79 023837Google Scholar

    [21]

    Shen J T, Fan S 2005 Phys. Rev. Lett. 95 213001Google Scholar

    [22]

    Yan C H, Wei L F, Jia W Z, Shen J T 2011 Phys. Rev. A 84 045801Google Scholar

    [23]

    Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H, Zoller P 2017 Nature 541 473Google Scholar

    [24]

    梁浩, 李剑生, 郭云胜 2015 物理学报 64 144101Google Scholar

    Liang H, Li J S, Guo Y S 2015 Acta Phys. Sin. 64 144101Google Scholar

    [25]

    Zheng H, Baranger H U 2013 Phys. Rev. Lett. 110 113601Google Scholar

  • 图 1  单个四分之一波长谐振腔与波导的耦合示意图, 其中谐振腔的中心导体一端经电容与馈线波导耦合, 另一端则直接与零电位导体连接

    Fig. 1.  Travelling waves scattered by a single quarter wavelength resonator, the load end of the device is capacitively coupled to the feedline and another end is grounded.

    图 2  左、右行光子与谐振器有效耦合强度的比值不同时, 馈线中传输微波光子的透射谱

    Fig. 2.  Transmission spectra of microwave transporting along the feedline scattered by a single quarter wavelength resonator with different coupling strengths for the left (right) travelling photons.

    图 3  单个四分之一波长共面波导谐振器样品图, 图中打红叉的谐振器已经短接

    Fig. 3.  Sample diagram of single quarter wavelength coplanar waveguide resonator. The resonators with the red crosses have been shorted.

    图 4  单个四分之一波长共面波导谐振器$S_{21}$参数曲线图(即透射谱) (a) 4.0 GHz谐振器的$S_{21}$; (b) 4.05 GHz谐振器的$S_{21}$

    Fig. 4.  Experimentally measured transmission curves of two single quarter wavelength coplanar waveguide resonators with the frequencies being $4.0$GHz (a) and $4.05$GHz (b), respectively.

    图 5  两个插指耦合四分之一波长共面波导谐振腔对波导中行波微波的散射构型, 这里, 谐振腔的中心导体的一端经耦合电容与波导耦合, 另一端与地短路

    Fig. 5.  Configuration of the travelling microwaves transporting along the waveguide scattered by the fingerly coupled quarter-wavelength coplanar waveguide resonators. Here, one end of the central conductor of the resonator is coupled to waveguide via a coupling capacitance, and the other end is directly grounded.

    图 6  两个不同本征频率的耦合谐振器透射谱图, 两透射谷之间的频率间隔随着耦合强度的增加而增大

    Fig. 6.  Transmission spectra of the microwave scattered by two coupled resonators with different eigenfrequencies. It is seen that the frequency interval between the two dips increases with the coupling strength between the resonators.

    图 7  两个共振频率不同的耦合四分之一波长共面波导谐振器的样品图(图中打红叉的谐振器已经短接)

    Fig. 7.  Experimental sample of two quarter wavelength coplanar waveguide resonators with different resonant frequencies. The resonators with the red crosses have been shorted.

    图 8  两个耦合四分之一波长共面波导谐振器的微波透射谱

    Fig. 8.  Coupled sample diagram of two quarter wavelength coplanar waveguide resonators.

  • [1]

    Harris S E 1989 Phys. Rev. Lett. 62 1033Google Scholar

    [2]

    Boller K J, Imamoğlu A, Harris S E 1991 Phys. Rev. Lett. 66 2593

    [3]

    Guo Y H, Yan L S, Pan W, Luo B, Wen K H, Guo Z, Luo X G 2012 Opt. Express 20 24348Google Scholar

    [4]

    Wang T L, Cao M Y, Zhang Y P, Zhang H Y 2019 Opt. Mater. Express 9 1562Google Scholar

    [5]

    Di K, Xie C D, Zhang J 2011 Phys. Rev. Lett. 106 153602Google Scholar

    [6]

    Zhao C Y, Zhang L, Zhang C M 2019 Pramana-J. Phys. 92 37Google Scholar

    [7]

    Yan B, Gao F, Xu T, Ma H F, Zhong K S, Zheng Z X 2019 Mater. Res. Express. 6 115802Google Scholar

    [8]

    邸克 2013 博士学位论文 (太原: 山西大学)

    Di K 2013 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)

    [9]

    詹孝贵 2013 博士学位论文 (武汉: 华中科技大学)

    Zhan X G 2013 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [10]

    Zheng C, Jiang X S, Hua S Y, Chang L, Li G Y, Fan H B, Xiao M 2012 Opt. Express 20 18319Google Scholar

    [11]

    赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰 2021 物理学报 70 103201Google Scholar

    Zhao J D, Zhang H, Yang W G, Zhao J H, Jing M Y, Zhang L J 2021 Acta Phys. Sin. 70 103201Google Scholar

    [12]

    Zang T C, Chen Y Q, Ding Y Q, Sun Y, Wu Q Y 2020 AIP Adv. 10 115002Google Scholar

    [13]

    Abdul J, Rashad R, Omar S, Muhammad A, Farooq A T 2021 Sci. Rep. 11 2983Google Scholar

    [14]

    Li H J, Wang Y W, Wei L F, Zhou P J, Wei Q, Cao C H, Fang Y R, Yu Y, Wu P H 2013 Chin. Sci. Bull. 58 2413

    [15]

    Liu X, Guo W, Wang Y, Dai M, Wei L F, Dober B, McKenney C M, Hilton G C, Hubmayr J, Austermann J E, Ullom J N, Gao J, Vissers M R 2017 Appl. Phys. Lett. 111 252601Google Scholar

    [16]

    Gao J S 2008 Ph. D. Dissertation (Pasadena: California Institute of Technology)

    [17]

    Gao H Y, Zhai D H, Gao J S, Wei L F 2020 J. Appl. Phys. 128 214302Google Scholar

    [18]

    Srinivasan K, Painter O 2007 Nuture 450 862Google Scholar

    [19]

    Choi Y S, Davano M, Lee K H 2007 Appd. Phys. Lett. 90 191108Google Scholar

    [20]

    Shen J T, Fan S 2009 Phys. Rev. A. 79 023837Google Scholar

    [21]

    Shen J T, Fan S 2005 Phys. Rev. Lett. 95 213001Google Scholar

    [22]

    Yan C H, Wei L F, Jia W Z, Shen J T 2011 Phys. Rev. A 84 045801Google Scholar

    [23]

    Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H, Zoller P 2017 Nature 541 473Google Scholar

    [24]

    梁浩, 李剑生, 郭云胜 2015 物理学报 64 144101Google Scholar

    Liang H, Li J S, Guo Y S 2015 Acta Phys. Sin. 64 144101Google Scholar

    [25]

    Zheng H, Baranger H U 2013 Phys. Rev. Lett. 110 113601Google Scholar

  • [1] 谭聪, 王登龙, 董耀勇, 丁建文. V型三能级金刚石氮空位色心电磁诱导透明体系中孤子的存取. 物理学报, 2024, 73(10): 107601. doi: 10.7498/aps.73.20232006
    [2] 王胤, 周驷杰, 陈桥, 邓永和. 能级构型对InAs/GaAs量子点电磁感应透明介质中光孤子存储的影响. 物理学报, 2023, 72(8): 084204. doi: 10.7498/aps.72.20221965
    [3] 张跃斌, 马成举, 张垚, 金嘉升, 鲍士仟, 李咪, 李东明. 基于非对称结构全介质超材料的类电磁诱导透明效应研究. 物理学报, 2021, 70(19): 194201. doi: 10.7498/aps.70.20210070
    [4] 赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰. 基于里德伯原子电磁诱导透明效应的光脉冲减速. 物理学报, 2021, 70(10): 103201. doi: 10.7498/aps.70.20210102
    [5] 褚培新, 张玉斌, 陈俊学. 开口狭缝调制的耦合微腔中表面等离激元诱导透明特性. 物理学报, 2020, 69(13): 134205. doi: 10.7498/aps.69.20200369
    [6] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计. 物理学报, 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [7] 贾玥, 陈肖含, 张好, 张临杰, 肖连团, 贾锁堂. Rydberg原子的电磁诱导透明光谱的噪声转移特性. 物理学报, 2018, 67(21): 213201. doi: 10.7498/aps.67.20181168
    [8] 杨光, 王杰, 王军民. 采用高信噪比电磁诱导透明谱测定85Rb原子5D5/2态的超精细相互作用常数. 物理学报, 2017, 66(10): 103201. doi: 10.7498/aps.66.103201
    [9] 宁仁霞, 鲍婕, 焦铮. 基于石墨烯超表面的宽带电磁诱导透明研究. 物理学报, 2017, 66(10): 100202. doi: 10.7498/aps.66.100202
    [10] 唐宏, 王登龙, 张蔚曦, 丁建文, 肖思国. 纵波光学声子耦合对级联型电磁感应透明半导体量子阱中暗-亮光孤子类型的调控. 物理学报, 2017, 66(3): 034202. doi: 10.7498/aps.66.034202
    [11] 杨韵茹, 关建飞. 基于金属-电介质-金属波导结构的等离子体滤波器的数值研究. 物理学报, 2016, 65(5): 057301. doi: 10.7498/aps.65.057301
    [12] 杜英杰, 谢小涛, 杨战营, 白晋涛. 电磁诱导透明系统中的暗孤子. 物理学报, 2015, 64(6): 064202. doi: 10.7498/aps.64.064202
    [13] 边成玲, 朱江, 陆佳雯, 闫甲璐, 陈丽清, 王增斌, 区泽宇, 张卫平. 基于电磁诱导透明的原子自旋波读出效率实验研究. 物理学报, 2013, 62(17): 174207. doi: 10.7498/aps.62.174207
    [14] 李晓莉, 尚雅轩, 孙江. 射频驱动下电磁诱导透明窗口的分裂和增益的出现. 物理学报, 2013, 62(6): 064202. doi: 10.7498/aps.62.064202
    [15] 刘冉, 史金辉, E. Plum, V.A. Fedotov, N.I. Zheludev. 基于平面超材料的Fano谐振可调谐研究. 物理学报, 2012, 61(15): 154101. doi: 10.7498/aps.61.154101
    [16] 吕纯海, 谭磊, 谭文婷. 压缩真空中的电磁诱导透明. 物理学报, 2011, 60(2): 024204. doi: 10.7498/aps.60.024204
    [17] 李晓莉, 张连水, 杨宝柱, 杨丽君. 闭合Λ型4能级系统中的电磁诱导透明和电磁诱导吸收. 物理学报, 2010, 59(10): 7008-7014. doi: 10.7498/aps.59.7008
    [18] 张连水, 李晓莉, 王 健, 杨丽君, 冯晓敏, 李晓苇, 傅广生. 光学-射频双光子耦合作用下的电磁诱导透明和电磁诱导吸收. 物理学报, 2008, 57(8): 4921-4926. doi: 10.7498/aps.57.4921
    [19] 杨丽君, 张连水, 李晓莉, 李晓苇, 郭庆林, 韩 理, 傅广生. 多窗口可调谐电磁诱导透明研究. 物理学报, 2006, 55(10): 5206-5210. doi: 10.7498/aps.55.5206
    [20] 王 丽, 宋海珍. 四能级原子系统中的电磁诱导吸收. 物理学报, 2006, 55(8): 4145-4149. doi: 10.7498/aps.55.4145
计量
  • 文章访问数:  5672
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-21
  • 修回日期:  2021-11-12
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-03-20

/

返回文章
返回