-
为了深入理解横向气膜作用下液体射流的破碎雾化特性, 设计了一种以空气和水为模拟介质的针栓喷注单元, 并通过两相流大涡模拟和背景光成像对大气环境下其近喷孔区域内的液体射流破碎过程和动态特性进行研究. 通过大涡模拟液体射流的表面波主导破碎过程得到了针栓喷注单元近喷孔区域的喷雾场建立过程, 亚声速气流离开狭缝后膨胀加速为超声速气流, 经过液体射流上游的脱体弓形激波后减速增压. 而在液体射流上下游之间的压差作用下, 射流往下游发生弯曲的同时迎风面出现Rayleigh-Taylor (R-T)不稳定表面波; 随着表面波的发展, 气流穿透表面波的波谷位置导致连续射流发生断裂. 正交分解(proper orthogonal decomposition, POD)方法可有效重构瞬时喷雾图像, POD模态表明近喷孔区域的低频和高频喷雾振荡分别由喷雾场的整体扩张/收缩过程和液块或者液雾团在迎风面的“撞击波”型运动引起, 而后者的形态属于受连续液体射流断裂前的R-T不稳定表面波影响而产生的行波结构, 其无量纲行波波长与韦伯数呈幂次律关系.In order to understand the fragmentation and atomization characteristics of the liquid jet in transverse gas film, a pintle injection element using air and water as simulants is designed. The two-phase flow large eddy simulation and backlight imaging are used to study the liquid-jet breakup process and spray-field dynamic characteristics in the nearorifice area of pinte injection element under the atmospheric environment. The primary fragmentation process of the liquid jet dominated by surface wave is obtained by large eddy simulation, which reveals the establishment process of the spray field in near-orifice area of the gas-liquid pintle injector. After the subsonic airflow leaves the slit, it expands and accelerates into supersonic state. Then the deceleration and pressurization phenomenon occurs once the supersonic airflow passes through the detached bow shock upstream of the liquid jet. The liquid jet bends downstream due to the difference in pressure between upstream and downstream, and the Rayleigh-Taylor (R-T) unstable surface wave appears on the jet windward surface. As the surface wave develops, the penetration of the wave trough by airflow causes the continuous liquid jet to fragment. Proper orthogonal decomposition (POD) method can effectively reconstruct spray snapshot. The POD mode shows that the low-frequency spray oscillation in near-orifice area is caused by the overall expansion/contraction process of the spray field, while the high-frequency one is due to the “impact wave” movement of the liquid block or liquid mist group on the windward side. The latter is produced by the R-T unstable surface wave before the jet breakup, and can be categorized as traveling wave structure. The dimensionless traveling wave wavelength has a power-law relationship with Weber number.
-
Keywords:
- transverse gas film /
- liquid jet /
- breakup and atomization
[1] 张育林 2001 变推力液体火箭发动机及其控制技术 (北京: 国防工业出版社) 第4页
Zhang Y L 2001 Variable Thrust Liquid Propellant Rocket Engine and Its Control Techniques (Beijing: National Defense Industry Press) p4 (in Chinese)
[2] 安鹏, 姚世强, 王京丽 2016 导弹与航天运载技术 345 50
An P, Yao S Q, Wang J L 2016 Msl. Space Veh. 345 50
[3] Dressler G A 2006 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Sacramento, California, July 9–12, 2006 AIAA-2006-5220
[4] Sun Z Z, Jia Y, Zhang H 2013 Sci. China Ser. E 56 2702Google Scholar
[5] 雷娟萍, 兰晓辉, 章荣军, 陈炜 2014 中国科学:技术科学 44 569
Lei J P, Lan X H, Zhang R J, Chen W 2014 Sci. China Ser. E 44 569
[6] Davis L A 2016 Engineering-PRC 2 152
[7] Jin X, Shen C B, Zhou R, Fang X X 2020 Int. J. Aerospace Eng. 2020 8867199
[8] 陈慧源, 李清廉, 成鹏, 林文浩, 李晨阳 2019 物理学报 68 204704Google Scholar
Chen H Y, Li Q L, Cheng P, Lin W H, Li C Y 2019 Acta Phys. Sin. 68 204704Google Scholar
[9] 陈慧源 2020 博士学位论文 (长沙: 国防科技大学研究生院)
Cheng H Y 2020 Ph. D. Dissertation (Changsha: Graduate School of National University of Defense Technology) (in Chinese)
[10] 王凯, 雷凡培, 杨岸龙, 杨宝娥, 周立新 2020 航空学报 41 91
Wang K, Lei F P, Yang A L, Yang B E, Zhou L X, 2020 Acta Aeronaut. et Astronaut. Sin. 41 91
[11] 王凯, 雷凡培, 杨岸龙, 杨宝娥, 周立新 2021 航空学报 42 342
Wang K, Lei F P, Yang A L, Yang B E, Zhou L X, 2021 Acta Aeronaut. et Astronaut. Sin. 42 342
[12] Radhakrishnan K, Son M, Lee K, Koo J 2018 Acta Astronaut. 150 105Google Scholar
[13] Radhakrishnan K, Son M, Lee K, Koo J 2018 Atomizaiton Spray. 28 443Google Scholar
[14] Son M, Yu K, Radhakrishnan K, Shin B, Koo J 2016 J. Therm. Sci. 25 90Google Scholar
[15] 张彬 2020 硕士学位论文 (长沙: 国防科技大学研究生院)
Zhang B 2020 Master Dissertation (Changsha: Graduate School of National University of Defense Technology) (in Chinese)
[16] 张彬, 成鹏, 李清廉, 陈慧源, 李晨阳 2021 物理学报 70 054702Google Scholar
Zhang B, Cheng P, Li Q L, Chen H Y, Li C Y 2021 Acta Phys. Sin. 70 054702Google Scholar
[17] 林森 2021 硕士学位论文 (长沙: 国防科技大学研究生院)
Lin S 2021 Master Dissertation (Changsha: Graduate School of National University of Defense Technology) (in Chinese)
[18] Xiao F 2012 Ph. D. Dissertation (Leicester: Loughborough University)
[19] Xiao F, Dianat M, Mcguirk J J 2013 AIAA J. 51 2878Google Scholar
[20] Lee K, Aalburg C, Diez F J, Faeth G M, Sallam K A 2007 AIAA J. 48 1907
[21] Park S W, Kim S, Lee C S 2006 Int. J. Multiphas. Flow 32 807Google Scholar
[22] Sallam K A, Aalburg C, Faeth G M 2004 AIAA J. 42 2529Google Scholar
[23] Lubarsky E, Shcherbik D, Bibik O, Gopala Y, Zinn B T 2012 Adv. Fluid Dyn. 4 59
[24] 吴里银, 王振国, 李清廉, 李春 2016 物理学报 65 094701Google Scholar
Wu L Y, Wang Z G, Li Q L, Li C 2016 Acta Phys. Sin. 65 094701Google Scholar
[25] Xiao F, Wang Z G, Sun M B, Liu N, Yang X 2017 P. Combust. Inst. 26 2417
[26] Wang Z G, Wu L Y, Li Q L 2014 Appl. Phys. Lett. 105 134102Google Scholar
[27] 高亚军, 姜汉桥, 李俊键, 赵玉云, 胡锦川, 常元昊 2017 物理学报 66 024702Google Scholar
Gao Y J, Jiang H Q, Li J J, Zhao Y Y, Hu J C, Chang Y H 2017 Acta Phys. Sin. 66 024702Google Scholar
[28] 梁刚涛, 郭亚丽, 沈胜强 2013 物理学报 62 024705Google Scholar
Liang G T, Guo Y L, Shen S Q 2013 Acta Phys. Sin. 62 024705Google Scholar
[29] Zhou R, Shen C B, Jin X 2020 J. Zhejiang Univ-SC. A 21 684Google Scholar
[30] Elshamy O M 2007 Ph. D. Dissertation (Cincinnati, OH: Division of Graduate Studies and Research of the University of Cincinnati)
[31] Chakraborty P, Balachandar S, Adrian R J 2005 J. Fluid Mech. 535 189Google Scholar
[32] Rodrigues N S, Kulkarni V, Gao J, Chen J, Sojka P E 2015 Exp. Fluids 56 1Google Scholar
[33] Arienti M, Soteriou M C 2009 Phys. Fluids 21 112104Google Scholar
-
图 5 关于工况CT14#中射流/液雾分布范围的仿真结果(红色气液界面)与试验数据(蓝色的喷雾分数γ=0.1等值线)对比 (a) 时均射流/液雾边界带; (b) 计算网格; (c) 对比网格A; (d) 对比网格B
Fig. 5. Comparison of LES-predicted liquid jet/spray distribution (gas-liquid interface colored by red) for case CT14# with experimental data (i.e. the blue spray fraction iso-line of γ=0.1): (a) time-averaged boundary band; (b) computing grid; (c) contrast grid A; (d) contrast grid B.
图 7 工况CT14#中典型R-T不稳定表面波形态的试验[(a)—(b)]与仿真[(c)—(h)]对比: (a) t1 (试验结果); (b) t1+15 μs (试验结果); (c) t2 (计算网格仿真结果); (d) t2+15 μs (计算网格仿真结果); (e) t3 (对比网格A仿真结果); (f) t3+15 μs (对比网格A仿真结果); (g) t4 (对比网格B仿真结果); (h) t4+15 μs (对比网格B仿真结果)
Fig. 7. Comparison of experimental [(a)–(b)] and simulation [(c)–(h)] results of case CT14# on the distribution of typical R-T unsteady surface waves: (a) t1 (experimental result); (b) t1+15 μs (experimental result); (c) t2 (simulation result of computing grid); (d) t2+15 μs (simulation result of computing grid); (e) t3 (simulation result of contrast grid A); (f) t3+15 μs (simulation result of contrast grid A); (g) t4 (simulation result of contrast grid B); (h) t4+15 μs (simulation result of contrast grid B).
图 8 工况CT14#中瞬时射流结构(红色)与涡结构(绿色)的叠加图, 其中涡结构由速度梯度第二不变量[31]的等值面表示
Fig. 8. Instantaneous liquid jet structure (colored by red) of case CT14#, superimposed with the vertical structures identified by isosurface of the second invariance of the velocity gradient tensor (colored by green).
表 1 冷试工况设置
Table 1. Operating conditions of cold tests.
qG/(g·s–1) & vG/(g·s–1) 67.42 & 262.89 33.41 & 265.22 21.95 & 269.01 16.29 & 272.04 12.98 & 273.06 10.70 & 275.90 喷孔类型
& qL/(g·s–1)A & 8.18 CT01# CT02# CT03# CT04# CT05# CT06# B & 12.27 CT07# CT08# CT09# CT10# CT11# CT12# C & 24.54 CT13# CT14# CT15# CT16# CT17# CT18# D & 49.08 CT19# CT20# CT21# CT22# CT23# CT24# -
[1] 张育林 2001 变推力液体火箭发动机及其控制技术 (北京: 国防工业出版社) 第4页
Zhang Y L 2001 Variable Thrust Liquid Propellant Rocket Engine and Its Control Techniques (Beijing: National Defense Industry Press) p4 (in Chinese)
[2] 安鹏, 姚世强, 王京丽 2016 导弹与航天运载技术 345 50
An P, Yao S Q, Wang J L 2016 Msl. Space Veh. 345 50
[3] Dressler G A 2006 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Sacramento, California, July 9–12, 2006 AIAA-2006-5220
[4] Sun Z Z, Jia Y, Zhang H 2013 Sci. China Ser. E 56 2702Google Scholar
[5] 雷娟萍, 兰晓辉, 章荣军, 陈炜 2014 中国科学:技术科学 44 569
Lei J P, Lan X H, Zhang R J, Chen W 2014 Sci. China Ser. E 44 569
[6] Davis L A 2016 Engineering-PRC 2 152
[7] Jin X, Shen C B, Zhou R, Fang X X 2020 Int. J. Aerospace Eng. 2020 8867199
[8] 陈慧源, 李清廉, 成鹏, 林文浩, 李晨阳 2019 物理学报 68 204704Google Scholar
Chen H Y, Li Q L, Cheng P, Lin W H, Li C Y 2019 Acta Phys. Sin. 68 204704Google Scholar
[9] 陈慧源 2020 博士学位论文 (长沙: 国防科技大学研究生院)
Cheng H Y 2020 Ph. D. Dissertation (Changsha: Graduate School of National University of Defense Technology) (in Chinese)
[10] 王凯, 雷凡培, 杨岸龙, 杨宝娥, 周立新 2020 航空学报 41 91
Wang K, Lei F P, Yang A L, Yang B E, Zhou L X, 2020 Acta Aeronaut. et Astronaut. Sin. 41 91
[11] 王凯, 雷凡培, 杨岸龙, 杨宝娥, 周立新 2021 航空学报 42 342
Wang K, Lei F P, Yang A L, Yang B E, Zhou L X, 2021 Acta Aeronaut. et Astronaut. Sin. 42 342
[12] Radhakrishnan K, Son M, Lee K, Koo J 2018 Acta Astronaut. 150 105Google Scholar
[13] Radhakrishnan K, Son M, Lee K, Koo J 2018 Atomizaiton Spray. 28 443Google Scholar
[14] Son M, Yu K, Radhakrishnan K, Shin B, Koo J 2016 J. Therm. Sci. 25 90Google Scholar
[15] 张彬 2020 硕士学位论文 (长沙: 国防科技大学研究生院)
Zhang B 2020 Master Dissertation (Changsha: Graduate School of National University of Defense Technology) (in Chinese)
[16] 张彬, 成鹏, 李清廉, 陈慧源, 李晨阳 2021 物理学报 70 054702Google Scholar
Zhang B, Cheng P, Li Q L, Chen H Y, Li C Y 2021 Acta Phys. Sin. 70 054702Google Scholar
[17] 林森 2021 硕士学位论文 (长沙: 国防科技大学研究生院)
Lin S 2021 Master Dissertation (Changsha: Graduate School of National University of Defense Technology) (in Chinese)
[18] Xiao F 2012 Ph. D. Dissertation (Leicester: Loughborough University)
[19] Xiao F, Dianat M, Mcguirk J J 2013 AIAA J. 51 2878Google Scholar
[20] Lee K, Aalburg C, Diez F J, Faeth G M, Sallam K A 2007 AIAA J. 48 1907
[21] Park S W, Kim S, Lee C S 2006 Int. J. Multiphas. Flow 32 807Google Scholar
[22] Sallam K A, Aalburg C, Faeth G M 2004 AIAA J. 42 2529Google Scholar
[23] Lubarsky E, Shcherbik D, Bibik O, Gopala Y, Zinn B T 2012 Adv. Fluid Dyn. 4 59
[24] 吴里银, 王振国, 李清廉, 李春 2016 物理学报 65 094701Google Scholar
Wu L Y, Wang Z G, Li Q L, Li C 2016 Acta Phys. Sin. 65 094701Google Scholar
[25] Xiao F, Wang Z G, Sun M B, Liu N, Yang X 2017 P. Combust. Inst. 26 2417
[26] Wang Z G, Wu L Y, Li Q L 2014 Appl. Phys. Lett. 105 134102Google Scholar
[27] 高亚军, 姜汉桥, 李俊键, 赵玉云, 胡锦川, 常元昊 2017 物理学报 66 024702Google Scholar
Gao Y J, Jiang H Q, Li J J, Zhao Y Y, Hu J C, Chang Y H 2017 Acta Phys. Sin. 66 024702Google Scholar
[28] 梁刚涛, 郭亚丽, 沈胜强 2013 物理学报 62 024705Google Scholar
Liang G T, Guo Y L, Shen S Q 2013 Acta Phys. Sin. 62 024705Google Scholar
[29] Zhou R, Shen C B, Jin X 2020 J. Zhejiang Univ-SC. A 21 684Google Scholar
[30] Elshamy O M 2007 Ph. D. Dissertation (Cincinnati, OH: Division of Graduate Studies and Research of the University of Cincinnati)
[31] Chakraborty P, Balachandar S, Adrian R J 2005 J. Fluid Mech. 535 189Google Scholar
[32] Rodrigues N S, Kulkarni V, Gao J, Chen J, Sojka P E 2015 Exp. Fluids 56 1Google Scholar
[33] Arienti M, Soteriou M C 2009 Phys. Fluids 21 112104Google Scholar
计量
- 文章访问数: 4903
- PDF下载量: 90
- 被引次数: 0