搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

横向气膜作用下液体射流在近喷孔区域的破碎雾化特性

金烜 沈赤兵

引用本文:
Citation:

横向气膜作用下液体射流在近喷孔区域的破碎雾化特性

金烜, 沈赤兵

Fragmentation and atomization characteristics of near-orifice liquid jet under transverse gas film

Jin Xuan, Shen Chi-Bing
PDF
HTML
导出引用
  • 为了深入理解横向气膜作用下液体射流的破碎雾化特性, 设计了一种以空气和水为模拟介质的针栓喷注单元, 并通过两相流大涡模拟和背景光成像对大气环境下其近喷孔区域内的液体射流破碎过程和动态特性进行研究. 通过大涡模拟液体射流的表面波主导破碎过程得到了针栓喷注单元近喷孔区域的喷雾场建立过程, 亚声速气流离开狭缝后膨胀加速为超声速气流, 经过液体射流上游的脱体弓形激波后减速增压. 而在液体射流上下游之间的压差作用下, 射流往下游发生弯曲的同时迎风面出现Rayleigh-Taylor (R-T)不稳定表面波; 随着表面波的发展, 气流穿透表面波的波谷位置导致连续射流发生断裂. 正交分解(proper orthogonal decomposition, POD)方法可有效重构瞬时喷雾图像, POD模态表明近喷孔区域的低频和高频喷雾振荡分别由喷雾场的整体扩张/收缩过程和液块或者液雾团在迎风面的“撞击波”型运动引起, 而后者的形态属于受连续液体射流断裂前的R-T不稳定表面波影响而产生的行波结构, 其无量纲行波波长与韦伯数呈幂次律关系.
    In order to understand the fragmentation and atomization characteristics of the liquid jet in transverse gas film, a pintle injection element using air and water as simulants is designed. The two-phase flow large eddy simulation and backlight imaging are used to study the liquid-jet breakup process and spray-field dynamic characteristics in the nearorifice area of pinte injection element under the atmospheric environment. The primary fragmentation process of the liquid jet dominated by surface wave is obtained by large eddy simulation, which reveals the establishment process of the spray field in near-orifice area of the gas-liquid pintle injector. After the subsonic airflow leaves the slit, it expands and accelerates into supersonic state. Then the deceleration and pressurization phenomenon occurs once the supersonic airflow passes through the detached bow shock upstream of the liquid jet. The liquid jet bends downstream due to the difference in pressure between upstream and downstream, and the Rayleigh-Taylor (R-T) unstable surface wave appears on the jet windward surface. As the surface wave develops, the penetration of the wave trough by airflow causes the continuous liquid jet to fragment. Proper orthogonal decomposition (POD) method can effectively reconstruct spray snapshot. The POD mode shows that the low-frequency spray oscillation in near-orifice area is caused by the overall expansion/contraction process of the spray field, while the high-frequency one is due to the “impact wave” movement of the liquid block or liquid mist group on the windward side. The latter is produced by the R-T unstable surface wave before the jet breakup, and can be categorized as traveling wave structure. The dimensionless traveling wave wavelength has a power-law relationship with Weber number.
      通信作者: 金烜, 1540445629@qq.com ; 沈赤兵, cbshen@nudt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12072367, 11572346)和湖南省自然科学基金(批准号: 2020JJ4666)资助的课题
      Corresponding author: Jin Xuan, 1540445629@qq.com ; Shen Chi-Bing, cbshen@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12072367, 11572346) and the Natural Science Foundation of Hunan Province, China (Grant No. 2020JJ4666)
    [1]

    张育林 2001 变推力液体火箭发动机及其控制技术 (北京: 国防工业出版社) 第4页

    Zhang Y L 2001 Variable Thrust Liquid Propellant Rocket Engine and Its Control Techniques (Beijing: National Defense Industry Press) p4 (in Chinese)

    [2]

    安鹏, 姚世强, 王京丽 2016 导弹与航天运载技术 345 50

    An P, Yao S Q, Wang J L 2016 Msl. Space Veh. 345 50

    [3]

    Dressler G A 2006 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Sacramento, California, July 9–12, 2006 AIAA-2006-5220

    [4]

    Sun Z Z, Jia Y, Zhang H 2013 Sci. China Ser. E 56 2702Google Scholar

    [5]

    雷娟萍, 兰晓辉, 章荣军, 陈炜 2014 中国科学:技术科学 44 569

    Lei J P, Lan X H, Zhang R J, Chen W 2014 Sci. China Ser. E 44 569

    [6]

    Davis L A 2016 Engineering-PRC 2 152

    [7]

    Jin X, Shen C B, Zhou R, Fang X X 2020 Int. J. Aerospace Eng. 2020 8867199

    [8]

    陈慧源, 李清廉, 成鹏, 林文浩, 李晨阳 2019 物理学报 68 204704Google Scholar

    Chen H Y, Li Q L, Cheng P, Lin W H, Li C Y 2019 Acta Phys. Sin. 68 204704Google Scholar

    [9]

    陈慧源 2020 博士学位论文 (长沙: 国防科技大学研究生院)

    Cheng H Y 2020 Ph. D. Dissertation (Changsha: Graduate School of National University of Defense Technology) (in Chinese)

    [10]

    王凯, 雷凡培, 杨岸龙, 杨宝娥, 周立新 2020 航空学报 41 91

    Wang K, Lei F P, Yang A L, Yang B E, Zhou L X, 2020 Acta Aeronaut. et Astronaut. Sin. 41 91

    [11]

    王凯, 雷凡培, 杨岸龙, 杨宝娥, 周立新 2021 航空学报 42 342

    Wang K, Lei F P, Yang A L, Yang B E, Zhou L X, 2021 Acta Aeronaut. et Astronaut. Sin. 42 342

    [12]

    Radhakrishnan K, Son M, Lee K, Koo J 2018 Acta Astronaut. 150 105Google Scholar

    [13]

    Radhakrishnan K, Son M, Lee K, Koo J 2018 Atomizaiton Spray. 28 443Google Scholar

    [14]

    Son M, Yu K, Radhakrishnan K, Shin B, Koo J 2016 J. Therm. Sci. 25 90Google Scholar

    [15]

    张彬 2020 硕士学位论文 (长沙: 国防科技大学研究生院)

    Zhang B 2020 Master Dissertation (Changsha: Graduate School of National University of Defense Technology) (in Chinese)

    [16]

    张彬, 成鹏, 李清廉, 陈慧源, 李晨阳 2021 物理学报 70 054702Google Scholar

    Zhang B, Cheng P, Li Q L, Chen H Y, Li C Y 2021 Acta Phys. Sin. 70 054702Google Scholar

    [17]

    林森 2021 硕士学位论文 (长沙: 国防科技大学研究生院)

    Lin S 2021 Master Dissertation (Changsha: Graduate School of National University of Defense Technology) (in Chinese)

    [18]

    Xiao F 2012 Ph. D. Dissertation (Leicester: Loughborough University)

    [19]

    Xiao F, Dianat M, Mcguirk J J 2013 AIAA J. 51 2878Google Scholar

    [20]

    Lee K, Aalburg C, Diez F J, Faeth G M, Sallam K A 2007 AIAA J. 48 1907

    [21]

    Park S W, Kim S, Lee C S 2006 Int. J. Multiphas. Flow 32 807Google Scholar

    [22]

    Sallam K A, Aalburg C, Faeth G M 2004 AIAA J. 42 2529Google Scholar

    [23]

    Lubarsky E, Shcherbik D, Bibik O, Gopala Y, Zinn B T 2012 Adv. Fluid Dyn. 4 59

    [24]

    吴里银, 王振国, 李清廉, 李春 2016 物理学报 65 094701Google Scholar

    Wu L Y, Wang Z G, Li Q L, Li C 2016 Acta Phys. Sin. 65 094701Google Scholar

    [25]

    Xiao F, Wang Z G, Sun M B, Liu N, Yang X 2017 P. Combust. Inst. 26 2417

    [26]

    Wang Z G, Wu L Y, Li Q L 2014 Appl. Phys. Lett. 105 134102Google Scholar

    [27]

    高亚军, 姜汉桥, 李俊键, 赵玉云, 胡锦川, 常元昊 2017 物理学报 66 024702Google Scholar

    Gao Y J, Jiang H Q, Li J J, Zhao Y Y, Hu J C, Chang Y H 2017 Acta Phys. Sin. 66 024702Google Scholar

    [28]

    梁刚涛, 郭亚丽, 沈胜强 2013 物理学报 62 024705Google Scholar

    Liang G T, Guo Y L, Shen S Q 2013 Acta Phys. Sin. 62 024705Google Scholar

    [29]

    Zhou R, Shen C B, Jin X 2020 J. Zhejiang Univ-SC. A 21 684Google Scholar

    [30]

    Elshamy O M 2007 Ph. D. Dissertation (Cincinnati, OH: Division of Graduate Studies and Research of the University of Cincinnati)

    [31]

    Chakraborty P, Balachandar S, Adrian R J 2005 J. Fluid Mech. 535 189Google Scholar

    [32]

    Rodrigues N S, Kulkarni V, Gao J, Chen J, Sojka P E 2015 Exp. Fluids 56 1Google Scholar

    [33]

    Arienti M, Soteriou M C 2009 Phys. Fluids 21 112104Google Scholar

  • 图 1  针栓喷注单元结构示意图(单位: mm)

    Fig. 1.  Conceptual illustration of the gas-liquid pintle injector element (Unit: mm)

    图 2  针栓喷注单元装配图

    Fig. 2.  Final geometry of the pintle injection element assembly.

    图 3  试验系统示意图

    Fig. 3.  Schematic diagram of the experimental platform.

    图 4  计算域划分示意图

    Fig. 4.  Schematic diagram of the computational domain division.

    图 5  关于工况CT14#中射流/液雾分布范围的仿真结果(红色气液界面)与试验数据(蓝色的喷雾分数γ=0.1等值线)对比 (a) 时均射流/液雾边界带; (b) 计算网格; (c) 对比网格A; (d) 对比网格B

    Fig. 5.  Comparison of LES-predicted liquid jet/spray distribution (gas-liquid interface colored by red) for case CT14# with experimental data (i.e. the blue spray fraction iso-line of γ=0.1): (a) time-averaged boundary band; (b) computing grid; (c) contrast grid A; (d) contrast grid B.

    图 6  工况CT14#中瞬时液体射流形态对应的 (a)压力云图与(b)速度云图

    Fig. 6.  (a) Instantaneous pressure and (b) velocity contours of case CT14#, together with the liquid jet structure.

    图 7  工况CT14#中典型R-T不稳定表面波形态的试验[(a)—(b)]与仿真[(c)—(h)]对比: (a) t1 (试验结果); (b) t1+15 μs (试验结果); (c) t2 (计算网格仿真结果); (d) t2+15 μs (计算网格仿真结果); (e) t3 (对比网格A仿真结果); (f) t3+15 μs (对比网格A仿真结果); (g) t4 (对比网格B仿真结果); (h) t4+15 μs (对比网格B仿真结果)

    Fig. 7.  Comparison of experimental [(a)–(b)] and simulation [(c)–(h)] results of case CT14# on the distribution of typical R-T unsteady surface waves: (a) t1 (experimental result); (b) t1+15 μs (experimental result); (c) t2 (simulation result of computing grid); (d) t2+15 μs (simulation result of computing grid); (e) t3 (simulation result of contrast grid A); (f) t3+15 μs (simulation result of contrast grid A); (g) t4 (simulation result of contrast grid B); (h) t4+15 μs (simulation result of contrast grid B).

    图 8  工况CT14#中瞬时射流结构(红色)与涡结构(绿色)的叠加图, 其中涡结构由速度梯度第二不变量[31]的等值面表示

    Fig. 8.  Instantaneous liquid jet structure (colored by red) of case CT14#, superimposed with the vertical structures identified by isosurface of the second invariance of the velocity gradient tensor (colored by green).

    图 9  工况CT17#的(a)瞬时喷雾图像, (b)时均结果及(c)—(h)若干POD模态

    Fig. 9.  (a) Spray snapshot, (b) time average and (c)–(h) several POD modes of case CT17#.

    图 10  工况CT17#若干POD模态的时间系数功率谱叠加图

    Fig. 10.  Superposition of the power spectrum densities from several POD modes of case CT17#.

    图 11  工况CT17#的POD模态3和4时间系数的交叉功率谱幅值和相位角

    Fig. 11.  Amplitude and phase angle from CPSD (Mode-3 and Mode-4) of case CT17#.

    图 12  工况CT05#, CT11#和CT23#中耦合产生行波结构的POD模态

    Fig. 12.  POD modes that generate the traveling wave structure in case CT05#, CT11# and CT23#.

    图 13  无量纲行波波长与韦伯数变化的关系

    Fig. 13.  Variation of dimensionless surface wavelength versus Weber number.

    图 14  工况CT17#的瞬时喷雾图像重构

    Fig. 14.  Image reconstruction of spray snapshot from case CT17#.

    图 15  部分工况中重构误差的统计结果

    Fig. 15.  Statistical results of the reconstruction deviation in several cases.

    表 1  冷试工况设置

    Table 1.  Operating conditions of cold tests.

    qG/(g·s–1) & vG/(g·s–1)
    67.42 & 262.8933.41 & 265.2221.95 & 269.0116.29 & 272.0412.98 & 273.0610.70 & 275.90
    喷孔类型
    & qL/(g·s–1)
    A & 8.18CT01#CT02#CT03#CT04#CT05#CT06#
    B & 12.27CT07#CT08#CT09#CT10#CT11#CT12#
    C & 24.54CT13#CT14#CT15#CT16#CT17#CT18#
    D & 49.08CT19#CT20#CT21#CT22#CT23#CT24#
    下载: 导出CSV
  • [1]

    张育林 2001 变推力液体火箭发动机及其控制技术 (北京: 国防工业出版社) 第4页

    Zhang Y L 2001 Variable Thrust Liquid Propellant Rocket Engine and Its Control Techniques (Beijing: National Defense Industry Press) p4 (in Chinese)

    [2]

    安鹏, 姚世强, 王京丽 2016 导弹与航天运载技术 345 50

    An P, Yao S Q, Wang J L 2016 Msl. Space Veh. 345 50

    [3]

    Dressler G A 2006 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Sacramento, California, July 9–12, 2006 AIAA-2006-5220

    [4]

    Sun Z Z, Jia Y, Zhang H 2013 Sci. China Ser. E 56 2702Google Scholar

    [5]

    雷娟萍, 兰晓辉, 章荣军, 陈炜 2014 中国科学:技术科学 44 569

    Lei J P, Lan X H, Zhang R J, Chen W 2014 Sci. China Ser. E 44 569

    [6]

    Davis L A 2016 Engineering-PRC 2 152

    [7]

    Jin X, Shen C B, Zhou R, Fang X X 2020 Int. J. Aerospace Eng. 2020 8867199

    [8]

    陈慧源, 李清廉, 成鹏, 林文浩, 李晨阳 2019 物理学报 68 204704Google Scholar

    Chen H Y, Li Q L, Cheng P, Lin W H, Li C Y 2019 Acta Phys. Sin. 68 204704Google Scholar

    [9]

    陈慧源 2020 博士学位论文 (长沙: 国防科技大学研究生院)

    Cheng H Y 2020 Ph. D. Dissertation (Changsha: Graduate School of National University of Defense Technology) (in Chinese)

    [10]

    王凯, 雷凡培, 杨岸龙, 杨宝娥, 周立新 2020 航空学报 41 91

    Wang K, Lei F P, Yang A L, Yang B E, Zhou L X, 2020 Acta Aeronaut. et Astronaut. Sin. 41 91

    [11]

    王凯, 雷凡培, 杨岸龙, 杨宝娥, 周立新 2021 航空学报 42 342

    Wang K, Lei F P, Yang A L, Yang B E, Zhou L X, 2021 Acta Aeronaut. et Astronaut. Sin. 42 342

    [12]

    Radhakrishnan K, Son M, Lee K, Koo J 2018 Acta Astronaut. 150 105Google Scholar

    [13]

    Radhakrishnan K, Son M, Lee K, Koo J 2018 Atomizaiton Spray. 28 443Google Scholar

    [14]

    Son M, Yu K, Radhakrishnan K, Shin B, Koo J 2016 J. Therm. Sci. 25 90Google Scholar

    [15]

    张彬 2020 硕士学位论文 (长沙: 国防科技大学研究生院)

    Zhang B 2020 Master Dissertation (Changsha: Graduate School of National University of Defense Technology) (in Chinese)

    [16]

    张彬, 成鹏, 李清廉, 陈慧源, 李晨阳 2021 物理学报 70 054702Google Scholar

    Zhang B, Cheng P, Li Q L, Chen H Y, Li C Y 2021 Acta Phys. Sin. 70 054702Google Scholar

    [17]

    林森 2021 硕士学位论文 (长沙: 国防科技大学研究生院)

    Lin S 2021 Master Dissertation (Changsha: Graduate School of National University of Defense Technology) (in Chinese)

    [18]

    Xiao F 2012 Ph. D. Dissertation (Leicester: Loughborough University)

    [19]

    Xiao F, Dianat M, Mcguirk J J 2013 AIAA J. 51 2878Google Scholar

    [20]

    Lee K, Aalburg C, Diez F J, Faeth G M, Sallam K A 2007 AIAA J. 48 1907

    [21]

    Park S W, Kim S, Lee C S 2006 Int. J. Multiphas. Flow 32 807Google Scholar

    [22]

    Sallam K A, Aalburg C, Faeth G M 2004 AIAA J. 42 2529Google Scholar

    [23]

    Lubarsky E, Shcherbik D, Bibik O, Gopala Y, Zinn B T 2012 Adv. Fluid Dyn. 4 59

    [24]

    吴里银, 王振国, 李清廉, 李春 2016 物理学报 65 094701Google Scholar

    Wu L Y, Wang Z G, Li Q L, Li C 2016 Acta Phys. Sin. 65 094701Google Scholar

    [25]

    Xiao F, Wang Z G, Sun M B, Liu N, Yang X 2017 P. Combust. Inst. 26 2417

    [26]

    Wang Z G, Wu L Y, Li Q L 2014 Appl. Phys. Lett. 105 134102Google Scholar

    [27]

    高亚军, 姜汉桥, 李俊键, 赵玉云, 胡锦川, 常元昊 2017 物理学报 66 024702Google Scholar

    Gao Y J, Jiang H Q, Li J J, Zhao Y Y, Hu J C, Chang Y H 2017 Acta Phys. Sin. 66 024702Google Scholar

    [28]

    梁刚涛, 郭亚丽, 沈胜强 2013 物理学报 62 024705Google Scholar

    Liang G T, Guo Y L, Shen S Q 2013 Acta Phys. Sin. 62 024705Google Scholar

    [29]

    Zhou R, Shen C B, Jin X 2020 J. Zhejiang Univ-SC. A 21 684Google Scholar

    [30]

    Elshamy O M 2007 Ph. D. Dissertation (Cincinnati, OH: Division of Graduate Studies and Research of the University of Cincinnati)

    [31]

    Chakraborty P, Balachandar S, Adrian R J 2005 J. Fluid Mech. 535 189Google Scholar

    [32]

    Rodrigues N S, Kulkarni V, Gao J, Chen J, Sojka P E 2015 Exp. Fluids 56 1Google Scholar

    [33]

    Arienti M, Soteriou M C 2009 Phys. Fluids 21 112104Google Scholar

  • [1] 苗春贺, 袁良柱, 陆建华, 王鹏飞, 徐松林. PMMA的冲击破碎扩散特性研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120220740
    [2] 徐金鑫, 陈超越, 沈鹭宇, 玄伟东, 黎兴刚, 帅三三, 李霞, 胡涛, 李传军, 余建波, 王江, 任忠鸣. 层流气体雾化制粉工艺粉末形貌及雾化机理. 物理学报, 2021, 70(14): 140201. doi: 10.7498/aps.70.20202071
    [3] 张彬, 成鹏, 李清廉, 陈慧源, 李晨阳. 液体横向射流在气膜作用下的破碎过程. 物理学报, 2021, 70(5): 054702. doi: 10.7498/aps.70.20201384
    [4] 魏衍举, 张洁, 邓胜才, 张亚杰, 杨亚晶, 刘圣华, 陈昊. 超声悬浮甲醇液滴的热诱导雾化现象. 物理学报, 2020, 69(18): 184702. doi: 10.7498/aps.69.20200562
    [5] 彭旭, 李斌, 王顺尧, 饶国宁, 陈网桦. 激波冲击作用下液膜破碎的气液两相流. 物理学报, 2020, 69(24): 244702. doi: 10.7498/aps.69.20201051
    [6] 周曜智, 李春, 李晨阳, 李清廉. 超声速横向气流中液体射流的轨迹预测与连续液柱模型. 物理学报, 2020, 69(23): 234702. doi: 10.7498/aps.69.20200903
    [7] 张兆慧, 于晓东, 李海鹏, 韩奎. 烷烃链长对直链烷烃液体膜摩擦性质的影响. 物理学报, 2019, 68(22): 228101. doi: 10.7498/aps.68.20190740
    [8] 王悦, 李伟锋, 施浙杭, 刘海峰, 王辅臣. 稠密颗粒射流倾斜撞击颗粒膜特征. 物理学报, 2018, 67(10): 104501. doi: 10.7498/aps.67.20172092
    [9] 夏敏, 汪鹏, 张晓虎, 葛昌纯. 电极感应熔化气雾化制粉技术中非限制式喷嘴雾化过程模拟. 物理学报, 2018, 67(17): 170201. doi: 10.7498/aps.67.20180584
    [10] 胡海豹, 王德政, 鲍路瑶, 文俊, 张招柱. 基于润湿阶跃的水下大尺度气膜封存方法. 物理学报, 2016, 65(13): 134701. doi: 10.7498/aps.65.134701
    [11] 钱文伟, 李伟锋, 施浙杭, 刘海峰, 王辅臣. 稠密颗粒射流撞击壁面颗粒膜表面波纹特征. 物理学报, 2016, 65(21): 214501. doi: 10.7498/aps.65.214501
    [12] 吕明, 宁智, 阎凯. 线性与非线性稳定性理论下液体射流空间发展的对比研究. 物理学报, 2016, 65(16): 166801. doi: 10.7498/aps.65.166801
    [13] 吴里银, 王振国, 李清廉, 李春. 超声速气流中液体横向射流的非定常特性与振荡边界模型. 物理学报, 2016, 65(9): 094701. doi: 10.7498/aps.65.094701
    [14] 朱光正, 郭连波, 郝中骐, 李常茂, 沈萌, 李阔湖, 李祥友, 刘建国, 曾晓雁, 陆永枫. 气雾化辅助激光诱导击穿光谱检测水中的痕量金属元素. 物理学报, 2015, 64(2): 024212. doi: 10.7498/aps.64.024212
    [15] 任晟, 张家忠, 张亚苗, 卫丁. 零质量射流激励下诱发液体相变及其格子Boltzmann方法模拟. 物理学报, 2014, 63(2): 024702. doi: 10.7498/aps.63.024702
    [16] 梁刚涛, 郭亚丽, 沈胜强. 液滴撞击液膜的射流与水花形成机理分析. 物理学报, 2013, 62(2): 024705. doi: 10.7498/aps.62.024705
    [17] 沙莎, 陈志华, 薛大文. 激波冲击R22重气柱所导致的射流与混合研究. 物理学报, 2013, 62(14): 144701. doi: 10.7498/aps.62.144701
    [18] 倪宝玉, 李帅, 张阿漫. 气泡在自由液面破碎后的射流断裂现象研究. 物理学报, 2013, 62(12): 124704. doi: 10.7498/aps.62.124704
    [19] 张书文, 曹瑞雪, 朱风芹. 波浪破碎湍流混合研究综述. 物理学报, 2011, 60(11): 119201. doi: 10.7498/aps.60.119201
    [20] 王文静, 袁慧敏, 姜 山, 萧淑琴, 颜世申. FeCuCrVSiB单层和多层膜的横向巨磁阻抗效应. 物理学报, 2006, 55(11): 6108-6112. doi: 10.7498/aps.55.6108
计量
  • 文章访问数:  4903
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-23
  • 修回日期:  2022-02-23
  • 上网日期:  2022-03-04
  • 刊出日期:  2022-06-05

/

返回文章
返回