搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

波长调制-直接吸收光谱(WM-DAS)在线监测大气CO浓度

王振 杜艳君 丁艳军 李政 彭志敏

引用本文:
Citation:

波长调制-直接吸收光谱(WM-DAS)在线监测大气CO浓度

王振, 杜艳君, 丁艳军, 李政, 彭志敏

Monitoring of ambient carbon monoxide concentrations based on wavelength modulation direct absorption spectroscopy

Wang Zhen, Du Yan-Jun, Ding Yan-Jun, Li Zheng, Peng Zhi-Min
PDF
HTML
导出引用
  • 波长调制-直接吸收光谱(WM-DAS)同时具有直接吸收光谱(DAS)可测量吸收率函数和波长调制光谱(WMS)高信噪比的优点, 本文首先采用WM-DAS光谱, 在50 cm光程和室温低压下, CO分子近红外4300.7 cm–1谱线吸收率检测限低至4 × 10–7 (200 s); 然后结合120 m长光程Herriott池, 在室温大气压下, 吸收率函数拟合残差标准差达到5.1 × 10–5 (1 s). 最后利用长光程WM-DAS测量系统, 对不同浓度(体积分数为0.44 × 10–6—9.6 × 10–6)CO进行了动态测量, 并将其与腔衰荡光谱(CRDS)进行比较; 实验结果表明: 本文采用的长光程WM-DAS与CRDS方法测量结果相同, 其中长光程WM-DAS系统CO浓度检测限低至0.9 × 10–9 (200 s), 系统简单且测量速度远快于CRDS. 与此同时, 利用建立的长光程WM-DAS测量系统连续监测1个月时间内大气痕量CO浓度及其变化趋势, 测量结果与中国环境监测总站测量结题高度一致.
    Wavelength modulation-direct absorption spectroscopy (WM-DAS) has the advantages of both direct absorption spectroscopy (DAS) measurable absorptivity function and wavelength modulation spectrum (WMS) with high signal-to-noise ratio (SNR). In this paper, the WM-DAS spectrum is used to measure the absorptivity of 4300.7 cm–1 line of CO molecule and the detection limit is as low as 4 × 10–7 (200 s) at 0.5 m optical path, room temperature and low pressure. Then, through combining the WM-DAS spectrum with a 120 m long optical path Herriott cell, at room temperature and atmospheric pressure, the standard deviation of the fitting residual error of the absorptivity function is reduced down to ~5.1 × 10–5 (1 s). Finally, different concentrations of CO are continuously monitored by long-path WM-DAS measurement system, and compared with the results obtained from the cavity ring-down spectroscopy (CRDS). The experimental results show that the measurement results from the long-path WM-DAS and CRDS method are the same. The detection limit of CO concentration in long-path WM-DAS system is as low as 0.9 ppb (200 s), and the WM-DAS system is simple and the measurement speed is much faster than CRDS. At the same time, the long-path WM-DAS system is used to continuously monitor the atmospheric trace CO concentration and trend for one month, and the measured results are highly consistent with those from the China Environmental Monitoring Station.
      通信作者: 彭志敏, apspect@tsinghua.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2019YFB2006002)和国家自然科学基金(批准号: 11972213, 51906120)资助的课题.
      Corresponding author: Peng Zhi-Min, apspect@tsinghua.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2019YFB2006002) and the National Natural Science Foundation of China (Grant Nos. 11972213, 51906120).
    [1]

    Zellweger C, Steinbrecher R, Laurent O, Lee H, Kim S, Emmenegger L, Steinbacher M, Buchmann B 2019 Atmos. Meas. Tech. 12 5863Google Scholar

    [2]

    Chen H, Karion A, Rella C W, Winderlich J, Gerbig C, Filges A, Newberger T, Sweeney C, Tans P P 2013 Atmos. Meas. Tech. 6 1031Google Scholar

    [3]

    van der Laan S, Neubert R E M, Meijer H A J 2009 Atmos. Meas. Tech. 2 549Google Scholar

    [4]

    Hammer S, Griffith D W T, Konrad G, Vardag S, Caldow C, Levin I 2013 Atmos. Meas. Tech. 6 1153Google Scholar

    [5]

    Adámek P, Olejníček J, Čada M, Kment Š, Hubička Z 2013 Opt. Lett. 38 2428Google Scholar

    [6]

    Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2016 Prog. Energy Combust. 60 132

    [7]

    Witzel O, Klein A, Meffert C, Wagner S, Kaiser S, Schulz C, Ebert V 2013 Opt. Express 21 19951Google Scholar

    [8]

    Hanson R K 2011 Proc. Combust. Inst. 33 1Google Scholar

    [9]

    Pal M, Maity A, Pradhan M 2018 Laser Phys. 28 105702Google Scholar

    [10]

    Maity A, Pal M, Banik1 G D, Maithani S, Pradhan M 2017 Laser Phys. Lett. 14 115701Google Scholar

    [11]

    Zhou S, Liu N W, Shen C Y, Zhang L, He T B, Yu B L, Li J S 2019 Spectrochim. Acta A 2019 223 117332

    [12]

    Tang Y Y, Liu W Q, Kan R F, Liu J G, He Y B, Zhang Y J, Xu Z Y, Ruan J, Geng H 2011 Opt. Express 19 20224Google Scholar

    [13]

    Kasyutich1 V L, Holdsworth R J, Martin P A 2008 Appl. Phys. B 92 271Google Scholar

    [14]

    Stefan´ski P, Lewicki R, Sanchez N P, Tarka J, Griffin R J, Razeghi M, Tittel F K 2014 Appl. Phys. B 117 519Google Scholar

    [15]

    Qiao S D, Ma Y F, He Y, Patimisco P, Sampaolo A, Spagnolo V 2021 Opt. Express 29 25100Google Scholar

    [16]

    Dang J M, Yu H Y, Sun Y J, Wang Y D 2017 Infrared Phys. Technol. 82 183Google Scholar

    [17]

    Li J S, Parchatka U, Fischer H 2013 Sens. Actuators, B 182 659Google Scholar

    [18]

    Wei M, Ye Q H, Kan R F, Chen B, Yang C G, Xu Z Y, Chen X, Ruan J, Fan X L, Wang W, Hu M, Liu J G 2016 Chin. Phys. B 25 094210Google Scholar

    [19]

    Lan L J, Ding Y J, Peng Z M, Du Y J, Liu Y F, Li Z 2014 Appl. Phys. B 117 543Google Scholar

    [20]

    Silva M L, Wainner R T, Sonnenfroh D M, Rosen D I, Allen M G, Risby T H 2005 Proc. SPIE, November 17, 2005 p6010

    [21]

    Hangauer A, Chen J, Strzoda R, Ortsiefer M, Amann M C 2008 Opt. Lett. 33 1566Google Scholar

    [22]

    Hangauer A, Chen J, Strzoda R, Fleischer M, Amann M C 2013 Opt. Express 22 13680

    [23]

    Ortsiefer M, Neumeyr C, Rosskopf J, Arafin S, Böhm G, Hangauer A, Chen J, Strzoda R, M.-C. Amann M C 2011 Proc. SPIE 7945 794509Google Scholar

    [24]

    Ma Y F, Yu G, Zhang J B, Yu X, Sun R 2015 J. Opt. 17 055401Google Scholar

    [25]

    Lou D C, Rao W, Wang K, Song J L, Jiang Y J 2020 Global Intelligent Industry Conference 2020 Proc. SPIE March 18, 2021, p117801P

    [26]

    陈兵, 周泽义, 康鹏, 刘安雯, 胡水明 2015 光谱学与光谱分析 35 971Google Scholar

    Chen B, Zhou Z Y, Kang P, Liu A W, Hu S M 2015 Spectrosc. Spect. Anal. 35 971Google Scholar

    [27]

    Peng Z M, Du Y J, Ding Y J 2020 Sensors 20 681Google Scholar

    [28]

    Peng Z M, Du Y J, Ding Y J 2020 Sensors 20 616Google Scholar

    [29]

    Maity A, Pal M, Banik1 G D, Maithani S, Pradhan M 2017 Laser Physics Letters 14 115701

    [30]

    Mazurenka M, Wada R, Shillings A J L, Butler T J A, Beames J M, Orr-Ewing A J 2005 Appl. Phys. B 81 135Google Scholar

    [31]

    Li J D, Du Y J, Ding Y J, Peng Z M 2020 J. Quant. Spectrosc. Radiat. Transfer 254 107216Google Scholar

    [32]

    Li J D, Du Y J, Ding Y J, Peng Z M 2021 J. Quant. Spectrosc. Radiat. Transfer 272 107790Google Scholar

    [33]

    Gordon I E, Rothman L S, Hill C, et al. 2017 J. Quant. Spectrosc. Radiat. Transfer 203 3Google Scholar

    [34]

    Boyer W, Lynas-Gray A E 2014 MNRAS 444 2555Google Scholar

    [35]

    Allan D W 1966 Proc. IEEE 54 221Google Scholar

    [36]

    Zhao G, Tan W, Jia M Y, Hou J J, Ma W G, Dong L, Zhang L, Feng X X, Wu X C, Yin W B, Xiao L T, Axner O, Jia S T 2016 Sensors 16 1544Google Scholar

    [37]

    王振, 杜艳君, 丁艳军, 彭志敏 2020 物理学报 69 064204Google Scholar

    Wang Z, Du Y J, Ding Y J, Peng Z M 2020 Acta Phys. Sin. 69 064204Google Scholar

    [38]

    王振, 杜艳君, 丁艳军, 彭志敏 2019 物理学报 68 204204Google Scholar

    Wang Z, Du Y J, Ding Y J, Peng Z M 2019 Acta Phys. Sin. 68 204204Google Scholar

    [39]

    Wang Z, Du Y J, Ding Y J, Peng Z M 2020 Sensors 20 585Google Scholar

  • 图 1  实验系统WM-DAS (a)与CRDS (b). ISO, 光纤隔离器; AOM, 声光调制器; APD, 雪崩光电二极管; PD, 光电二极管; DDG, 数字延迟发生器; DAQ, 数据采集卡

    Fig. 1.  System schematic diagram of WM-DAS (a) and CRDS (b). ISO, fiber isolator; AOM, acousto-optic modulator; APD, avalanche photodiode; PD, photodiode; DDG, digital delay generator; DAQ, digital acquisition.

    图 2  (a) WM-DAS波长标定; (b)测量光强It的傅里叶系数

    Fig. 2.  (a) Wavelength calibration of WM-DAS; (b) Fourier coefficients of the measuring light intensity It.

    图 3  (a)压力26 kPa、温度290 K时, WM-DAS单次测量体积分数为101 × 10–6和53 × 10–6的CO吸收率函数; (b) 53 × 10–6标气和纯N2时吸收率峰值的Allan标准差

    Fig. 3.  (a) CO absorptivity function of 101 × 10–6and 53 × 10–6 measured by WM-DAS at 26 kPa and 290 K; (b) Allan standard deviation of the peak absorptivity at 53 × 10–6 and pure N2.

    图 4  激光电流以锯齿波形式扫描时, 衰荡时间(黑色)与激光电流(蓝色)的关系

    Fig. 4.  Relationship between the decay time (black) and the laser current (blue) when the laser current is scanned in the form of saw tooth wave.

    图 5  (a) WM-DAS测量的CO(4300.7 cm–1)吸收系数函数, 采集103周期, 总用时1 s; (b) CRDS测量的CO(6383.09 cm–1、线强度约为4300.7 cm–1的0.77 %)吸收系数函数, 平均103次, 总用时4 h

    Fig. 5.  (a) CO (4300.7 cm–1) absorption coefficient function measured by WM-DAS, 103 cycles of collection, and the total time is ~1 second; (b) absorption coefficient function of CO (6383.09 cm–1, the line strength is about 0.77% of 4300.7 cm–1) measured by CRDS, with an average of 103 times, with a total time of 4 hours.

    图 6  WM-DAS和CRDS两种方法测量CO浓度的Allan标准差

    Fig. 6.  Allan standard deviation of CO concentration measured by WM-DAS and CRDS.

    图 7  不同浓度配比下, WM-DAS(红色)和CRDS(蓝色)连续测量结果 (a) 低浓度(1.3 × 10–6—9.6 × 10–6); (b) 极低浓度(0.44 × 10–6—1.33 × 10–6)

    Fig. 7.  Continuous measurement results of WM-DAS (red) and CRDS (blue) under different concentration ratios: (a) Low concentration (1.3 × 10–6–19.6 × 10–6) (b) extremely low concentration (0.44 × 10–6–11.33 × 10–6).

    图 8  WM-DAS和CRDS测量的不同浓度下CO的吸收系数(去除了CRDS测量的吸收系数基线以便于比较)

    Fig. 8.  Absorption coefficient of CO measured by WM-DAS and CRDS at different concentrations (the baseline of absorption coefficient measured by CRDS is removed).

    图 9  大气痕量CO连续监测原始数据(绿色)及24 h平均(蓝色), 以及监测总站测量的CO(红色)及PM2.5(黑色)

    Fig. 9.  Atmospheric trace CO continuous monitoring raw data (green) and 24-hour average (blue), CO (red) and PM2.5 (black) measured by the monitoring station.

  • [1]

    Zellweger C, Steinbrecher R, Laurent O, Lee H, Kim S, Emmenegger L, Steinbacher M, Buchmann B 2019 Atmos. Meas. Tech. 12 5863Google Scholar

    [2]

    Chen H, Karion A, Rella C W, Winderlich J, Gerbig C, Filges A, Newberger T, Sweeney C, Tans P P 2013 Atmos. Meas. Tech. 6 1031Google Scholar

    [3]

    van der Laan S, Neubert R E M, Meijer H A J 2009 Atmos. Meas. Tech. 2 549Google Scholar

    [4]

    Hammer S, Griffith D W T, Konrad G, Vardag S, Caldow C, Levin I 2013 Atmos. Meas. Tech. 6 1153Google Scholar

    [5]

    Adámek P, Olejníček J, Čada M, Kment Š, Hubička Z 2013 Opt. Lett. 38 2428Google Scholar

    [6]

    Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2016 Prog. Energy Combust. 60 132

    [7]

    Witzel O, Klein A, Meffert C, Wagner S, Kaiser S, Schulz C, Ebert V 2013 Opt. Express 21 19951Google Scholar

    [8]

    Hanson R K 2011 Proc. Combust. Inst. 33 1Google Scholar

    [9]

    Pal M, Maity A, Pradhan M 2018 Laser Phys. 28 105702Google Scholar

    [10]

    Maity A, Pal M, Banik1 G D, Maithani S, Pradhan M 2017 Laser Phys. Lett. 14 115701Google Scholar

    [11]

    Zhou S, Liu N W, Shen C Y, Zhang L, He T B, Yu B L, Li J S 2019 Spectrochim. Acta A 2019 223 117332

    [12]

    Tang Y Y, Liu W Q, Kan R F, Liu J G, He Y B, Zhang Y J, Xu Z Y, Ruan J, Geng H 2011 Opt. Express 19 20224Google Scholar

    [13]

    Kasyutich1 V L, Holdsworth R J, Martin P A 2008 Appl. Phys. B 92 271Google Scholar

    [14]

    Stefan´ski P, Lewicki R, Sanchez N P, Tarka J, Griffin R J, Razeghi M, Tittel F K 2014 Appl. Phys. B 117 519Google Scholar

    [15]

    Qiao S D, Ma Y F, He Y, Patimisco P, Sampaolo A, Spagnolo V 2021 Opt. Express 29 25100Google Scholar

    [16]

    Dang J M, Yu H Y, Sun Y J, Wang Y D 2017 Infrared Phys. Technol. 82 183Google Scholar

    [17]

    Li J S, Parchatka U, Fischer H 2013 Sens. Actuators, B 182 659Google Scholar

    [18]

    Wei M, Ye Q H, Kan R F, Chen B, Yang C G, Xu Z Y, Chen X, Ruan J, Fan X L, Wang W, Hu M, Liu J G 2016 Chin. Phys. B 25 094210Google Scholar

    [19]

    Lan L J, Ding Y J, Peng Z M, Du Y J, Liu Y F, Li Z 2014 Appl. Phys. B 117 543Google Scholar

    [20]

    Silva M L, Wainner R T, Sonnenfroh D M, Rosen D I, Allen M G, Risby T H 2005 Proc. SPIE, November 17, 2005 p6010

    [21]

    Hangauer A, Chen J, Strzoda R, Ortsiefer M, Amann M C 2008 Opt. Lett. 33 1566Google Scholar

    [22]

    Hangauer A, Chen J, Strzoda R, Fleischer M, Amann M C 2013 Opt. Express 22 13680

    [23]

    Ortsiefer M, Neumeyr C, Rosskopf J, Arafin S, Böhm G, Hangauer A, Chen J, Strzoda R, M.-C. Amann M C 2011 Proc. SPIE 7945 794509Google Scholar

    [24]

    Ma Y F, Yu G, Zhang J B, Yu X, Sun R 2015 J. Opt. 17 055401Google Scholar

    [25]

    Lou D C, Rao W, Wang K, Song J L, Jiang Y J 2020 Global Intelligent Industry Conference 2020 Proc. SPIE March 18, 2021, p117801P

    [26]

    陈兵, 周泽义, 康鹏, 刘安雯, 胡水明 2015 光谱学与光谱分析 35 971Google Scholar

    Chen B, Zhou Z Y, Kang P, Liu A W, Hu S M 2015 Spectrosc. Spect. Anal. 35 971Google Scholar

    [27]

    Peng Z M, Du Y J, Ding Y J 2020 Sensors 20 681Google Scholar

    [28]

    Peng Z M, Du Y J, Ding Y J 2020 Sensors 20 616Google Scholar

    [29]

    Maity A, Pal M, Banik1 G D, Maithani S, Pradhan M 2017 Laser Physics Letters 14 115701

    [30]

    Mazurenka M, Wada R, Shillings A J L, Butler T J A, Beames J M, Orr-Ewing A J 2005 Appl. Phys. B 81 135Google Scholar

    [31]

    Li J D, Du Y J, Ding Y J, Peng Z M 2020 J. Quant. Spectrosc. Radiat. Transfer 254 107216Google Scholar

    [32]

    Li J D, Du Y J, Ding Y J, Peng Z M 2021 J. Quant. Spectrosc. Radiat. Transfer 272 107790Google Scholar

    [33]

    Gordon I E, Rothman L S, Hill C, et al. 2017 J. Quant. Spectrosc. Radiat. Transfer 203 3Google Scholar

    [34]

    Boyer W, Lynas-Gray A E 2014 MNRAS 444 2555Google Scholar

    [35]

    Allan D W 1966 Proc. IEEE 54 221Google Scholar

    [36]

    Zhao G, Tan W, Jia M Y, Hou J J, Ma W G, Dong L, Zhang L, Feng X X, Wu X C, Yin W B, Xiao L T, Axner O, Jia S T 2016 Sensors 16 1544Google Scholar

    [37]

    王振, 杜艳君, 丁艳军, 彭志敏 2020 物理学报 69 064204Google Scholar

    Wang Z, Du Y J, Ding Y J, Peng Z M 2020 Acta Phys. Sin. 69 064204Google Scholar

    [38]

    王振, 杜艳君, 丁艳军, 彭志敏 2019 物理学报 68 204204Google Scholar

    Wang Z, Du Y J, Ding Y J, Peng Z M 2019 Acta Phys. Sin. 68 204204Google Scholar

    [39]

    Wang Z, Du Y J, Ding Y J, Peng Z M 2020 Sensors 20 585Google Scholar

  • [1] 李绍民, 孙利群. 基于改进波长调制光谱技术的高吸收度甲烷气体测量. 物理学报, 2023, 72(1): 010701. doi: 10.7498/aps.72.20221725
    [2] 田思迪, 杜艳君, 李济东, 丁艳军, 彭志敏, 吕俊复, 潘超, 冯小雅. H2S分子6320—6350 cm–1波段谱线参数高精度测量. 物理学报, 2023, 72(2): 024205. doi: 10.7498/aps.72.20221855
    [3] 熊枫, 彭志敏, 王振, 丁艳军, 吕俊复, 杜艳君. CO2/CO干扰下基于腔衰荡吸收光谱的痕量H2S浓度测量. 物理学报, 2023, 72(4): 043302. doi: 10.7498/aps.72.20221851
    [4] 黄知秋, 张猛, 彭志敏, 王振, 杨乾锁. 注入光有限相干性对衰荡腔测试方法的影响及求解衰荡时间的强度积分法. 物理学报, 2023, 72(18): 184205. doi: 10.7498/aps.72.20230448
    [5] 王兴平, 赵刚, 焦康, 陈兵, 阚瑞峰, 刘建国, 马维光. 光学反馈线性腔衰荡光谱技术不确定性. 物理学报, 2022, 71(12): 124201. doi: 10.7498/aps.70.20220186
    [6] 王兴平, 赵刚, 焦康, 陈兵, 阚瑞峰, 刘建国, 马维光. 光学反馈线性腔衰荡光谱技术不确定性研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220186
    [7] 李绍民, 孙利群. 基于改进波长调制光谱技术的高吸收度甲烷气体测量. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221725
    [8] 刘建鑫, 赵刚, 周月婷, 周晓彬, 马维光. 高反射腔镜双折射效应对腔增强光谱技术的影响. 物理学报, 2022, 71(8): 084202. doi: 10.7498/aps.71.20212090
    [9] 王振, 杜艳君, 丁艳军, 吕俊复, 彭志敏. 基于CRDS和WM-DAS的宽量程免标定H2S体积分数的测量. 物理学报, 2022, 71(18): 184205. doi: 10.7498/aps.71.20220742
    [10] 王振, 杜艳君, 丁艳军, 李政, 彭志敏. 波长调制-直接吸收光谱(WM-DAS)在线监测大气CO浓度. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211772
    [11] 王振, 杜艳君, 丁艳军, 彭志敏. 波长调制-直接吸收方法在线监测大气中CH4和CO2浓度. 物理学报, 2020, 69(6): 064205. doi: 10.7498/aps.69.20191569
    [12] 王振, 杜艳君, 丁艳军, 彭志敏. 基于波长调制-直接吸收光谱方法的CO分子1567 nm处谱线参数高精度标定. 物理学报, 2020, 69(6): 064204. doi: 10.7498/aps.69.20191865
    [13] 王金舵, 余锦, 貊泽强, 何建国, 代守军, 孟晶晶, 王晓东, 刘洋. 连续波腔衰荡光谱技术中模式筛选的数值方法. 物理学报, 2019, 68(24): 244201. doi: 10.7498/aps.68.20190844
    [14] 王振, 杜艳君, 丁艳军, 彭志敏. 基于傅里叶变换的波长扫描腔衰荡光谱. 物理学报, 2019, 68(20): 204204. doi: 10.7498/aps.68.20191062
    [15] 李宁, 吕晓静, 翁春生. 基于光强与吸收率非线性同步拟合的吸收光谱测量方法. 物理学报, 2018, 67(5): 057801. doi: 10.7498/aps.67.20171905
    [16] 赵静, 余辉龙, 刘伟伟, 郭婧. 砷化镓光电阴极光谱响应与吸收率关系分析. 物理学报, 2017, 66(22): 227801. doi: 10.7498/aps.66.227801
    [17] 贾梦源, 赵刚, 侯佳佳, 谭巍, 邱晓东, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂. 双重频率锁定的腔衰荡吸收光谱技术及信号处理. 物理学报, 2016, 65(12): 128701. doi: 10.7498/aps.65.128701
    [18] 王晓波, 马维光, 王晶晶, 肖连团, 贾锁堂. 单光子波长调制吸收光谱用于1.5 m激光器的波长锁定. 物理学报, 2012, 61(10): 104205. doi: 10.7498/aps.61.104205
    [19] 李宁, 翁春生. 非标定波长调制吸收光谱气体测量研究. 物理学报, 2011, 60(7): 070701. doi: 10.7498/aps.60.070701
    [20] 曹 琳, 王春梅, 陈扬骎, 杨晓华. 光外差腔衰荡光谱理论研究. 物理学报, 2006, 55(12): 6354-6359. doi: 10.7498/aps.55.6354
计量
  • 文章访问数:  4628
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-23
  • 修回日期:  2021-10-20
  • 上网日期:  2022-02-17
  • 刊出日期:  2022-02-20

/

返回文章
返回