搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维NiBr2单层自旋电子输运以及光电性质

王贺岩 高怡帆 廖家宝 陈俊彩 李怡莲 吴怡 徐国亮 安义鹏

引用本文:
Citation:

二维NiBr2单层自旋电子输运以及光电性质

王贺岩, 高怡帆, 廖家宝, 陈俊彩, 李怡莲, 吴怡, 徐国亮, 安义鹏

Spin transport characteristics and photoelectric properties of magnetic semiconductor NiBr2 monolayer

Wang He-Yan, Gao Yi-Fan, Liao Jia-Bao, Chen Jun-Cai, Li Yi-Lian, Wu Yi, Xu Guo-Liang, An Yi-Peng
PDF
HTML
导出引用
  • 磁性半导体材料在自旋电子器件领域具有重要的应用前景. 本文设计了一些基于磁性半导体NiBr2单层的纳米器件结构, 并采用密度泛函理论结合非平衡格林函数方法, 研究了其自旋输运和光电性质. 结果表明, 在不同的输运方向(扶手椅形和锯齿形), NiBr2单层PN结二极管表现出明显的整流效应及自旋过滤效应, 这两种效应在其亚3 nm PIN结场效应晶体管中也同样存在. NiBr2单层PIN结场效应晶体管的电子传输受到栅极电压的调控, 电流随着栅极电压的增大受到抑制. 另外, NiBr2单层对蓝、绿光有较强的响应, 其光电晶体管在两种可见光的照射下可以产生较强的光电流. 本文研究结果揭示了NiBr2单层的多功能特性, 为镍基二卤化物在半导体自旋电子器件和光电器件领域的应用提供了重要参考.
    Magnetic semiconductor materials have potential applications in spintronic devices. In this work, some nano-device structures based on the magnetic semiconductor NiBr2 monolayer (NiBr2-ML) are designed, their spin-resolved transport and photoelectric properties are studied by using density functional theory combined with non-equilibrium Green’s function method. The results show that both the NiBr2-ML PN-junction diodes and sub-3 nanometer PIN-junction field-effect transistors (FETs) exhibit the significant rectification and spin filtering effects in either the armchair or the zigzag direction. The gates can obviously tune the electron transmission of the PIN-junction FETs. The current is significantly suppressed with the increase of gate voltage. In addition, NiBr2-ML has a strong response to the blue and green light, thus its phototransistor can generate a strong photocurrent under the irradiation of blue and green light. The research results in this paper reveal the multifunctional characteristics of NiBr2-ML, which provides an important reference for the application of nickel-based dihalides in semiconductor spintronic devices and optoelectronic devices.
      通信作者: 安义鹏, ypan@htu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11774079)、河南省优秀青年基金(批准号: 202300410226)、河南省高校科技创新人才(批准号: 20HASTIT026)、河南省高等学校重点科研项目(批准号: 22A140020)和中原英才计划-中原青年拔尖人才项目资助的课题.
      Corresponding author: An Yi-Peng, ypan@htu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11774079), the Science Foundation for the Excellent Youth Scholars of Henan Province, China (Grant No. 202300410226), the Scientific and Technological Innovation Program of Henan Province’s Universities, China (Grant No. 20HASTIT026), the Key Scientific Project of Universities of Henan Province, China (Grant No. 22A140020), and the Young Top-notch Talents Project of Henan Province, China (2021year).
    [1]

    Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [3]

    Ataca C, Şahin H, Ciraci S 2012 J. Phys. Chem. C 116 8983Google Scholar

    [4]

    An Y P, Gong S J, Hou Y S, Li J, Wu R Q, Jiao Z Y, Wang T X, Jiao J T 2020 J. Phys. Condens. Matter 32 055503Google Scholar

    [5]

    An Y P, Hou Y S, Wang H, Li J, Wu R Q, Wang T X, Da H X, Jiao J T 2019 Phys. Rev. Appl. 11 064031Google Scholar

    [6]

    An Y P, Jiao J T, Hou Y S, Wang H, Wu D P, Wang T X, Fu Z M, Xu G L, Wu R Q 2018 Phys. Chem. Chem. Phys. 20 21552Google Scholar

    [7]

    An Y P, Jiao J T, Hou Y S, Wang H, Wu R Q, Liu C Y, Chen X N, Wang T X, Wang K 2019 J. Phys. Condens. Matter 31 065301Google Scholar

    [8]

    Feng B J, Zhang J, Zhong Q, Li W B, Li S, Li H, Cheng P, Sheng M, Chen L, Wu K H 2016 Nat. Chem. 8 563Google Scholar

    [9]

    Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X L, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C, Guisinger N P 2015 Science 350 1513Google Scholar

    [10]

    Arcudia J, Kempt R, Cifuentes-Quintal M E, Heine T, Merino G 2020 Phys. Rev. Lett. 125 196401Google Scholar

    [11]

    Huang B V, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [12]

    Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar

    [13]

    Fei Z Y, Huang B V, Malinowski P, Wang W B, Song T C, Sanchez J, Yao W, Xiao D, Zhu X Y, May A, Wu W D, Cobden D, Chu J H, Xu X D 2018 Nat. Mater. 17 778Google Scholar

    [14]

    Gong C, Zhang X 2019 Science 363 706Google Scholar

    [15]

    Zou J Y, He Z R, Xu G 2019 npj Comput. Mater. 5 96Google Scholar

    [16]

    An Y P, Wang K, Gong S J, Hou Y S, Ma C L, Zhu M F, Zhao C X, Wang T X, Ma S H, Wang H Y, Wu R Q, Liu W M 2021 npj Comput. Mater. 7 45Google Scholar

    [17]

    Chen J, Tang Q 2021 Chem. 27 9925Google Scholar

    [18]

    Mortazavi B, Javvaji B, Shojaei F, Rabczuk T, Shapeev A V, Zhuang X Y 2021 Nano Energy 82 105716Google Scholar

    [19]

    Wang L, Shi Y P, Liu M F, Zhang A, Hong Y L, Li R H, Gao Q, Chen M X, Ren W C, Cheng H M, Li Y Y, Chen X Q 2021 Nat. Commun. 12 2361Google Scholar

    [20]

    Yang J S, Zhao L N, Li S Q, Liu H S, Wang L, Chen M D, Gao J F, Zhao J J 2021 Nanoscale 13 5479Google Scholar

    [21]

    An Y P, Hou Y S, Wang K, Gong S J, Ma C L, Zhao C X, Wang T X, Jiao Z Y, Wang H Y, Wu R Q 2020 Adv. Funct. Mater. 30 2002939Google Scholar

    [22]

    An Y P, Hou Y S, Gong S J, Wu R Q, Zhao C X, Wang T X, Jiao Z Y, Wang H Y, Liu W M 2020 Phys. Rev. B 101 075416Google Scholar

    [23]

    Kezilebieke S, Huda M N, Vano V, Aapro M, Ganguli S C, Silveira O J, Glodzik S, Foster A S, Ojanen T, Liljeroth P 2020 Nature 588 424Google Scholar

    [24]

    Koós A A, Vancsó P, Magda G Z, Osváth Z, Kertész K, Dobrik G, Hwang C, Tapasztó L, Biró L P 2016 Carbon 105 408Google Scholar

    [25]

    Novoselov K S, Mishchenko A, Carvalho A, Castro N A H 2016 Science 353 aac9439Google Scholar

    [26]

    Trainer D J, Wang B K, Bobba F, Samuelson N, Xi X X, Zasadzinski J, Nieminen J, Bansil A, Iavarone M 2020 ACS Nano 14 2718Google Scholar

    [27]

    Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G, Marzari N 2018 Nat. Nanotech. 13 246Google Scholar

    [28]

    Li Q Z, Chen K Q, Tang L M 2020 Phys. Rev. Appl. 13 014064Google Scholar

    [29]

    Yekta Y, Hadipour H, Şaşıoğlu E, Friedrich C, Jafari S A, Blügel S, Mertig I 2021 Phys. Rev. Mater. 5 034001Google Scholar

    [30]

    Amoroso D, Barone P, Picozzi S 2020 Nat. Commun. 11 5784Google Scholar

    [31]

    Botana A S, Norman M R 2019 Phys. Rev. Mater. 3 044001Google Scholar

    [32]

    Lu M, Yao Q S, Xiao C Y, Huang C X, Kan E J 2019 ACS Omega 4 5714Google Scholar

    [33]

    Mushtaq M, Zhou Y G, Xiang X 2017 RSC Adv. 7 22541Google Scholar

    [34]

    Bikaljevic D, Gonzalez-Orellana C, Pena-Diaz M, Steiner D, Dreiser J, Gargiani P, Foerster M, Nino M A, Aballe L, Ruiz-Gomez S, Friedrich N, Hieulle J, Jingcheng L, Ilyn M, Rogero C, Pascual J I 2021 ACS Nano 15 14985Google Scholar

    [35]

    Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov P A, Vej-Hansen U G, Lee M E, Chill S T, Rasmussen F, Penazzi G, Corsetti F, Ojanpera A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M, Stokbro K 2020 J. Phys. Condens. Matter 32 015901Google Scholar

    [36]

    Tang H, Shi B W, Pan Y Y, Li J Z, Zhang X Y, Yan J H, Liu S Q, Yang J, Xu L Q, Yang J B, Wu M B, Lu J 2019 Adv. Theor. Simul. 2 1900001Google Scholar

    [37]

    Brandbyge M, Mozos JL, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [38]

    Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, Sánchez-Portal D 2002 J. Phys. Condens. Matter 14 2745Google Scholar

    [39]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 121104Google Scholar

    [40]

    Perdew J P, Burke K E M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [41]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B. 46 6671Google Scholar

    [42]

    Zhang Q X, Wei J, Liu J C, Wang Z C, Lei M, Quhe R G 2019 ACS Appl. Nano Mater. 2 2796Google Scholar

    [43]

    Schlipf M, Gygi F 2015 Comput. Phys. Commun. 196 36Google Scholar

    [44]

    Friedt J M, Sanchez J P, Shenoy G K 1976 J. Chem. Phys. 65 5093Google Scholar

    [45]

    Liu H N, Wang X S, Wu J X, Chen Y S, Wan J, Wen R, Yang J B, Liu Y, Song Z G, Xie L M 2020 ACS Nano 14 10544Google Scholar

    [46]

    Huang L F, Zeng Z 2015 J. Phys. Chem. C 119 18779Google Scholar

    [47]

    Gong P, Yang Y Y, Ma W D, Fang X Y, Jing X L, Jia Y H, Cao M S 2021 Physica E 128 114578Google Scholar

    [48]

    Jia Y H, Gong P, Li S L, Ma W D, Fang X Y, Yang Y Y, Cao M S 2020 Phys. Lett. A 384 126106Google Scholar

    [49]

    Gunst T, Markussen T, Stokbro K, Brandbyge M 2016 Phys. Rev. B 93 035414Google Scholar

    [50]

    Shukla V, Grigoriev A, Jena N K, Ahuja R 2018 Phys. Chem. Chem. Phys. 20 22952Google Scholar

    [51]

    Wang H H, Cheng Z H, Shi M Z, Ma D H, Zhuo W Z, Xi C Y, Wu T, Ying J J, Chen X H 2021 Sci. China Phys. Mech. 64 287411Google Scholar

    [52]

    Stradi D, Martinez U, Blom A, Brandbyge M, Stokbro K 2016 Phys. Rev. B 93 155302Google Scholar

    [53]

    Das B, Mahapatra S 2020 J. Appl. Phys. 128 234502Google Scholar

    [54]

    Quhe R G, Li Q H, Zhang Q X, Wang Y Y, Zhang H, Li J Z, Zhang X Y, Chen D X, Liu K H, Ye Y, Dai L, Pan F, Lei M, Lu J 2018 Phys. Rev. Appl. 10 024022Google Scholar

    [55]

    Yang Y Y, Gong P, Ma W D, Hao R, Fang X Y 2021 Chin. Phys. B 30 067803Google Scholar

    [56]

    Chen X L, Huang B J, Zhang C W, Li P, Wang P J 2017 J. Nanomater. 2017 4815251Google Scholar

    [57]

    Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048Google Scholar

    [58]

    Gunst T, Markussen T, Palsgaard M L N, Stokbro K, Brandbyge M 2017 Phys. Rev. B 96 161404Google Scholar

    [59]

    Zhang L, Gong K, Chen J Z, Liu L, Zhu Y, Xiao D, Guo H 2014 Phys. Rev. B 90 195428Google Scholar

    [60]

    Palsgaard M, Markussen T, Gunst T, Brandbyge M, Stokbro K 2018 Phys. Rev. Appl. 10 014026Google Scholar

    [61]

    Pan Y, Wang Q Z, Yeats A L, Pillsbury T, Flanagan T C, Richardella A, Zhang H, Awschalom D D, Liu C X, Samarth N 2017 Nat. Commun. 8 1037Google Scholar

    [62]

    Wang Q, Zhang Q, Zhao X, Zheng Y J, Wang J, Luo X, Dan J, Zhu R, Liang Q, Zhang L, Wong P K J, He X, Huang Y L, Wang X, Pennycook S J, Eda G, Wee A T S 2019 Nano Lett. 19 5595Google Scholar

  • 图 1  NiBr2单层的几何和电子结构 (a) NiBr2单层的顶部和侧面示意图(x轴表示沿锯齿形方向; y轴表示沿扶手椅形方向); (b) 声子能带和声子投影态密度; 自旋(c)向上态和(d)向下态的元素投影电子能带和投影态密度. 费米能级(EF)移到了能量零点位置

    Fig. 1.  Geometric and electronic structures of NiBr2 monolayer (NiBr2-ML): (a) Schematic diagram of the top and side views of NiBr2-ML (x axis refers to the zigzag direction of NiBr2-ML, and y axis indicates its armchair direction); (b) phonon band and projected phonon density of states (Ph-DOS); element-projected band structures and density of states (DOS) for (c) the spin-up and (d) spin-down states. The Fermi level (EF) is shifted to zero.

    图 2  Γ点附近的(a)自旋向上和(b)自旋向下的导带和价带的三维(3D)视图及在(c)—(f)第一布里渊区的二维投影图; 颜色卡显示了导带和价带的能量本征值从低(红色)到高(紫色)

    Fig. 2.  Three-dimensional (3D) views of the conduction and valence bands for the (a) spin-up and (b) spin-down states around the Γ point, and (c)–(f) their 2D projections in the first Brillouin zone. The colorbar shows the eigenvalues of bands from low (red) to high (purple).

    图 3  NiBr2单层PN结二极管的自旋输运性质 (a) NiBr2单层PN结二极管示意图; (b) Z型NiBr2单层PN结二极管的偏置电压-电流和极化率曲线; (c) Z型NiBr2单层PN结二极管的整流比曲线; (d)—(f) 在0, –0.8和0.8 V偏置电压下的自旋极化透射谱(左侧)和投影局域态密度图(右侧), 其中上图对应自旋向上态, 下图对应自旋向下态. 图(d)中的颜色卡显示了(d)—(f)中的数据从0 (白色)到高(蓝色)

    Fig. 3.  Spin-resolved transport properties of PN-junction diodes of NiBr2-ML: (a) Schematic of the PN-junction diodes of NiBr2-ML. (b) I-V and polarization ratio (PR) curves of Z-type PN-junction diode of NiBr2-ML; (c) rectifying ratio curve of Z-type PN-junction diode of NiBr2-ML; (d)–(f) spin-resolved transmission spectra T(E) and projected local density of states under the biases of 0, –0.8, and 0.8 V, where the top panel and bottom panel correspond to spin-up and spin-down state, respectively. The colorbar shows the data from 0 (white) to high (blue).

    图 4  NiBr2单层PN结二极管的器件特性 (a) Z型NiBr2单层PN结二极管的微分电导曲线; (b) 偏压相关的自旋向上和自旋向下态的电子透射谱; (c) –0.8 V偏压时k空间相关的自旋电子透射系数T(E, k). 颜色图显示了从0 (白色)到高(蓝色)的图(b)和(c)数据, 其中上图对应自旋向上态, 下图对应自旋向下态

    Fig. 4.  Device properties of the PN-junction diodes of NiBr2-ML: (a) Difference conductance curves of Z-type PN-junction diodes of NiBr2-ML; (b) bias-dependent transmission spectra for the spin-up and spin-down states; (c) k-dependent transmission coefficients T(E, k) at –0.8 V. The colormap shows the T(E, k) from 0 (white) to high (blue). Top and bottom panel in (b) and (c) correspond to spin-up and spin-down state, respectively.

    图 5  Z型NiBr2单层PIN结场效应晶体管在不同栅压下的输运特性 (a)—(c) 0, 1和2 V栅极电压下自旋向上和自旋向下的偏置电流和自旋极化率曲线; (d)—(f) 在0, 1和2 V栅极电压下的自旋极化透射谱和投影局域态密度图, 其中上图对应自旋向上态, 下图对应自旋向下态; (g) NiBr2单层PIN结场效应晶体管示意图

    Fig. 5.  Transport properties of Z-type NiBr2-ML PIN-junction field-effect transistors (FET) under different gate voltages: (a)–(c) I-V and polarization ratio curves under the gate voltages of 0, 1, and 2 V, respectively; (d)–(f) spin-resolved transmission spectra T(E) and projected local density of states under the biases of 0, 1, and 2 V, where top and bottom panel correspond to spin-up and spin-down state, respectively; (g) schematic of the NiBr2-ML FET.

    图 6  在不同栅极电压下, Z型NiBr2单层PIN结场效应晶体管的自旋向上(up)、自旋向下(dn)及总的(Total)整流比曲线 (a) Vg = 0 V; (b) Vg = 1 V; (c) Vg = 2 V

    Fig. 6.  Spin-up, spin-down, total rectifying ratio curves of Z-type NiBr2-ML PIN-junction FET under different gate voltages: (a) Vg = 0 V; (b) Vg = 1 V; (c) Vg = 2 V.

    图 7  NiBr2单层的光电特性 (a) NiBr2单层的光电导率, 七彩光谱背景色为可见光区; (b) NiBr2单层的PIN结光电晶体管示意图; (c) Z型NiBr2单层的PIN结光电晶体管在0 V偏压(无电源)下的自旋光电流密度; (d) 0 V偏压时不同栅极电压下的Z型NiBr2单层的PIN结光电晶体管光电流谱. IR, VR, UR分别指红外区、可见光区、紫外区

    Fig. 7.  Photoelectric properties of the NiBr2-ML: (a) Optical-conductivity of NiBr2-ML, where the embedded spectrum pattern displays the visible region; (b) schematic of the PIN-junction phototransistor of NiBr2-ML; (c) spin-resolved photocurrent density of the Z-type PIN-junction phototransistor of NiBr2-ML under zero bias (without power); (d) gate-dependent photocurrent spectra of the Z-type phototransistor of NiBr2-ML under zero bias. IR, VR, and UR refer to the infrared, visible, and ultraviolet region, respectively.

  • [1]

    Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [3]

    Ataca C, Şahin H, Ciraci S 2012 J. Phys. Chem. C 116 8983Google Scholar

    [4]

    An Y P, Gong S J, Hou Y S, Li J, Wu R Q, Jiao Z Y, Wang T X, Jiao J T 2020 J. Phys. Condens. Matter 32 055503Google Scholar

    [5]

    An Y P, Hou Y S, Wang H, Li J, Wu R Q, Wang T X, Da H X, Jiao J T 2019 Phys. Rev. Appl. 11 064031Google Scholar

    [6]

    An Y P, Jiao J T, Hou Y S, Wang H, Wu D P, Wang T X, Fu Z M, Xu G L, Wu R Q 2018 Phys. Chem. Chem. Phys. 20 21552Google Scholar

    [7]

    An Y P, Jiao J T, Hou Y S, Wang H, Wu R Q, Liu C Y, Chen X N, Wang T X, Wang K 2019 J. Phys. Condens. Matter 31 065301Google Scholar

    [8]

    Feng B J, Zhang J, Zhong Q, Li W B, Li S, Li H, Cheng P, Sheng M, Chen L, Wu K H 2016 Nat. Chem. 8 563Google Scholar

    [9]

    Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X L, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C, Guisinger N P 2015 Science 350 1513Google Scholar

    [10]

    Arcudia J, Kempt R, Cifuentes-Quintal M E, Heine T, Merino G 2020 Phys. Rev. Lett. 125 196401Google Scholar

    [11]

    Huang B V, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [12]

    Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar

    [13]

    Fei Z Y, Huang B V, Malinowski P, Wang W B, Song T C, Sanchez J, Yao W, Xiao D, Zhu X Y, May A, Wu W D, Cobden D, Chu J H, Xu X D 2018 Nat. Mater. 17 778Google Scholar

    [14]

    Gong C, Zhang X 2019 Science 363 706Google Scholar

    [15]

    Zou J Y, He Z R, Xu G 2019 npj Comput. Mater. 5 96Google Scholar

    [16]

    An Y P, Wang K, Gong S J, Hou Y S, Ma C L, Zhu M F, Zhao C X, Wang T X, Ma S H, Wang H Y, Wu R Q, Liu W M 2021 npj Comput. Mater. 7 45Google Scholar

    [17]

    Chen J, Tang Q 2021 Chem. 27 9925Google Scholar

    [18]

    Mortazavi B, Javvaji B, Shojaei F, Rabczuk T, Shapeev A V, Zhuang X Y 2021 Nano Energy 82 105716Google Scholar

    [19]

    Wang L, Shi Y P, Liu M F, Zhang A, Hong Y L, Li R H, Gao Q, Chen M X, Ren W C, Cheng H M, Li Y Y, Chen X Q 2021 Nat. Commun. 12 2361Google Scholar

    [20]

    Yang J S, Zhao L N, Li S Q, Liu H S, Wang L, Chen M D, Gao J F, Zhao J J 2021 Nanoscale 13 5479Google Scholar

    [21]

    An Y P, Hou Y S, Wang K, Gong S J, Ma C L, Zhao C X, Wang T X, Jiao Z Y, Wang H Y, Wu R Q 2020 Adv. Funct. Mater. 30 2002939Google Scholar

    [22]

    An Y P, Hou Y S, Gong S J, Wu R Q, Zhao C X, Wang T X, Jiao Z Y, Wang H Y, Liu W M 2020 Phys. Rev. B 101 075416Google Scholar

    [23]

    Kezilebieke S, Huda M N, Vano V, Aapro M, Ganguli S C, Silveira O J, Glodzik S, Foster A S, Ojanen T, Liljeroth P 2020 Nature 588 424Google Scholar

    [24]

    Koós A A, Vancsó P, Magda G Z, Osváth Z, Kertész K, Dobrik G, Hwang C, Tapasztó L, Biró L P 2016 Carbon 105 408Google Scholar

    [25]

    Novoselov K S, Mishchenko A, Carvalho A, Castro N A H 2016 Science 353 aac9439Google Scholar

    [26]

    Trainer D J, Wang B K, Bobba F, Samuelson N, Xi X X, Zasadzinski J, Nieminen J, Bansil A, Iavarone M 2020 ACS Nano 14 2718Google Scholar

    [27]

    Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G, Marzari N 2018 Nat. Nanotech. 13 246Google Scholar

    [28]

    Li Q Z, Chen K Q, Tang L M 2020 Phys. Rev. Appl. 13 014064Google Scholar

    [29]

    Yekta Y, Hadipour H, Şaşıoğlu E, Friedrich C, Jafari S A, Blügel S, Mertig I 2021 Phys. Rev. Mater. 5 034001Google Scholar

    [30]

    Amoroso D, Barone P, Picozzi S 2020 Nat. Commun. 11 5784Google Scholar

    [31]

    Botana A S, Norman M R 2019 Phys. Rev. Mater. 3 044001Google Scholar

    [32]

    Lu M, Yao Q S, Xiao C Y, Huang C X, Kan E J 2019 ACS Omega 4 5714Google Scholar

    [33]

    Mushtaq M, Zhou Y G, Xiang X 2017 RSC Adv. 7 22541Google Scholar

    [34]

    Bikaljevic D, Gonzalez-Orellana C, Pena-Diaz M, Steiner D, Dreiser J, Gargiani P, Foerster M, Nino M A, Aballe L, Ruiz-Gomez S, Friedrich N, Hieulle J, Jingcheng L, Ilyn M, Rogero C, Pascual J I 2021 ACS Nano 15 14985Google Scholar

    [35]

    Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov P A, Vej-Hansen U G, Lee M E, Chill S T, Rasmussen F, Penazzi G, Corsetti F, Ojanpera A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M, Stokbro K 2020 J. Phys. Condens. Matter 32 015901Google Scholar

    [36]

    Tang H, Shi B W, Pan Y Y, Li J Z, Zhang X Y, Yan J H, Liu S Q, Yang J, Xu L Q, Yang J B, Wu M B, Lu J 2019 Adv. Theor. Simul. 2 1900001Google Scholar

    [37]

    Brandbyge M, Mozos JL, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [38]

    Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, Sánchez-Portal D 2002 J. Phys. Condens. Matter 14 2745Google Scholar

    [39]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 121104Google Scholar

    [40]

    Perdew J P, Burke K E M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [41]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B. 46 6671Google Scholar

    [42]

    Zhang Q X, Wei J, Liu J C, Wang Z C, Lei M, Quhe R G 2019 ACS Appl. Nano Mater. 2 2796Google Scholar

    [43]

    Schlipf M, Gygi F 2015 Comput. Phys. Commun. 196 36Google Scholar

    [44]

    Friedt J M, Sanchez J P, Shenoy G K 1976 J. Chem. Phys. 65 5093Google Scholar

    [45]

    Liu H N, Wang X S, Wu J X, Chen Y S, Wan J, Wen R, Yang J B, Liu Y, Song Z G, Xie L M 2020 ACS Nano 14 10544Google Scholar

    [46]

    Huang L F, Zeng Z 2015 J. Phys. Chem. C 119 18779Google Scholar

    [47]

    Gong P, Yang Y Y, Ma W D, Fang X Y, Jing X L, Jia Y H, Cao M S 2021 Physica E 128 114578Google Scholar

    [48]

    Jia Y H, Gong P, Li S L, Ma W D, Fang X Y, Yang Y Y, Cao M S 2020 Phys. Lett. A 384 126106Google Scholar

    [49]

    Gunst T, Markussen T, Stokbro K, Brandbyge M 2016 Phys. Rev. B 93 035414Google Scholar

    [50]

    Shukla V, Grigoriev A, Jena N K, Ahuja R 2018 Phys. Chem. Chem. Phys. 20 22952Google Scholar

    [51]

    Wang H H, Cheng Z H, Shi M Z, Ma D H, Zhuo W Z, Xi C Y, Wu T, Ying J J, Chen X H 2021 Sci. China Phys. Mech. 64 287411Google Scholar

    [52]

    Stradi D, Martinez U, Blom A, Brandbyge M, Stokbro K 2016 Phys. Rev. B 93 155302Google Scholar

    [53]

    Das B, Mahapatra S 2020 J. Appl. Phys. 128 234502Google Scholar

    [54]

    Quhe R G, Li Q H, Zhang Q X, Wang Y Y, Zhang H, Li J Z, Zhang X Y, Chen D X, Liu K H, Ye Y, Dai L, Pan F, Lei M, Lu J 2018 Phys. Rev. Appl. 10 024022Google Scholar

    [55]

    Yang Y Y, Gong P, Ma W D, Hao R, Fang X Y 2021 Chin. Phys. B 30 067803Google Scholar

    [56]

    Chen X L, Huang B J, Zhang C W, Li P, Wang P J 2017 J. Nanomater. 2017 4815251Google Scholar

    [57]

    Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048Google Scholar

    [58]

    Gunst T, Markussen T, Palsgaard M L N, Stokbro K, Brandbyge M 2017 Phys. Rev. B 96 161404Google Scholar

    [59]

    Zhang L, Gong K, Chen J Z, Liu L, Zhu Y, Xiao D, Guo H 2014 Phys. Rev. B 90 195428Google Scholar

    [60]

    Palsgaard M, Markussen T, Gunst T, Brandbyge M, Stokbro K 2018 Phys. Rev. Appl. 10 014026Google Scholar

    [61]

    Pan Y, Wang Q Z, Yeats A L, Pillsbury T, Flanagan T C, Richardella A, Zhang H, Awschalom D D, Liu C X, Samarth N 2017 Nat. Commun. 8 1037Google Scholar

    [62]

    Wang Q, Zhang Q, Zhao X, Zheng Y J, Wang J, Luo X, Dan J, Zhu R, Liang Q, Zhang L, Wong P K J, He X, Huang Y L, Wang X, Pennycook S J, Eda G, Wee A T S 2019 Nano Lett. 19 5595Google Scholar

  • [1] 蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳. 二维磁性材料的物性研究及性能调控. 物理学报, 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [2] 梁世恒, 陆沅, 韩秀峰. 自旋发光二极管研究进展. 物理学报, 2020, 69(20): 208501. doi: 10.7498/aps.69.20200866
    [3] 李春雷, 徐燕, 郑军, 王小明, 袁瑞旸, 郭永. 磁电势垒结构中光场辅助电子自旋输运特性. 物理学报, 2020, 69(10): 107201. doi: 10.7498/aps.69.20200237
    [4] 韩佳凝, 范志强, 张振华. Fe3GeTe2纳米带的结构稳定性、磁电子性质及调控效应. 物理学报, 2019, 68(20): 208502. doi: 10.7498/aps.68.20191103
    [5] 侯海燕, 姚慧, 李志坚, 聂一行. 磁性硅烯超晶格中电场调制的谷极化和自旋极化. 物理学报, 2018, 67(8): 086801. doi: 10.7498/aps.67.20180080
    [6] 伊丁, 武镇, 杨柳, 戴瑛, 解士杰. 有机分子在铁磁界面处的自旋极化研究. 物理学报, 2015, 64(18): 187305. doi: 10.7498/aps.64.187305
    [7] 姜恩海, 朱兴凤, 陈凌孚. Heusler合金Co2MnAl(100)表面电子结构、磁性和自旋极化的第一性原理研究. 物理学报, 2015, 64(14): 147301. doi: 10.7498/aps.64.147301
    [8] 郑圆圆, 任桂明, 陈锐, 王兴明, 谌晓洪, 王玲, 袁丽, 黄晓凤. 氢化铁的自旋极化效应及势能函数. 物理学报, 2014, 63(21): 213101. doi: 10.7498/aps.63.213101
    [9] 胡艳春, 王艳文, 张克磊, 王海英, 马恒, 路庆凤. 空穴掺杂Sr2FeMoO6的晶体结构及磁性研究. 物理学报, 2012, 61(22): 226101. doi: 10.7498/aps.61.226101
    [10] 黎欢, 郭卫. 自旋极化对Kondo系统基态的影响. 物理学报, 2010, 59(10): 7320-7326. doi: 10.7498/aps.59.7320
    [11] 陈华, 杜磊, 庄奕琪, 牛文娟. Rashba自旋轨道耦合作用下电荷流散粒噪声与自旋极化的关系研究. 物理学报, 2009, 58(8): 5685-5692. doi: 10.7498/aps.58.5685
    [12] 陈小雪, 滕利华, 刘晓东, 黄绮雯, 文锦辉, 林位株, 赖天树. InGaN薄膜中电子自旋偏振弛豫的时间分辨吸收光谱研究. 物理学报, 2008, 57(6): 3853-3856. doi: 10.7498/aps.57.3853
    [13] 唐振坤, 王玲玲, 唐黎明, 游开明, 邹炳锁. 磁台阶势垒结构中二维电子气的自旋极化输运. 物理学报, 2008, 57(9): 5899-5905. doi: 10.7498/aps.57.5899
    [14] 滕利华, 余华梁, 黄志凌, 文锦辉, 林位株, 赖天树. 本征GaAs中电子自旋极化对电子复合动力学的影响研究. 物理学报, 2008, 57(10): 6593-6597. doi: 10.7498/aps.57.6593
    [15] 郭立俊, Jan-Peter Wüstenberg, Andreyev Oleksiy, Michael Bauer, Martin Aeschlimann. 利用飞秒双光子光电子发射研究GaAs(100)的自旋动力学过程. 物理学报, 2005, 54(7): 3200-3205. doi: 10.7498/aps.54.3200
    [16] 张昌文, 李 华, 董建敏, 王永娟, 潘凤春, 郭永权, 李 卫. 化合物SmCo5的电子结构、自旋和轨道磁矩及其交换作用分析. 物理学报, 2005, 54(4): 1814-1820. doi: 10.7498/aps.54.1814
    [17] 付吉永, 任俊峰, 刘德胜, 解士杰. 一维铁磁/有机共轭聚合物的自旋极化研究. 物理学报, 2004, 53(6): 1989-1993. doi: 10.7498/aps.53.1989
    [18] 陈丽, 李华, 董建敏, 潘凤春, 梅良模. 原子簇La8-xBaxCuO6的原子磁矩和自旋极化的电子结构研究. 物理学报, 2004, 53(1): 254-259. doi: 10.7498/aps.53.254
    [19] 秦建华, 郭 永, 陈信义, 顾秉林. 磁电垒结构中自旋极化输运性质的研究. 物理学报, 2003, 52(10): 2569-2575. doi: 10.7498/aps.52.2569
    [20] 郭 永, 顾秉林, 川添良幸. 磁量子结构中二维自旋电子的隧穿输运. 物理学报, 2000, 49(9): 1814-1820. doi: 10.7498/aps.49.1814
计量
  • 文章访问数:  374
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-24
  • 修回日期:  2022-01-14
  • 上网日期:  2022-01-28
  • 刊出日期:  2022-05-05

二维NiBr2单层自旋电子输运以及光电性质

  • 河南师范大学物理学院, 新乡 453007
  • 通信作者: 安义鹏, ypan@htu.edu.cn
    基金项目: 国家自然科学基金(批准号: 11774079)、河南省优秀青年基金(批准号: 202300410226)、河南省高校科技创新人才(批准号: 20HASTIT026)、河南省高等学校重点科研项目(批准号: 22A140020)和中原英才计划-中原青年拔尖人才项目资助的课题.

摘要: 磁性半导体材料在自旋电子器件领域具有重要的应用前景. 本文设计了一些基于磁性半导体NiBr2单层的纳米器件结构, 并采用密度泛函理论结合非平衡格林函数方法, 研究了其自旋输运和光电性质. 结果表明, 在不同的输运方向(扶手椅形和锯齿形), NiBr2单层PN结二极管表现出明显的整流效应及自旋过滤效应, 这两种效应在其亚3 nm PIN结场效应晶体管中也同样存在. NiBr2单层PIN结场效应晶体管的电子传输受到栅极电压的调控, 电流随着栅极电压的增大受到抑制. 另外, NiBr2单层对蓝、绿光有较强的响应, 其光电晶体管在两种可见光的照射下可以产生较强的光电流. 本文研究结果揭示了NiBr2单层的多功能特性, 为镍基二卤化物在半导体自旋电子器件和光电器件领域的应用提供了重要参考.

English Abstract

    • 自石墨烯被发现以来, 二维(two-dimensional, 2D)材料的研究已成为物理、材料和化学家的关注热点[1,2]. 它们可以表现出金属、半金属、半导体、绝缘体和超导等性质, 越来越多的二维材料被理论预言或在实验上制备出来, 例如过渡金属二硫化物[3], 硼烯[4-9], 磷烯[10], CrI3[11], Fe3GeTe2[12-15], MnBi2Te4[16], MA2Z4[17-20], VS2|MoS2[21]等. 尤其是具有磁性的二维半导体结构, 增加了一个自旋自由度, 在半导体器件领域具有重要应用前景. 随着对二维磁性半导体材料的广泛研究[22-26], 人们发现, 当范德瓦耳斯结构的磁性块体材料维数降低到二维极限后, 其单层结构的物理特性发生了巨大的变化, 例如, 会表现出自旋霍尔效应和谷极化现象[27]. 而且, 二维磁性材料的磁性可以通过门电极来调控[4,28,29], 这一特性揭示了二维磁性材料新的物理性质[11,25,27], 同时也为其在自旋纳米电子器件领域的应用提供了新机遇. 因此, 寻找新的二维磁性材料, 并设计一些功能多样的磁性纳米器件结构是一个十分活跃的研究领域, 这也将推动新技术的发展.

      近年来, 人们预测镍基二卤化物这类范德瓦耳斯层状材料具有铁磁性[30-33]. 在最近的实验中, 通过分子束外延生长的方法, 在Au (111)衬底上获得了高质量的镍基二溴化物-NiBr2[34], 其单层结构表现出半导体性质, 同时具有较强磁性[34], 在磁性半导体器件领域具有重要的应用前景. 因此, 对二维磁性半导体NiBr2单层的自旋电子输运性质及其磁性纳米器件模型设计的深入研究具有重要意义. 本文设计了一些基于NiBr2单层的概念性纳米器件结构, 并采用第一性原理方法研究了它们的自旋电子输运性质. 首先, 构建了NiBr2单层的PN结二极管结构, 揭示了其在不同方向(扶手椅形和锯齿形)上的自旋电子输运性质; 随后, 构建了NiBr2单层的PIN结场效应晶体管结构, 揭示了门电极对其自旋输运性质的调控作用; 最后, 构建了NiBr2单层的光电晶体管结构, 并研究了其光电输运性质, 揭示了其在光电纳米器件领域的潜在应用.

    • 本文使用ATK (Atomistix ToolKit)[35,36]程序包, 采用密度泛函理论结合非平衡格林函数方法[37], 进行第一性原理自洽计算和电子输运性质计算[38,39]. 使用自旋极化广义梯度近似Perdew-Burke-Ernzerhof交换关联泛函描述电子交换和关联效应[40,41], 采用Hubbard-U修正来描述Ni原子的局域3d轨道. U修正通常会有效促进带隙的打开[29,35,36,42]. 测试结果表明, 采用U = 3 eV时可以得到与其带隙的实验数值(1.97 eV) [32]较为符合的结果(2.00 eV). 所有原子的原子核都由优化的模守恒赝势(ONCV)描述[43], 核外价电子的电子波函数采用原子轨道线性组合方法在SG15[44]赝势和基组水平上展开. NiBr2单层的真空层厚度大于20 Å, 实空间网格密度截断能为110 Ha (2993 eV). 对Z型和A型NiBr2单层器件的左右电极区的布里渊区分别采用1 × 5 × 260和1 × 7 × 154的Monkhorst-Pack k点网格进行采样. 在晶格常数和原子位置的结构弛豫中, 总能量和每个原子的受力收敛标准分别为小于10–6 eV和10–3 eV/Å. 声子谱的计算采用9 × 9 × 1的动力学矩阵及9 × 9 × 1的Monkhorst-Pack k点网格进行采样.

    • 图1(a)所示, NiBr2具有$ P\bar 3 m1 $空间群(群号: 164)[22], 每个单胞包含一个Ni原子和两个Br原子, 形成3个原子层, 呈六边形蜂窝状结构. 面内晶格常数a为3.71 Å, Ni—Br原子之间的键长d为2.56 Å. NiBr2单层具有铁磁性, 其磁性源于最近邻Ni原子之间d-d轨道的电子交换和Br原子p轨道的电子超交换[45]. 每个单胞的磁矩为2 μB, 主要由二价Ni原子贡献, 与以往报道一致[32].

      图  1  NiBr2单层的几何和电子结构 (a) NiBr2单层的顶部和侧面示意图(x轴表示沿锯齿形方向; y轴表示沿扶手椅形方向); (b) 声子能带和声子投影态密度; 自旋(c)向上态和(d)向下态的元素投影电子能带和投影态密度. 费米能级(EF)移到了能量零点位置

      Figure 1.  Geometric and electronic structures of NiBr2 monolayer (NiBr2-ML): (a) Schematic diagram of the top and side views of NiBr2-ML (x axis refers to the zigzag direction of NiBr2-ML, and y axis indicates its armchair direction); (b) phonon band and projected phonon density of states (Ph-DOS); element-projected band structures and density of states (DOS) for (c) the spin-up and (d) spin-down states. The Fermi level (EF) is shifted to zero.

    • 为了确定NiBr2单层自由状态的结构稳定性, 对其声子谱和声子态密度进行了计算和分析, 如图1(b)所示. NiBr2单层的声子谱没有虚频, 证明其动力学稳定性能够在无衬底的自由状态下保持. 每个NiBr2单胞中包含3个原子, 因此其声子谱共有9条声子分支, 具体可分为3条声学(A)分支和6条光学(O)分支[46]. 通过分析其元素投影的声子态密度(phonon density of states, Ph-DOS)可以发现, 其声学支和低频光学分支主要由Ni原子的振动贡献, 而高频光学分支主要来自于Br原子的简谐振动.

      图1(c)图1(d)为自旋向上和向下态的元素投影能带和投影态密度, 费米能级(EF)在能量零点位置. NiBr2单层与SiC[47,48]类似, 都属于宽带隙半导体, 大于同家族的镍基二碘化物-NiI2的间接带隙(1.11 eV) [45]. 对于不同的自旋态, 它们的不同之处表现在, Br原子的p轨道电子主要对自旋向上态中的高能价带产生贡献; 而对于自旋向下态, 在Br原子的p轨道电子对其价带顶产生主要贡献的基础上, Ni原子d轨道的贡献随着能量降低而明显提高. 它们的相同之处表现在, 自旋向上和自旋向下态的导带由Ni原子d轨道和Br原子p轨道电子共同贡献, 而Ni原子贡献较多, 且在1 eV附近出现两条自旋向下态能带, 导致了其自旋向下态的带隙明显低于自旋向上态, 这可能会诱导其自旋极化现象的出现.

      图2(a)图2(b)分别显示了自旋向上和向下态的导带和价带在Γ点附近的能量色散关系. 自旋态的能量色散在二维k空间中呈六边形, 这可以在其第一布里渊区投影中清晰地观察到(图2(c)(f)). 此外, 自旋向上和向下态的导带在Γ点附近还表现出各向异性(图2(c)图2(e)). 载流子的有效质量(m*)在导带底位置具有极小值, 自旋向上和向下态的有效质量分别为0.51me (M点)和0.65me (Γ-M点之间), me为自由电子质量; 相应的费米速度分别为3.40×104和2.17×104 m/s, 略小于石墨烯(9.00×105 m/s)和硅烯(5.70×105 m/s)的费米速度[49].

      图  2  Γ点附近的(a)自旋向上和(b)自旋向下的导带和价带的三维(3D)视图及在(c)—(f)第一布里渊区的二维投影图; 颜色卡显示了导带和价带的能量本征值从低(红色)到高(紫色)

      Figure 2.  Three-dimensional (3D) views of the conduction and valence bands for the (a) spin-up and (b) spin-down states around the Γ point, and (c)–(f) their 2D projections in the first Brillouin zone. The colorbar shows the eigenvalues of bands from low (red) to high (purple).

      尽管NiBr2单层自旋向上通道中的载流子迁移率比自旋向下态稍高, 但是其自旋极化的电子输运主要发生在自旋向下态, 主要原因是自旋向上态的带隙过大, 内建电场对载流子漂移的阻碍更加明显. 为了更好地理解这一现象, 设计了几个基于NiBr2单层的纳米器件结构, 以便更深入地研究其自旋电子输运性质. 由于沿图1(a)中NiBr2单层x轴(锯齿形Z结构)和y轴(扶手椅形A结构)的能量色散和有效质量在远离Γ点处变得各向异性, 从而导致沿这两个方向的输运性质会有所不同, 这一特性也表现在其他二维材料中[5,50,51]. 因此, 本文分别构建了沿着NiBr2单层锯齿形和扶手椅形两个方向的器件结构, 计算了它们的自旋电子输运性质.

    • 图3(a)为使用P型和N型原子补偿电荷的静电掺杂方法构建的NiBr2单层PN结二极管[52]. 这种掺杂方法不依赖于掺杂杂质的精确原子细节, 且完全独立于系统的尺寸和精确的几何形状, 在纳米器件建模中被广泛使用[53-55]. 根据图1(a)原子晶格结构, NiBr2单层PN结二极管存在锯齿形Z结构(沿x轴)和扶手椅形A结构(沿y轴)两种构型, 使用3×1013 cm–2的掺杂浓度(相当于1020 cm–3的中等体掺杂浓度)[41,56], 得到由漏极(D)和源极(S)以及带有PN结的中心散射区域组成的NiBr2单层PN结二极管. 其中D/S电极沿传输方向向两侧半无限延长, 由PN掺杂的NiBr2单层超胞描述. 正向D-S偏压Vb产生从D电极到S电极的正电流, 反之为反向电流. PN结二极管中通过的自旋电流由以下公式得到[57]:

      图  3  NiBr2单层PN结二极管的自旋输运性质 (a) NiBr2单层PN结二极管示意图; (b) Z型NiBr2单层PN结二极管的偏置电压-电流和极化率曲线; (c) Z型NiBr2单层PN结二极管的整流比曲线; (d)—(f) 在0, –0.8和0.8 V偏置电压下的自旋极化透射谱(左侧)和投影局域态密度图(右侧), 其中上图对应自旋向上态, 下图对应自旋向下态. 图(d)中的颜色卡显示了(d)—(f)中的数据从0 (白色)到高(蓝色)

      Figure 3.  Spin-resolved transport properties of PN-junction diodes of NiBr2-ML: (a) Schematic of the PN-junction diodes of NiBr2-ML. (b) I-V and polarization ratio (PR) curves of Z-type PN-junction diode of NiBr2-ML; (c) rectifying ratio curve of Z-type PN-junction diode of NiBr2-ML; (d)–(f) spin-resolved transmission spectra T(E) and projected local density of states under the biases of 0, –0.8, and 0.8 V, where the top panel and bottom panel correspond to spin-up and spin-down state, respectively. The colorbar shows the data from 0 (white) to high (blue).

      $ {I_\sigma }({V_{\text{b}}}) = \frac{e}{h}\int_{{\mu _{\text{D}}}}^{{\mu _{\text{S}}}} {{T^\sigma }(E,{V_{\text{b}}})} [{f_{\text{D}}}(E - {\mu _{\text{D}}}) - {f_{\text{S}}}(E - {\mu _{\text{S}}})]{\text{d}}E , $

      其中, σ表示自旋向上(↑)和自旋向下(↓)态的指数, 总电流IIσ的和, eh分别指电子电荷和普朗克常数, $ {{T^\sigma }(E,{V_{\text{b}}})} $是PN结的自旋透射系数, fD(S)= {1 + exp[(E μD(S))/kBTD(S)]}–1为D(S)电极的费米-狄拉克分布函数, μD(S)TD(S)分别为化学势和电子温度. 本工作中, 偏压Vb采样间隔为0.1 V.

      图3(b)中Z型NiBr2单层PN结二极管的自旋输运电流-电压(I-V)曲线显示出很强的单向传导性(即整流作用). 由于自旋向上态的自旋输运电流基本为零, 所以其在反向偏置电压–0.8 V下具有很高的整流比(109), 如图3(c)所示(整流比定义为RR = |I(–Vb)/I(Vb)|). 开路在负偏压态, 其阈值电压较高(Von= –0.5 V). 在补充材料图S1 (online)中给出了Z型NiBr2单层PN结二极管在–0.4和–0.5 V 偏置电压下的自旋极化透射谱和投影局域态密度. 可知, 仅在反向偏压增至–0.5 V时, 左右两侧PN结的能带交叠开始进入偏压窗, 从而导致电流开始明显增长. 此外, 在反向偏置电压(–0.5 V)下, 自旋极化率PR = (II)/(I+I)约为90%. 随着反向偏压的增大, 自旋极化率逐渐达到100%. 自旋过滤特性主要归因于其自旋能带本征结构固有的带隙差异, 因此, 自旋过滤效应属于其本征属性. 器件两端PN结的掺杂浓度会影响其整流和自旋极化率的大小[16]. NiBr2单层PN结二极管在纳米整流器、自旋阀和自旋过滤器方面具有潜在应用.

      图3(d)(f)为偏压下的自旋分辨透射谱和投影局域态密度(projected local density of states, PLDOS). 结果表明, 在NiBr2单层PN结二极管上施加偏置电压后, PN掺杂端的导带和价带产生较大的谷分裂, 并发生上下移动[28], 且自旋向下态的投影局域态密度能隙远小于自旋向上态的情况. 施加0.8 V前向偏置电压后, 自旋向下态中导带的自由电子和价带的空穴在偏压窗口外对齐, 载流子不能进行有效的漂移, 因此不能产生有效的电子-空穴对; 而在自旋向上态中由于导带与价带之间的带隙较大, 也不能产生有效的电子-空穴对和偏置电流. 当施加–0.8 V反向偏置电压后, 虽然偏压窗口在不同自旋分辨态下都出现了载流子的漂移, 但是自旋向上和向下态产生的结果却有较大差别. 如图3(e)显示, 自旋向下态中导带和价带之间发生了电子隧穿, 进而产生强电子传输, 对PN结二极管偏置电流的产生起主导作用; 而自旋向上态中导带与价带之间未出现明显的电子隧穿, 所以没有产生隧穿电流. 基于此, NiBr2单层PN结二极管表现出明显的单向导通性以及自旋过滤效应.

      Z型NiBr2单层PN结二极管在–0.8 V反向偏压下的总电流和微分电导密度分别为147 μA/mm (图3(b))和0.38 S/mm (图4(a)). 当反向偏压超过–0.5 V阈值时, 微分电导曲线(dI/dV)的自旋极化现象随着负偏压的减小而逐渐增强(图4(a)). 图4(b)显示了偏压相关的自旋向上和向下态的透射谱. 可以发现, 隧穿电流主要出现在偏压窗口内, 偏置电流主要由自旋向下态的强电子传输贡献. 图4(c)为在–0.8 V偏置电压下与k相关的自旋电子透射系数T(E, k), 结果表明电子透射主要发生在Γ点附近. A型NiBr2单层PN结二极管显示出与Z型二极管相似的整流和自旋过滤效应, 它们的自旋电子输运机制相同(见补充材料图S2和图S3 (online)). 由于沿A方向的载流子有效质量较大, 所以沿A方向的电流远小于沿Z方向的电流, 这表明其各向异性较强[5].

      图  4  NiBr2单层PN结二极管的器件特性 (a) Z型NiBr2单层PN结二极管的微分电导曲线; (b) 偏压相关的自旋向上和自旋向下态的电子透射谱; (c) –0.8 V偏压时k空间相关的自旋电子透射系数T(E, k). 颜色图显示了从0 (白色)到高(蓝色)的图(b)和(c)数据, 其中上图对应自旋向上态, 下图对应自旋向下态

      Figure 4.  Device properties of the PN-junction diodes of NiBr2-ML: (a) Difference conductance curves of Z-type PN-junction diodes of NiBr2-ML; (b) bias-dependent transmission spectra for the spin-up and spin-down states; (c) k-dependent transmission coefficients T(E, k) at –0.8 V. The colormap shows the T(E, k) from 0 (white) to high (blue). Top and bottom panel in (b) and (c) correspond to spin-up and spin-down state, respectively.

    • 进一步构建Z型NiBr2单层的PIN结场效应晶体管, 如图5(g)所示. PIN结的左右电极分别进行了P型和N型掺杂, 中间本征区(I)是长度为3 nm的场效应晶体管沟道, 顶部和底部栅极都位于中心区域附近. 通过亚3 nm PIN结场效应晶体管的自旋电子电流为

      图  5  Z型NiBr2单层PIN结场效应晶体管在不同栅压下的输运特性 (a)—(c) 0, 1和2 V栅极电压下自旋向上和自旋向下的偏置电流和自旋极化率曲线; (d)—(f) 在0, 1和2 V栅极电压下的自旋极化透射谱和投影局域态密度图, 其中上图对应自旋向上态, 下图对应自旋向下态; (g) NiBr2单层PIN结场效应晶体管示意图

      Figure 5.  Transport properties of Z-type NiBr2-ML PIN-junction field-effect transistors (FET) under different gate voltages: (a)–(c) I-V and polarization ratio curves under the gate voltages of 0, 1, and 2 V, respectively; (d)–(f) spin-resolved transmission spectra T(E) and projected local density of states under the biases of 0, 1, and 2 V, where top and bottom panel correspond to spin-up and spin-down state, respectively; (g) schematic of the NiBr2-ML FET.

      $\begin{split}&\\ {I_\sigma }({V_{\text{b}}},{V_{\rm g}}) =\;& \frac{e}{h}\int_{{\mu _{\text{D}}}}^{{\mu _{\text{S}}}} {{T^\sigma }(E,{V_{\text{b}}},{V_{\rm g}})} [{f_{\text{D}}}(E - {\mu _{\text{D}}}) \\ &- {f_{\text{S}}}(E - {\mu _{\text{S}}})]{\text{d}}E . \end{split}$

      图5(a)显示了Z型NiBr2单层PIN结场效应晶体管在栅极电压为0 V时的伏安特性曲线和极化率曲线. 其电流密度相比Z型NiBr2单层的PN结二极管有较小的提升, 主要原因可通过图5(d)对应0 V栅极电压下的自旋分辨透射谱和PLDOS来理解. 在偏压窗口内, 价带与导带间的宽度较PN结二极管有明显的减小, 更容易产生隧穿电流. 此外, Z型NiBr2单层PIN结场效应晶体管也表现出较强的整流和自旋过滤效应. 为进一步研究栅极电压对其电子输运的调控作用, 可以研究栅极电压分别为1和2 V的情况, 如图5(b)图5(c)所示. 结果表明, 随着栅极电压的增大, 其电流密度有明显的下降趋势, 这是由于栅极电压增大了中心本征区半导体的带隙, 导致其电流密度受到抑制, 如图5(e)图5(f)所示. 结果显示其具有明显的场效应行为, 这与MnBi2Te4磁性拓扑绝缘体的情况一致[16].

      图6为Z型NiBr2单层PIN结场效应晶体管分别在0, 1, 2 V栅极电压下的整流比曲线. 在栅极电压为0 V时, 其整流比最大(例如在–0.8 V时可达1014数量级). 随着栅极电压的增加, 在栅极电压为2 V时, 其整流比减小到109数量级. A型NiBr2单层PIN结场效应晶体管表现出与Z型场效应晶体管相同的场效应特性(见补充材料图S4和图S5 (online)), 不过其电流密度远小于Z型结构, 表现出较强的电各向异性性质, 且A型结构整流比更大, 整流作用更明显.

      图  6  在不同栅极电压下, Z型NiBr2单层PIN结场效应晶体管的自旋向上(up)、自旋向下(dn)及总的(Total)整流比曲线 (a) Vg = 0 V; (b) Vg = 1 V; (c) Vg = 2 V

      Figure 6.  Spin-up, spin-down, total rectifying ratio curves of Z-type NiBr2-ML PIN-junction FET under different gate voltages: (a) Vg = 0 V; (b) Vg = 1 V; (c) Vg = 2 V.

    • 最后, 本研究小组设计了NiBr2单层的光电晶体管, 并研究了其光电性能及在自旋光电器件领域的潜在应用. 当光子能量大于NiBr2单层的能隙时, 光电导通道开始导通. 对于自旋向下态, 其在可见光的蓝光区有较宽且较高的光电导率(σ)峰(图7(a)); 而自旋向上态的间接能隙较大, 光电子很难实现跃迁, 光电导过程受到抑制. 因此NiBr2单层的光电晶体管有望成为自旋过滤器的理想候选材料, 且可在AM1.5标准内开发基于NiBr2单层的光伏器件[58]. 为此, 本研究小组设计了基于Z型NiBr2单层的光电晶体管(图7(b)), 进一步揭示了其在光照条件下的光电传输特性和栅极电压的调节作用.

      图  7  NiBr2单层的光电特性 (a) NiBr2单层的光电导率, 七彩光谱背景色为可见光区; (b) NiBr2单层的PIN结光电晶体管示意图; (c) Z型NiBr2单层的PIN结光电晶体管在0 V偏压(无电源)下的自旋光电流密度; (d) 0 V偏压时不同栅极电压下的Z型NiBr2单层的PIN结光电晶体管光电流谱. IR, VR, UR分别指红外区、可见光区、紫外区

      Figure 7.  Photoelectric properties of the NiBr2-ML: (a) Optical-conductivity of NiBr2-ML, where the embedded spectrum pattern displays the visible region; (b) schematic of the PIN-junction phototransistor of NiBr2-ML; (c) spin-resolved photocurrent density of the Z-type PIN-junction phototransistor of NiBr2-ML under zero bias (without power); (d) gate-dependent photocurrent spectra of the Z-type phototransistor of NiBr2-ML under zero bias. IR, VR, and UR refer to the infrared, visible, and ultraviolet region, respectively.

      本工作中入射光为线性极化光, 光子的能量范围为0—5 eV. 当频率为ω的光子进入NiBr2单层晶体管电极并被吸收后, 产生的光生电流为[59,60]

      $ \begin{split} {I_\alpha } =\;& \frac{e}{h}\int_{ - \infty }^\infty {\sum\limits_{\beta = {\text{D,S}}} {[1 - {f_\alpha }(E)]} } {f_\beta }(E - \hbar \omega )T_{\alpha ,\beta }^ - (E) \\ &- {f_\alpha }(E)[1 - {f_\beta }(E + \hbar \omega )]T_{\alpha ,\beta }^ + (E){\text{d}}E ,\\[-10pt]\end{split} $

      式中α = D/S, 总光电流由Iph = ID IS 得到. 在零偏压(无电源)下, NiBr2单层PIN结光电晶体管在可见光的蓝光区域具有较高的σ峰(图7(a)), 从而具有较强的光响应. 其光响应行为主要由自旋向下态贡献, 产生的0.8 μA/mm2总自旋光电流(图7(c))与硅太阳能电池较为接近[60]. 此外, 自旋向下光电流在可见光的蓝、绿光重叠区域有更高的峰值, 表明其在光电传感器中具有潜在应用价值. 光电流主要由自旋向下态贡献, 且对绿光和蓝光区域有较强光电响应, 这与本征的光电导率一致, 其光电响应属于其本征属性. 而光电流峰值与光电导曲线相比略有红移, 可能与电磁波磁矢量对NiBr2自旋电子分离导致的载流子浓度变化有关.

      通常可使用栅电极来调节光电晶体管的光学响应[61,62], 不同的栅极电压显著影响着Z型NiBr2单层PIN结光电晶体管的光电性能. 当施加较小的正向栅极电压时, 可产生强光电流峰值, 但随着正向栅极电压的增加或反向栅极电压的减小, 光电流逐渐减弱(图7(d)). 对于A型NiBr2单层PIN结光电晶体管, 光电子在自旋向下态发生跃迁, 并且在可见光的蓝、绿光区域具有两个较高的σ峰, 从而分别产生0.5 μA/mm2和接近0.5 μA/mm2的总光电流(补充材料图S6 (online)). 因此, NiBr2单层PIN结光电晶体管可用于检测绿光(A型)和蓝光(A/Z型)的光学器件或光电传感器.

    • 本文设计了一些基于NiBr2单层的纳米器件结构, 并使用第一性原理方法研究了它们的自旋电子输运性质和光电性质. NiBr2单层的Z型和A型PN结二极管在反向偏压下, 均表现出较强的自旋过滤效应和整流效应(整流比的数量级分别达到109和1012). 这两种效应在其亚3 nm PIN结场效应晶体管中也同样存在, 并且其隧穿电流可以通过栅极电压来显著调控. 此外, NiBr2单层在可见光区域具有较大的光电导率, Z型PIN结光电晶体管对蓝光具有较强的响应; 而A型PIN结光电晶体管对蓝、绿光均具有较强的响应, 该特性可用于自旋光电器件的研发. 结果表明, NiBr2单层是一种多功能材料, 为自旋电子学和新型光电纳米器件的开发与应用提供了重要依据.

      感谢河南师范大学高性能计算中心.

参考文献 (62)
补充材料:

目录

    /

    返回文章
    返回