搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于级联光参量放大器的碱金属原子跃迁线波段压缩光源分析

韩亚帅 张啸 张昭 屈军 王军民

引用本文:
Citation:

基于级联光参量放大器的碱金属原子跃迁线波段压缩光源分析

韩亚帅, 张啸, 张昭, 屈军, 王军民

Analysis of squeezed light source in band of alkali atom transitions based on cascaded optical parametric amplifiers

Han Ya-Shuai, Zhang Xiao, Zhang Zhao, Qu Jun, Wang Jun-Min
PDF
HTML
导出引用
  • 碱金属原子跃迁线波段压缩态光场是量子信息以及精密测量领域的重要量子资源. 碱金属原子跃迁线波长短(760—860 nm), 受限于非线性晶体的灰迹效应, 光参量放大器制备的此波段压缩态光场的压缩度有限, 目前典型值约3—5 dB. 本文在光参量放大器的理论模型基础上, 结合原子跃迁线波段压缩态光场实验制备面临的问题, 研究光参量放大器输出光场量子噪声随其物理参数的变化规律, 获得最优的物理参数. 构建了级联光参量放大器的理论模型, 以此为基础分别在分析频率2 MHz和100 kHz, 研究了级联环路光学损耗以及相位噪声对级联系统输出量子噪声特性的影响. 研究发现, 对于兆赫兹波段的压缩, 在低的光路损耗以及位相噪声前提下, 级联2—3个光参量放大器可实现压缩的显著提升; 对于低频段压缩, 级联系统对压缩的增强较小. 在目前的实验参数条件下, 进一步探究了级联系统输出压缩态光场的量子极限以及频谱特性. 本研究可为原子跃迁线波段压缩态光场压缩度的提升提供参考和指导.
    The squeezed light field in the band of alkali metal atomic transitions is an important quantum resource in the field of quantum information and precision measurement. The wavelengths of atomic transition lines (760–860 nm) are relatively short. Limited by the gray-tracking effect of nonlinear crystals, the squeezing degree of the squeezed light in this band generated by the optical parametric amplifiers is low. Now, the squeezing is about 3–5 dB. Considering the problems in the experimental generation of the squeezed light at the wavelengths of atomic transitions, the variation law of quantum noise of the light field output from the single optical parametric amplifier with its physical parameters is studied theoretically, and the optimal physical parameters are obtained. To further improve the squeezing in the band of alkali metal atomic transitions, the cascaded optical parametric amplifiers are considered. Based on the basic theory of the optical parametric amplifiers, the theoretical model of the cascaded optical parametric amplifiers is constructed, in which the optical loss and phase noise of the cascaded optical loops are considered. Based on this, the quantum noise characteristics of the light field output from the cascaded system versus the optical loss and phase noise are analyzed at the frequencies of 2 MHz and 100 kHz, respectively. It is found that for the squeezing at 2 MHz, cascading 2 to 3 optical parametric amplifiers can significantly improve the squeezing under the premise of the low optical path loss and phase noise; for the squeezing in the low-frequency band, the enhancement of the squeezing for the cascaded system is quite weak. Under the current experimental parameters, the squeezing at 2 MHz of the squeezed light on rubidium resonance can be improved from –5 dB to –7 dB by cascading another DOPA. For the squeezing at low frequency band, the cascaded system proves to be useless, and the efforts should be made to reduce the technique noise in the low frequency band. Furthermore, the quantum limit and spectral characteristics of the squeezed light field output from the cascaded system are further explored. This study can provide reference and guidance for the improvement in the squeezing degree of the band of atomic transitions.
      通信作者: 韩亚帅, hanyashuai@ahnu.edu.cn ; 王军民, wwjjmm@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12104013, 12074005, 11974226)、安徽省留学归国人员创新创新创业扶持计划项目(批准号: 2020LCX007)、安徽省高校自然科学研究项目(批准号: KJ2020A0052)和光电材料与技术安徽省重点实验室开放基金(批准号: OMST202107)资助的课题
      Corresponding author: Han Ya-Shuai, hanyashuai@ahnu.edu.cn ; Wang Jun-Min, wwjjmm@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12104013, 12074005, 11974226), the Key Program of Innovation and Entrepreneurship Support Plan for Returned Talents in Anhui Province (Grant No. 2020LCX007), theNatural Science Research Projects of the Universities in Anhui Province (Grant No. KJ2020A0052), and the Anhui Province Key Laboratory of Optoelectric Materials Science and Technology (Grant No. OMST202107).
    [1]

    Li B B, Bilek J, Hoff U B, Madsen L S, Forstner S, Prakash V, Schäfermeier C, Gehring T, Bowen W P, Andersen U L 2018 Optica 5 850Google Scholar

    [2]

    Lawrie B J, Lett P D, Marino A M, Pooser R C 2019 ACS Photonics 6 1307Google Scholar

    [3]

    Su X L, Hao S H, Deng X W, Ma L Y, Wang M H, Jia X J, Xie C D, Peng K C 2013 Nat. Commun. 4 2828Google Scholar

    [4]

    Usenko V C 2018 Phys. Rev. A 98 032321Google Scholar

    [5]

    Yan Z H, Wu L, Jia X J, Liu Y H, Deng R J, Li S J, Wang H, Xie C D, Peng K C 2017 Nat. Commun. 8 718Google Scholar

    [6]

    Wolfgramm F, Cerè A, Beduini F A, Predojević A, Koschorreck M, Mitchell M W 2010 Phys. Rev. Lett. 105 053601Google Scholar

    [7]

    Bai L L, Wen X, Yang Y L, Zhang L L, He J, Wang Y H, Wang J M 2021 J. Opt. 23 085202Google Scholar

    [8]

    Wu L A, Kimble H J, Hall J L, Wu H F 1986 Phys. Rev. Lett. 57 2520Google Scholar

    [9]

    Vahlbruch H, Mehmet M, Danzmann K, R Schnabel 2016 Phys. Rev. Lett. 117 110801Google Scholar

    [10]

    Sun X C, Wang Y J, Tian L, Zheng Y H, Peng K C 2019 Chin. Opt. Lett. 17 072701Google Scholar

    [11]

    Suzukia S, Yonezawa H, Kannari F, Sasaki M, Furusawa A 2006 Appl. Phys. Lett. 89 061116Google Scholar

    [12]

    Takeno Y, Yukawa M, Yonezawa H, Furusawa A 2007 Opt. Express 15 4321Google Scholar

    [13]

    左冠华, 杨晨, 赵俊祥, 田壮壮, 朱诗尧, 张玉驰, 张天才 2020 物理学报 69 014207Google Scholar

    Zuo G H, Yang C, Zhao J X, Tian Z Z, Zhu S Y, Zhang Y C, Zhang T C 2020 Acta Phys. Sin. 69 014207Google Scholar

    [14]

    Tanimura T, Akamatsu D, Yokoi Y, Furusawa A, Kozuma M 2006 Opt. Lett. 31 2344Google Scholar

    [15]

    Hétet G, Glöckl O, Pilypas K A, Harb C C, Buchler B C, Bachor H A, Lam P K 2007 J. Phys. B 40 221Google Scholar

    [16]

    Han Y S, Wen X, He J, Yang B D, Wang Y H, Wang J M 2016 Opt. Express 24 2350Google Scholar

    [17]

    温馨, 韩亚帅, 刘金玉, 白乐乐, 何军, 王军民 2018 物理学报 67 024207Google Scholar

    Wen X, Han Y S, Liu J Y, Bai L L, He J, Wang J M 2018 Acta Phys. Sin. 67 024207Google Scholar

    [18]

    Yang W H, Wang Y J, Zheng Y. H, Lu H D 2015 Opt. Express 23 19624Google Scholar

    [19]

    Wang Y J, Yang W H, Li Z X, Zheng Y H 2017 Sci. Rep. 7 41405Google Scholar

    [20]

    Wang S, Pasiskevicius V, Laurell F 2004 J. Appl. Phys. 96 2023Google Scholar

    [21]

    Boulanger B, Rousseau I, Fève J P, Maglione M, Ménaert B, Marnier G 1999 IEEE J. Quantum. Electron. 35 281Google Scholar

    [22]

    Zhang J, Ye C G, Gao F, Xiao M 2008 Phys. Rev. Lett. 101 233602Google Scholar

    [23]

    Wang D, Zhang Y, Xiao M 2013 Phys. Rev. A 87 023834Google Scholar

    [24]

    Ye C, Zhang J 2006 Phys. Rev. A 73 023818Google Scholar

    [25]

    Shi S P, Wang Y J, Yang W H, Zheng Y H, Peng K C 2018 Opt. Lett. 43 5411Google Scholar

    [26]

    He W P, Li F L 2007 Phys. Rev. A 76 012328Google Scholar

  • 图 1  DOPA腔示意

    Fig. 1.  Schematic diagram of theDOPA cavity.

    图 2  级联DOPA结构示意图

    Fig. 2.  Schematic diagram of cascade DOPA.

    图 3  DOPA输出光场压缩度随输出耦合镜透过率的变化

    Fig. 3.  Squeezing degree of the output field versus the transmissivity of output coupler for the DOPA.

    图 4  在各个分析频率对应的最佳输出耦合镜透过率Topt下, DOPA输出的光场压缩度随分析频率f的变化, 插图给出了Topt与分析频率f的依赖关系

    Fig. 4.  Squeezing degree of the output filed versus analysis frequency for the DOPA at Topt of each frequency, inset shows dependence of Topt versus analysis frequency f.

    图 5  级联DOPA输出光场压缩度随传输光路损耗L的变化 (a)分析频率f = 2 MHz; (b)分析频率f = 100 kHz

    Fig. 5.  Squeezing degree of the output field versus the loss of optical loop for the cascaded DOPA: (a) f = 2 MHz; (b) f = 100 kHz.

    图 6  (a)和(c)为级联DOPA系统输出光场压缩度随传输光路位相延迟$\phi $的变化; (b)和(d)为级联DOPA可实现压缩增强的相位区间RE随级联DOPA个数的变化 (a)和(b)为分析频率f = 2 MHz的结果; (c)和(d)为分析频率f = 100 kHz结果

    Fig. 6.  (a) and (c) are the results for squeezing degree of the output field versus the phase delay $\phi $ of optical loop for the cascaded DOPA; (b) and (d) are the results for the phase region RE versus numbers of DOPA; (a) and (b) are the results for f = 2 MHz; (b) and (d) are the results for f = 100 kHz.

    图 7  考虑传输光路损耗以及位相噪声情况下, 级联DOPA系统输出光场在2 MHz分析频率处的压缩度随DOPA数目的变化

    Fig. 7.  The squeezing of the output field at 2 MHz from the cascaded DOPA versus the numbers of DOPA, at the circumstance of considering the loss and phase noise induced by optical loop.

    图 8  级联DOPA输出光场的压缩特性随分析频率的变化 (a)忽略传输光路位相噪声结果; (b)考虑4.42 mrad位相噪声的结果

    Fig. 8.  Squeezing characteristics of the output light for the cascaded DOPA versus analysis frequency: (a) The result when the phase noise induced by optical loop is ignored; (b) the result when the phase noise of 4.42 mrad is considered.

  • [1]

    Li B B, Bilek J, Hoff U B, Madsen L S, Forstner S, Prakash V, Schäfermeier C, Gehring T, Bowen W P, Andersen U L 2018 Optica 5 850Google Scholar

    [2]

    Lawrie B J, Lett P D, Marino A M, Pooser R C 2019 ACS Photonics 6 1307Google Scholar

    [3]

    Su X L, Hao S H, Deng X W, Ma L Y, Wang M H, Jia X J, Xie C D, Peng K C 2013 Nat. Commun. 4 2828Google Scholar

    [4]

    Usenko V C 2018 Phys. Rev. A 98 032321Google Scholar

    [5]

    Yan Z H, Wu L, Jia X J, Liu Y H, Deng R J, Li S J, Wang H, Xie C D, Peng K C 2017 Nat. Commun. 8 718Google Scholar

    [6]

    Wolfgramm F, Cerè A, Beduini F A, Predojević A, Koschorreck M, Mitchell M W 2010 Phys. Rev. Lett. 105 053601Google Scholar

    [7]

    Bai L L, Wen X, Yang Y L, Zhang L L, He J, Wang Y H, Wang J M 2021 J. Opt. 23 085202Google Scholar

    [8]

    Wu L A, Kimble H J, Hall J L, Wu H F 1986 Phys. Rev. Lett. 57 2520Google Scholar

    [9]

    Vahlbruch H, Mehmet M, Danzmann K, R Schnabel 2016 Phys. Rev. Lett. 117 110801Google Scholar

    [10]

    Sun X C, Wang Y J, Tian L, Zheng Y H, Peng K C 2019 Chin. Opt. Lett. 17 072701Google Scholar

    [11]

    Suzukia S, Yonezawa H, Kannari F, Sasaki M, Furusawa A 2006 Appl. Phys. Lett. 89 061116Google Scholar

    [12]

    Takeno Y, Yukawa M, Yonezawa H, Furusawa A 2007 Opt. Express 15 4321Google Scholar

    [13]

    左冠华, 杨晨, 赵俊祥, 田壮壮, 朱诗尧, 张玉驰, 张天才 2020 物理学报 69 014207Google Scholar

    Zuo G H, Yang C, Zhao J X, Tian Z Z, Zhu S Y, Zhang Y C, Zhang T C 2020 Acta Phys. Sin. 69 014207Google Scholar

    [14]

    Tanimura T, Akamatsu D, Yokoi Y, Furusawa A, Kozuma M 2006 Opt. Lett. 31 2344Google Scholar

    [15]

    Hétet G, Glöckl O, Pilypas K A, Harb C C, Buchler B C, Bachor H A, Lam P K 2007 J. Phys. B 40 221Google Scholar

    [16]

    Han Y S, Wen X, He J, Yang B D, Wang Y H, Wang J M 2016 Opt. Express 24 2350Google Scholar

    [17]

    温馨, 韩亚帅, 刘金玉, 白乐乐, 何军, 王军民 2018 物理学报 67 024207Google Scholar

    Wen X, Han Y S, Liu J Y, Bai L L, He J, Wang J M 2018 Acta Phys. Sin. 67 024207Google Scholar

    [18]

    Yang W H, Wang Y J, Zheng Y. H, Lu H D 2015 Opt. Express 23 19624Google Scholar

    [19]

    Wang Y J, Yang W H, Li Z X, Zheng Y H 2017 Sci. Rep. 7 41405Google Scholar

    [20]

    Wang S, Pasiskevicius V, Laurell F 2004 J. Appl. Phys. 96 2023Google Scholar

    [21]

    Boulanger B, Rousseau I, Fève J P, Maglione M, Ménaert B, Marnier G 1999 IEEE J. Quantum. Electron. 35 281Google Scholar

    [22]

    Zhang J, Ye C G, Gao F, Xiao M 2008 Phys. Rev. Lett. 101 233602Google Scholar

    [23]

    Wang D, Zhang Y, Xiao M 2013 Phys. Rev. A 87 023834Google Scholar

    [24]

    Ye C, Zhang J 2006 Phys. Rev. A 73 023818Google Scholar

    [25]

    Shi S P, Wang Y J, Yang W H, Zheng Y H, Peng K C 2018 Opt. Lett. 43 5411Google Scholar

    [26]

    He W P, Li F L 2007 Phys. Rev. A 76 012328Google Scholar

  • [1] 孙小聪, 李卫, 王雅君, 郑耀辉. 基于压缩态光场的量子增强型光学相位追踪. 物理学报, 2024, 73(5): 054203. doi: 10.7498/aps.73.20231835
    [2] 刘婷婷, 杨晓华, 韩亚帅, 王军民. 基于相干反馈的相敏放大器强度差压缩增强研究. 物理学报, 2024, 73(13): 134203. doi: 10.7498/aps.73.20240407
    [3] 李庆回, 姚文秀, 李番, 田龙, 王雅君, 郑耀辉. 明亮压缩态光场的操控及量子层析. 物理学报, 2021, 70(15): 154203. doi: 10.7498/aps.70.20210318
    [4] 刘奎, 马龙, 苏必达, 李佳明, 孙恒信, 郜江瑞. 基于非简并光学参量放大器产生光学频率梳纠缠态. 物理学报, 2020, 69(12): 124203. doi: 10.7498/aps.69.20200107
    [5] 左冠华, 杨晨, 赵俊祥, 田壮壮, 朱诗尧, 张玉驰, 张天才. 基于参量放大器的铯原子D2线明亮偏振压缩光源的产生. 物理学报, 2020, 69(1): 014207. doi: 10.7498/aps.69.20191009
    [6] 王俊萍, 张文慧, 李瑞鑫, 田龙, 王雅君, 郑耀辉. 宽频带压缩态光场光学参量腔的设计. 物理学报, 2020, 69(23): 234204. doi: 10.7498/aps.69.20200890
    [7] 冯晋霞, 杜京师, 靳晓丽, 李渊骥, 张宽收. 音频段1.34 μm压缩态光场的实验制备. 物理学报, 2018, 67(17): 174203. doi: 10.7498/aps.67.20180301
    [8] 刘增俊, 翟泽辉, 孙恒信, 郜江瑞. 低频压缩态光场的制备. 物理学报, 2016, 65(6): 060401. doi: 10.7498/aps.65.060401
    [9] 尤良芳, 令维军, 李可, 张明霞, 左银燕, 王屹山. 基于单个BBO晶体载波包络相位稳定的高效率光参量放大器. 物理学报, 2014, 63(21): 214203. doi: 10.7498/aps.63.214203
    [10] 严晓波, 杨柳, 田雪冬, 刘一谋, 张岩. 参量放大器腔中光力诱导透明与本征模劈裂性质. 物理学报, 2014, 63(20): 204201. doi: 10.7498/aps.63.204201
    [11] 俞立先, 梁奇锋, 汪丽蓉, 朱士群. Rabi模型的光场压缩. 物理学报, 2013, 62(16): 160301. doi: 10.7498/aps.62.160301
    [12] 张岩, 于旭东, 邸克, 李卫, 张靖. 压缩态光场平衡零拍探测的位相锁定. 物理学报, 2013, 62(8): 084204. doi: 10.7498/aps.62.084204
    [13] 李明, 唐涛, 陈鼎汉. V型三能级原子双模光场系统中光场压缩性质. 物理学报, 2011, 60(7): 073203. doi: 10.7498/aps.60.073203
    [14] 赵超樱, 谭维翰, 郭奇志. 由非简并光学参量放大系统获得压缩态光所满足的Fokker-Planck方程及其解. 物理学报, 2003, 52(11): 2694-2699. doi: 10.7498/aps.52.2694
    [15] 孙涛, 黄锦圣, 张伟力, 王清月. 输出13.5fs激光脉冲的非共线式光参量放大器. 物理学报, 2002, 51(10): 2281-2285. doi: 10.7498/aps.51.2281
    [16] 冯勋立, 徐至展, 夏宇兴. 压缩真空态光场抽运的双光子激光. 物理学报, 2000, 49(2): 235-240. doi: 10.7498/aps.49.235
    [17] 张俊香, 贺凌翔, 张天才, 谢常德, 彭昆墀. 压缩态光场的四阶量子干涉. 物理学报, 1999, 48(7): 1230-1235. doi: 10.7498/aps.48.1230
    [18] 谢瑞华. 二能级系统中光场压缩与原子偶极压缩间的对称特性. 物理学报, 1996, 45(9): 1463-1478. doi: 10.7498/aps.45.1463
    [19] 何林生, 江海河. 组合光场增强压缩真空场中原子冷却作用. 物理学报, 1995, 44(12): 1904-1913. doi: 10.7498/aps.44.1904
    [20] 彭堃墀, 黄茂全, 刘晶, 廉毅敏, 张天才, 于辰, 谢常德, 郭光灿. 双模光场压缩态的实验研究. 物理学报, 1993, 42(7): 1079-1085. doi: 10.7498/aps.42.1079
计量
  • 文章访问数:  3611
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-19
  • 修回日期:  2021-12-12
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-05

/

返回文章
返回