搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硼烯的实验制备

李文辉 陈岚 吴克辉

引用本文:
Citation:

硼烯的实验制备

李文辉, 陈岚, 吴克辉

Experimental synthesis of borophene

Li Wen-Hui, Chen Lan, Wu Ke-Hui
PDF
HTML
导出引用
  • 硼烯作为目前发现的最轻的二维材料, 表现出丰富的物理性质, 包括高柔韧性、光学透明性、高热导率、近一维自由电子气、狄拉克费米子、超导电性等. 然而, 由于体相硼的层间共价键结合力较强, 很难剥离出单层硼烯. 另外, 硼原子的缺电子属性, 使其化学性质比较活泼, 成键复杂, 导致硼烯有很多同素异形体. 长期以来, 关于硼烯的研究停留在理论探索方面, 硼烯的实验制备一直难以突破, 直到最近几年才由少数课题组成功制备, 至此关于硼烯的生长、结构以及电子性质研究打开了巨大的探索空间. 本文主要从实验方向, 系统综述了硼烯在不同衬底上的制备方法以及表现的不同结构相, 并讨论了其生长机理. 硼烯的制备为进一步扩展硼烯的物理性质提供研究平台, 为探索硼烯的纳米器件制备提供思路, 使得其在高能量储备、光电子器件、高检测灵敏度、柔性纳米器件等方面具有巨大的潜在应用前景.
    As the lightest two-dimensional material discovered so far, borophene exhibits rich physical properties, including high flexibility, optical transparency, high thermal conductivity, one-dimensional nearly free electron gas, Dirac fermions, and superconductivity. However, due to the strong interlayer covalent bonding force of bulk boron, it is difficult to obtain the monolayer borophene via mechanical exfoliation. In addition, due to the electron-deficient property of boron atoms, its chemical properties are relatively active, and its bonding is complex, resulting in different boron allotropes, which is different from other two-dimensional materials. For a long time, the research on borophene has been limited to theoretical exploration, and it has been difficult to make breakthroughs in the experimental synthesis of two-dimensional borophene. It has been only successfully prepared by a few research groups in recent years. However, there is still huge space for exploration on the growth, structure and electronic properties of borophene. This paper systematically reviews the preparation methods and different structures of borophene under different substrates, and its growth mechanism is discussed. It provides a research platform for further expanding the physical properties of borophene, and provides ideas for exploring the preparation of borophene nanodevices. It has great potential application prospects in high energy storage, optoelectronic devices, high detection sensitivity, and flexible nanodevices.
      通信作者: 陈岚, lchen@iphy.ac.cn ; 吴克辉, khwu@iphy.ac.cn
    • 基金项目: 科技部重大研究计划(批准号: 2018YFE0202700)、国家自然科学基金(批准号: 12134019)和中国科学院先导项目(批准号: XDB30000000)资助的课题.
      Corresponding author: Chen Lan, lchen@iphy.ac.cn ; Wu Ke-Hui, khwu@iphy.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFE0202700), National Natural Science Foundation of China (Grant No. 12134019), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB30000000).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Traversi F, Raillon C, Benameur S M, Liu K, Khlybov S, Tosun M, Krasnozhon D, Kis A, Radenovic A 2013 Nat. Nanotechnol. 8 939Google Scholar

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [4]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim K 2007 Science 315 1379Google Scholar

    [5]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [6]

    Feng B J, Ding Z J, Meng S, Yao Y G, He X Y, Cheng P, Chen L, Wu K H 2012 Nano Lett. 12 3507Google Scholar

    [7]

    Bianco E, Butler S, Jiang S, Restrepo O D, Windl W, Goldberger J E 2013 ACS Nano 7 4414Google Scholar

    [8]

    Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S S, Jia J F 2015 Nat. Mater. 14 1020Google Scholar

    [9]

    Li L F, Wang Y L, Xie S Y, Li X B, Wang Y Q, Wu R T, Sun H B, Zhang S B, Gao H J 2013 Nano Lett. 13 4671Google Scholar

    [10]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar

    [11]

    Ji J P, Song X F, Liu J Z, Yan Z, Huo C X, Zhang S L, Su M, Liao L, Wang W H, Ni Z H, Hao Y F, Zeng H B 2016 Nat. Commun. 7 1Google Scholar

    [12]

    Feng B J, Zhang J, Zhong Q, Li W B, Li S, Li H, Cheng P, Meng S, Chen L, Wu K H 2016 Nat. Chem. 8 563Google Scholar

    [13]

    Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X L, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C, Guisinger N P 2015 Science 350 1513Google Scholar

    [14]

    Jiang H R, Lu Z, Wu M C, Ciucci F, Zhao T S 2016 Nano Energy 23 97Google Scholar

    [15]

    Gou J, Kong L J, He X Y, Huang Y L, Sun J T, Meng S, Wu K H, Chen L, Wee A T S 2020 Sci. Adv. 6 eaba2773Google Scholar

    [16]

    Rastgou A, Soleymanabadi H, Bodaghi A 2017 Microelectron. Eng. 169 9Google Scholar

    [17]

    Liu Z, Liu C X, Wu Y S, Duan W H, Liu F, Wu J 2011 Phys. Rev. Lett. 107 136805Google Scholar

    [18]

    Wu X J, Dai J, Zhao Y, Zhuo Z W, Yang J L, Zeng X C 2012 ACS Nano 6 7443Google Scholar

    [19]

    Zhang Z H, Yang Y, Penev E S, Yakobson B I 2017 Adv. Funct. Mater. 27 1605059Google Scholar

    [20]

    Kong L J, Liu L, Chen L, Zhong Q, Cheng P, Li H, Zhang Z H, Wu K H 2019 Nanoscale 11 15605Google Scholar

    [21]

    Yang J, Quhe R, Feng S Y, Zhang Q X, Lei M, Lu J 2017 Phys. Chem. Chem. Phys. 19 23982Google Scholar

    [22]

    Peng B, Zhang H, Shao H Z, Xu Y F, Zhang R J, Zhu H Y 2016 J. Mater. Chem. C 4 3592Google Scholar

    [23]

    Novotný M, Domínguez-Gutiérrez F J, Krstić P 2017 J. Mater. Chem. C 5 5426Google Scholar

    [24]

    Vishkayi S I, Tagani M B 2018 Phys. Chem. Chem. Phys. 20 10493Google Scholar

    [25]

    Li D F, He J, Ding G Q, Tang Q Q, Ying Y, He J J, Zhong C Y, Liu Y, Feng C B, Sun Q L, Zhou H B, Zhou P, Zhang G 2018 Adv. Funct. Mater. 28 1801685Google Scholar

    [26]

    Verma S, Mawrie A, Ghosh T K 2017 Phys. Rev. B 96 155418Google Scholar

    [27]

    Mannix A J, Zhang Z, Guisinger N P, Yakobson B I, Hersam M C 2018 Nat. Nanotechnol. 13 444Google Scholar

    [28]

    Oganov A R, Solozhenko V L 2009 J. Superhard Mater. 31 285Google Scholar

    [29]

    Zhang Z, Penev E. S, Yakobson B I 2017 Chem. Soc. Rev. 46 6746Google Scholar

    [30]

    Zhai H J, Alexandrova A N, Birch K A, Boldyrev A I, Wang L S 2003 Angew. Chem. Int. Ed. 42 6004Google Scholar

    [31]

    Kiran B, Bulusu S, Zhai H J, Yoo S, Zeng X C, Wang L S 2005 Proc. Natl. Acad. Sci. 102 961Google Scholar

    [32]

    Li W L, Chen Q, Tian W J, Bai H, Zhao Y F, Hu H S, Li J, Zhai H J, Li S D, Wang L S 2014 J. Am. Chem. Soc. 136 12257Google Scholar

    [33]

    Boustani I 1995 Chem. Phys. Lett. 240 135Google Scholar

    [34]

    Boustani I 1997 Surf. Sci. 370 355Google Scholar

    [35]

    Zhai H J, Kiran B, Li J, Wang L S 2003 Nat. Mater. 2 827Google Scholar

    [36]

    Alexandrova A N, Boldyrev A I, Zhai H J, Wang L S 2006 Coord. Chem. Rev. 250 2811Google Scholar

    [37]

    Li W L, Chen X, Jian T, Chen T T, Li J, Wang L S 2017 Nat. Rev. Chem. 1 1Google Scholar

    [38]

    Evans M H, Joannopoulos J D, Pantelides S T. 2005 Phys. Rev. B 72 045434Google Scholar

    [39]

    Kunstmann J, Quandt A 2006 Phys. Rev. B 74 035413Google Scholar

    [40]

    Tang H, Ismail-Beigi S 2007 Phys. Rev. Lett. 99 115501Google Scholar

    [41]

    Yang X B, Ding Y, Ni J. 2008 Phys. Rev. B 77 041402(R)

    [42]

    Zhang L Z, Yan Q B, Du S X, Su G, Gao H J 2012 J. Phys. Chem. C 116 18202Google Scholar

    [43]

    Liu Y Y, Penev E S, Yakobson B I 2013 Angew. Chem. Int. Ed. 52 3156Google Scholar

    [44]

    Liu H S, Gao J F, Zhao J J 2013 Sci. Rep. 3 1Google Scholar

    [45]

    Zhang Z H, Yang Y, Gao G Y, Yakobson B 2015 Angew. Chem. 127 13214Google Scholar

    [46]

    Zhang Z, Mannix A J, Hu Z, Kiraly B, Guisinger N P, Hersam M C, Yakobson B I 2016 Nano Lett. 16 6622Google Scholar

    [47]

    Aufray B, Kara A, Vizzini S, Oughaddou H, Léandri C, Ealet B, Le Lay G 2010 Appl. Phys. Lett. 96 183102Google Scholar

    [48]

    Feng B J, Li H, Meng S, Chen L, Wu K H 2016 Surf. Sci. 645 74Google Scholar

    [49]

    Zhong Q, Kong L J, Gou J, Li W B, Sheng S X, Yang S, Cheng P, Li H, Wu K H, Chen L 2017 Phys. Rev. Mater. 1 021001Google Scholar

    [50]

    Wang Y, Kong L J, Chen C Y, Cheng P, Feng B J, Wu K H, Chen L 2020 Adv. Mater. 32 2005128Google Scholar

    [51]

    Buzea C, Yamashita T 2001 Supercond. Sci. Technol. 14 R115Google Scholar

    [52]

    Li W B, Kong L J, Chen C Y, Gou J, Sheng S X, Zhang W F, Li H, Chen L, Cheng P, Wu K H 2018 Sci. Bull. 63 282Google Scholar

    [53]

    Geng D, Yu K, Yue S, Cao J, Li W, Ma D, Cui C, Arita M, Kumar S, Schwier E F, Shimada K, Cheng P, Chen L, Wu K H, Yao Y, Feng B J 2020 Phys. Rev. B. 101 161407Google Scholar

    [54]

    Kiraly B, Liu X L, Wang L Q, Zhang Z H, Mannix A J, Fisher B L, Yakobson B I, Hersam M C, Guisinger N P 2019 ACS Nano 13 3816Google Scholar

    [55]

    Wu R T, Drozdov I K, Eltinge S, Zahl P, Ismail-Beigi S, Božović I, Gozar A 2019 Nat. Nanotechnol. 14 44Google Scholar

    [56]

    Wu R T, Gozar A, Božović I 2019 NPJ Quantum Mater. 4 1Google Scholar

    [57]

    Vinogradov N A, Lyalin A, Taketsugu T, Vinogradov A S, Preobrajenski A 2019 ACS Nano 13 14511Google Scholar

    [58]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [59]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Natures 556 43

    [60]

    Wang L, Shih E M, Ghiotto A, Xian L, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y, Kim B, Watanabe K, Taniguchi T, Zhu X, Hone J, Rubio A, Pasupathy A N, Dean C R 2020 Nat. Mater. 19 861Google Scholar

    [61]

    de la Barrera S C, Sinko M R, Gopalan D P, Sivadas N, Seyler K L, Watanabe K, Taniguchi T, Tsen A W, Xu X D, Xiao D, Hunt B M 2018 Nat. Commun. 9 1427Google Scholar

    [62]

    Cui J, Li P L, Zhou J D, He W Y, Huang X W, Yi J, Fan J, Ji Z Q, Jing X N, Qu F M, Cheng Z G, Yang C L, Lu L, Suenaga K, Liu J W, Law K T, Lin J H, Liu Z, Liu G T 2019 Nat. Commun. 10 2044Google Scholar

    [63]

    Regan E C, Wang D, Jin C, Utama M I, Gao B, Wei X, Zhao S, Zhao W, Zhang Z, Yumigeta K, Blei M, Carlstrom J D, Watanabe K, Taniguchi T, Tongay S, Crommie M, Zettl A, Wang F 2020 Nature 579 359Google Scholar

    [64]

    Tang Y, Li L, Li T, Xu Y, Liu S, Barmak K, Watanabe K, Taniguchi T, MacDonald A H, Shan J, Mak K F 2020 Nature 579 353Google Scholar

    [65]

    Jin C, Regan E C, Yan A, Iqbal Bakti U M, Wang D Q, Zhao S, Qin Y, Yang S, Zheng Z, Shi S, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wang F 2019 Nature 567 76Google Scholar

    [66]

    Alexeev E M, Ruiz-Tijerina D A, Danovich M, Hamer M J, Terry D J, Nayak P K, Ahn S, Pak S, Lee J, Sohn J I, Molas M R, Koperski M, Watanabe K, Taniguchi T, Novoselov K S, Gorbachev R V, Shin H S, Fal'ko V I, Tartakovskii A I 2019 Nature 567 81Google Scholar

    [67]

    Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W, Xu X 2019 Nature 567 66Google Scholar

    [68]

    Tran K, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J, Singh A, Embley J, Zepeda A, Campbell M, Autry T, Taniguchi T, Watanabe K, Lu N, Banerjee S K, Silverman K L, Kim S, Tutuc E, Yang L, MacDonald A H, Li X 2019 Nature 567 71Google Scholar

    [69]

    Gao N, Wu X, Jiang X, Bai Y, Zhao J 2018 FlatChem 7 48Google Scholar

    [70]

    Nakhaee M, Ketabi S A, Peeters F M 2018 Phys. Rev. B 98 115413Google Scholar

    [71]

    Li D, Tang Q, He J, Li B, Ding G, Feng C, Zhou H B, Zhang G 2019 ACS Omega. 4 8015Google Scholar

    [72]

    Xu S G, Zheng B, Xu H, Yang X B 2019 J. Phys. Chem. C 123 4977Google Scholar

    [73]

    Zhao Y, Zeng S, Ni J 2016 Phys. Rev. B 93 014502Google Scholar

    [74]

    Liu X L, Li Q C, Ruan Q Y, Rahn M S, Yakobson B I, Hersam M C 2021 Nat. Mater. 21 35Google Scholar

    [75]

    Chen C Y, Lv H F, Zhang P, Zhuo Z W, Wang Y, Ma C, Li W B, Wang X G, Feng B J, Cheng P, Wu X J, Wu K H, Chen L 2021 Nat. Chem. 14 25Google Scholar

    [76]

    Cuxart M G, Seufert K, Chesnyak V, Waqas W A, Robert A, Bocquet M L, Duesberg G S, Sachdev H, Auwärter W 2021 Sci. Adv. 7 eabk1490Google Scholar

    [77]

    Farwick zum Hagen F H, Zimmermann D M, Silva C C, Schlueter C, Atodiresei N, Jolie W, Martínez-Galera A J, Dombrowski D, Schröder U A, Will M, Lazić P, Caciuc V, Blügel S, Lee T L, Michely T, Busse C 2016 ACS Nano 10 11012Google Scholar

    [78]

    Allan M P, Berner S, Corso M, Greber T, Osterwalder J 2007 Nanoscale Res. Lett. 2 94Google Scholar

    [79]

    Petrović M, Hagemann U, Horn-von Hoegen M, zu Heringdorf F J M 2017 Appl. Surf. Sci. 420 504Google Scholar

    [80]

    Corso M, Auwärter W, Muntwiler M, Tamai A, Greber T, Osterwalder J 2004 Science 303 217Google Scholar

    [81]

    Sachdev H, Müller F, Hüfner S 2010 Diam. Relat. Mater. 19 1027Google Scholar

    [82]

    Tang H, Ismail-Beigi S 2009 Phys. Rev. B 80 134113Google Scholar

    [83]

    Zhou X F, Oganov A R, Wang Z, Popov I A, Boldyrev A I, Wang H T 2016 Phys. Rev. B 93 085406Google Scholar

    [84]

    Ma F, Jiao Y, Gao G, Gu Y, Bilic A, Chen Z, Du A 2016 Nano Lett. 16 3022Google Scholar

    [85]

    Zhong H, Huang K, Yu G, Yuan S 2018 Phys. Rev. B 98 054104Google Scholar

    [86]

    Ahn S, Kim G, Nayak P K, Yoon S I, Lim H, Shin H J, Shin H S 2016 ACS Nano 10 8973Google Scholar

    [87]

    Li L, Kim J, Jin C, Ye G J, Qiu D Y, da Jornada F H, Shi Z, Chen L, Zhang Z, Yang F, Watanabe K, Taniguchi T, Ren W, Louie S G, Chen X H, Zhang Y, Wang F 2017 Nat. Nanotechnol. 12 21Google Scholar

    [88]

    Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, Zhang Y 2018 Nature 563 94Google Scholar

  • 图 1  硼烯理论预测和实验制备的研究进展

    Fig. 1.  Research progress on theoretical prediction and experimental synthesis of borophene.

    图 2  (a) 硼元素在元素周期表的位置和原子轨道[27]; (b) Bn硼团簇依赖尺寸大小, 从平面或准平面结构, 到笼状结构, 再到核壳结构的变化[29]; (c) ${\rm{B}}_n^- $ (n = 3—38)单阴离子硼团簇的稳定结构以及点群对称性[37]

    Fig. 2.  (a) The position and atomic orbital of boron in the periodic table[27]; (b) size-dependent conformation of Bn clusters from planar or quasiplanar, via cagelike to core -shell structures[29]; (c) stable structure and point group symmetry of monoanionic ${\rm{B}}_n^- $ (n = 3–38) clusters[37].

    图 3  (a)和(b)分别为六方孔洞结构的α, β相单层硼烯; (c) 硼烯的结合能随六方孔洞密度变化[40]

    Fig. 3.  (a) and (b) α, β phase monolayer borophene with hexagonal hole structure, respectively; (c) binding energies vs hexagon hole density for borophene with evenly distributed hexagons[40].

    图 4  理论预言无衬底支撑的各种单层硼烯结构 (a) δ相; (b) χ相; (c) α相; (d) β相. 红色和黄色小球表示硼原子面外或面内运动, 导致硼原子层翘曲[18]

    Fig. 4.  Various monolayer borophene structures without substrate support by theoretical prediction: (a) δ phase; (b) χ phase; (c) α phase; (d) β phase. Red and yellow balls denote borophene atoms moving outward or inward from the plane, resulting in buckled borophene[18].

    图 5  不同金属衬底上单层硼烯的基态稳定结构[45]

    Fig. 5.  Stable structures of monolayer borophene with respect to ground states on different metal substrates[45].

    图 6  (a) Ag(111)衬底温度为570 K时形成的硼烯薄膜; (b)图(a)的三维立体模式; (c) S1相的高分辨STM图; (d) S1相硼烯的理论模型β12结构; (e) 650 K退火后, 大部分S1相转变为S2相硼烯; (f)图(e)中黑色方框区域的高分辨STM图; (g) S2相的高分辨STM图; (h) S2相硼烯的理论模型χ3结构[12]

    Fig. 6.  (a) Experimental STM image of borophene on the Ag (111) substrate at 570 K; (b) 3 D image of (a); (c) high-resolution STM image about S1 phases; (d) theoretical model of the S1 phase borophene considered to be the β12 structure; (e) most of the borophene islands are transformed from S1 phase to S2 phase after annealing at 650 K; (f) STM image of the area of highlight by the rectangle of (e); (g) high-resolution STM image of the S2 phase ; (h) theoretical model of the S2 phase borophene considered to be the χ3 structure[12].

    图 7  (a) 硼烯的生长示意图; (b)和(c)分别为硼烯的STM形貌图和电子态密度图, 红色、白色和蓝色箭头分别表示均匀相、条纹相和条纹相纳米带; (d) 条纹相的原子分辨图和理论模型; (e)和(f)分别为均匀相硼烯的STM形貌图和电子态密度图; (g) 均匀相的原子分辨图和理论模型; (h)和(i)分别为铺满衬底单层硼烯的STM形貌图和电子态密度图[13]

    Fig. 7.  (a) Schematics of synthesizing borophene; (b) and (c) the STM topography and electron density of states of borophene, respectively, the red, white, and blue marks denote homogeneous phase, striped phase, and striped phase nanoribbons, respectively; (d) STM image about atomic level structure and theoretical model of the striped-phase; (e) and (f) the STM topography and electron density of states of homogeneous phase borophene, respectively; (g) STM image about atomic level structure and theoretical model of the homogeneous phase; (h) and (i) represent the STM topography and electron density of states of monolayer borophene covered the substrate, respectively[13].

    图 8  (a) 在Ag(110)表面生长的硼烯纳米带; (b)—(e) P1—P4相硼烯纳米带的高分辨率STM图像; (f)—(i)P1—P4相硼烯的理论模型[49]

    Fig. 8.  (a) Synthesis borophene nanoribbons on Ag(110) ; (b)–(e) high-resolution STM images of the P1–P4 phase borophene, respectively ; (f)–(i) theoretical model of the P1–P4 phase borophene, respectively[49].

    图 9  (a) Ag(100)衬底上硼烯制备示意图; (b)和(c) 硼烯有A, B, C三种不同链状结构; (d)—(f) A, B, C三种硼烯相的高分辨STM图; (g)—(i)对应(d)—(f)中的三种硼烯相的原子结构模型. 其中A相(g)和C相(i)是典型的准一维原子链混合相结构[50]

    Fig. 9.  (a) Schematics of synthesizing borophene on Ag(100); (b) and (c) three different chain structures of A, B, and C phase borophene; (d)–(f) high-resolution STM image of the A, B, and C phase borophene, respectively ; (g)–(i) theoretical models of different phases borophene of (d)–(f), respectively. the phase (g) and C phase (i) are typical quasi-one-dimensional atomic chain mixed different phases[50].

    图 10  (a) 蜂窝状结构硼烯的示意图; (b)—(d) Al(111)衬底上硼烯薄膜的 STM图, 其中(d)图显示出三角形的周期性起伏结构; (e) Al(111)衬底上硼烯薄膜的原子结构模型图[52]

    Fig. 10.  (a) Schematic of the honeycomb structure of borophene; (b)–(d) STM images of borophene on Al(111), which shows the periodic triangle undulating structure in (d); (e) atomic structure model of borophene on Al(111) [52].

    图 11  (a) Au(111)表面鱼骨状条纹的STM图像; (b)沉积硼后, Au(111)表面鱼骨状条纹被调制为三角网格; (c) 硼烯v1/12相的理论模型; (d) 室温沉积硼B 1s能级峰; (e) 随着硼含量增大, Au(111)三角网格破裂, 硼烯岛长大; (f) 硼烯生长动态示意图; (g) 硼在Au(111)上扩散的最小能量路径[54]

    Fig. 11.  (a) STM image of Au(111) surface that shows herringbone stripes; (b) following boron deposition, the herringbone reconstruction was modified to a trigonal network ; (c) atomic structure of the borophene v1/12 computationally modeled; (d) B 1s core-level spectra for room-temperature B deposition; (e) increasing boron dose results in the breakdown of the trigonal network and growth of larger borophene islands; (f) schematic illustration of borophene growth dynamics; (g) minimum energy path for boron diffusion on Au(111) [54].

    图 12  (a) Cu(111)衬底上硼烯的生长动态过程; (b) 硼烯的STM原子分辨图; (c) 理论计算硼烯的恒隧穿电流等能面; (d) 硼烯的原子结构[55]

    Fig. 12.  (a) Growth dynamics of the borophene on the Cu(111) surface; (b) high resolution STM of borophene; (c) DFT-simulated constant tunnelling current isosurface of the borophene; (d) atomic structure of borophene[55].

    图 13  (a) Ir(111)衬底上生长硼烯示意图; (b) STM显示硼烯的3个等价方向畴界; (c) 洁净Ir(111)表面的LEED图案; (d) 硼烯/Ir(111)的LEED图案; (e) 硼烯波浪条纹状; (f) 硼烯单胞结构; (g)和(h) Ir(111)衬底上的χ6硼烯结构及电荷分布[57]

    Fig. 13.  (a) Schematics of synthesizing borophene on Ir(111); (b) STM image of borophene domains on Ir(111) showing three equivalent orientations; (c) LEED pattern from clean Ir(111); (d) LEED pattern from borophene/Ir(111); (e) undulated-stripe appearance of borophene; (f) unit cell structure of borophene; (g) and (h) optimized structure of χ6 borophene on Ir(111) surface and charge redistribution[57].

    图 14  (a) 双层硼烯的晶格结构, 体相硼的基本结构单元为B12正二十面体; (b) Ag(111)上生长的双层硼烯; (c)双层硼烯的STM原子分辨; (d)双层硼烯的CO-STM图像; (e) 双层硼烯与单层v1/5相的界面; (f) Ag(111)衬底上双层硼烯的理论模型结构; (g) 双层硼烯与Ag(111)形成的摩尔条纹; (h)和(i) 双层硼烯的CO-STM与CO-AFM图像[74]

    Fig. 14.  (a) Lattice structure of bilayer borophene, schematic of the B12 icosahedron unit that is the basis of bulk boron polymorphs; (b) growth of BL borophene on Ag(111); (c) atomic-scale imaging of BL borophene; (d) CO-STM image of BL borophene; (e) CO-STM image of the interface between BL borophene and v1/5 borophene; (f) the atomic structure of BL borophene on Ag(111); (g) illustration of the moiré superlattice formed between BL borophene and Ag(111); (h) and (i) experimental CO-STM and CO-AFM images of BL borophene, respectively[74].

    图 15  (a) 单层与双层硼烯共存的形貌图; (b) Cu(111)上生长的双层硼烯; (c) 双层硼烯退火后形成较大的畴; (d) 双层硼烯的STM原子图像; (e)和(f)分别为双层硼烯的第1层和第2层硼烯原子模型结构; (g)双层硼烯的电荷密度分布; (h)和(i)分别为双层硼烯与单层硼烯的XPS谱[75]

    Fig. 15.  (a) Coexisting monolayer (ML) and bilayer (BL) borophene; (b) grow BL borophene on Cu(111); (c) BL borophene with a large single-phase domain after annealing; (d) high-resolution STM images of BL borophene; (e) and (f) atomic structures of the first and second layers of BL borophene; (g) charge distribution between BL borophene and the Cu(111) substrate; (h) and (i) the XPS spectra of bilayer and monolayer borophene, respectively[75].

    图 16  CVD法在Ir(111)衬底上制备硼烯以及硼烯-氮化硼异质结 (a) Ir(111)衬底上用B2H6生长硼烯的模型图; (b) 硼烯-氮化硼水平异质结的模型图; (c) 硼烯-氮化硼垂直异质结的模型图; (d) 硼烯的STM原子图像; (e)和(f)分别为硼烯-氮化硼水平和垂直异质结的原子图像; (g) 硼烯的电子隧道谱; (h) 覆盖hBN与未覆盖hBN时硼烯的XPS谱[76]

    Fig. 16.  CVD growth of borophene and borophene-hBN heterostructures on Ir(111): (a) Schematic of diborane dosage on the preheated Ir(111) surface to obtain borophene; (b) schematic of borophene-hBN lateral heterostructures; (c) schematic of borophene-hBN vertical heterostructures; (d) STM image of borophene; (e) and (f) high-resolution STM image of borophene-hBN lateral and vertical heterostructures ; (g) dI/dV spectra taken on borophene and hBN; (h) XPS spectra of B1s measured on hBN-covered and uncovered borophene, respectively[76].

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Traversi F, Raillon C, Benameur S M, Liu K, Khlybov S, Tosun M, Krasnozhon D, Kis A, Radenovic A 2013 Nat. Nanotechnol. 8 939Google Scholar

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [4]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim K 2007 Science 315 1379Google Scholar

    [5]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [6]

    Feng B J, Ding Z J, Meng S, Yao Y G, He X Y, Cheng P, Chen L, Wu K H 2012 Nano Lett. 12 3507Google Scholar

    [7]

    Bianco E, Butler S, Jiang S, Restrepo O D, Windl W, Goldberger J E 2013 ACS Nano 7 4414Google Scholar

    [8]

    Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S S, Jia J F 2015 Nat. Mater. 14 1020Google Scholar

    [9]

    Li L F, Wang Y L, Xie S Y, Li X B, Wang Y Q, Wu R T, Sun H B, Zhang S B, Gao H J 2013 Nano Lett. 13 4671Google Scholar

    [10]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar

    [11]

    Ji J P, Song X F, Liu J Z, Yan Z, Huo C X, Zhang S L, Su M, Liao L, Wang W H, Ni Z H, Hao Y F, Zeng H B 2016 Nat. Commun. 7 1Google Scholar

    [12]

    Feng B J, Zhang J, Zhong Q, Li W B, Li S, Li H, Cheng P, Meng S, Chen L, Wu K H 2016 Nat. Chem. 8 563Google Scholar

    [13]

    Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X L, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C, Guisinger N P 2015 Science 350 1513Google Scholar

    [14]

    Jiang H R, Lu Z, Wu M C, Ciucci F, Zhao T S 2016 Nano Energy 23 97Google Scholar

    [15]

    Gou J, Kong L J, He X Y, Huang Y L, Sun J T, Meng S, Wu K H, Chen L, Wee A T S 2020 Sci. Adv. 6 eaba2773Google Scholar

    [16]

    Rastgou A, Soleymanabadi H, Bodaghi A 2017 Microelectron. Eng. 169 9Google Scholar

    [17]

    Liu Z, Liu C X, Wu Y S, Duan W H, Liu F, Wu J 2011 Phys. Rev. Lett. 107 136805Google Scholar

    [18]

    Wu X J, Dai J, Zhao Y, Zhuo Z W, Yang J L, Zeng X C 2012 ACS Nano 6 7443Google Scholar

    [19]

    Zhang Z H, Yang Y, Penev E S, Yakobson B I 2017 Adv. Funct. Mater. 27 1605059Google Scholar

    [20]

    Kong L J, Liu L, Chen L, Zhong Q, Cheng P, Li H, Zhang Z H, Wu K H 2019 Nanoscale 11 15605Google Scholar

    [21]

    Yang J, Quhe R, Feng S Y, Zhang Q X, Lei M, Lu J 2017 Phys. Chem. Chem. Phys. 19 23982Google Scholar

    [22]

    Peng B, Zhang H, Shao H Z, Xu Y F, Zhang R J, Zhu H Y 2016 J. Mater. Chem. C 4 3592Google Scholar

    [23]

    Novotný M, Domínguez-Gutiérrez F J, Krstić P 2017 J. Mater. Chem. C 5 5426Google Scholar

    [24]

    Vishkayi S I, Tagani M B 2018 Phys. Chem. Chem. Phys. 20 10493Google Scholar

    [25]

    Li D F, He J, Ding G Q, Tang Q Q, Ying Y, He J J, Zhong C Y, Liu Y, Feng C B, Sun Q L, Zhou H B, Zhou P, Zhang G 2018 Adv. Funct. Mater. 28 1801685Google Scholar

    [26]

    Verma S, Mawrie A, Ghosh T K 2017 Phys. Rev. B 96 155418Google Scholar

    [27]

    Mannix A J, Zhang Z, Guisinger N P, Yakobson B I, Hersam M C 2018 Nat. Nanotechnol. 13 444Google Scholar

    [28]

    Oganov A R, Solozhenko V L 2009 J. Superhard Mater. 31 285Google Scholar

    [29]

    Zhang Z, Penev E. S, Yakobson B I 2017 Chem. Soc. Rev. 46 6746Google Scholar

    [30]

    Zhai H J, Alexandrova A N, Birch K A, Boldyrev A I, Wang L S 2003 Angew. Chem. Int. Ed. 42 6004Google Scholar

    [31]

    Kiran B, Bulusu S, Zhai H J, Yoo S, Zeng X C, Wang L S 2005 Proc. Natl. Acad. Sci. 102 961Google Scholar

    [32]

    Li W L, Chen Q, Tian W J, Bai H, Zhao Y F, Hu H S, Li J, Zhai H J, Li S D, Wang L S 2014 J. Am. Chem. Soc. 136 12257Google Scholar

    [33]

    Boustani I 1995 Chem. Phys. Lett. 240 135Google Scholar

    [34]

    Boustani I 1997 Surf. Sci. 370 355Google Scholar

    [35]

    Zhai H J, Kiran B, Li J, Wang L S 2003 Nat. Mater. 2 827Google Scholar

    [36]

    Alexandrova A N, Boldyrev A I, Zhai H J, Wang L S 2006 Coord. Chem. Rev. 250 2811Google Scholar

    [37]

    Li W L, Chen X, Jian T, Chen T T, Li J, Wang L S 2017 Nat. Rev. Chem. 1 1Google Scholar

    [38]

    Evans M H, Joannopoulos J D, Pantelides S T. 2005 Phys. Rev. B 72 045434Google Scholar

    [39]

    Kunstmann J, Quandt A 2006 Phys. Rev. B 74 035413Google Scholar

    [40]

    Tang H, Ismail-Beigi S 2007 Phys. Rev. Lett. 99 115501Google Scholar

    [41]

    Yang X B, Ding Y, Ni J. 2008 Phys. Rev. B 77 041402(R)

    [42]

    Zhang L Z, Yan Q B, Du S X, Su G, Gao H J 2012 J. Phys. Chem. C 116 18202Google Scholar

    [43]

    Liu Y Y, Penev E S, Yakobson B I 2013 Angew. Chem. Int. Ed. 52 3156Google Scholar

    [44]

    Liu H S, Gao J F, Zhao J J 2013 Sci. Rep. 3 1Google Scholar

    [45]

    Zhang Z H, Yang Y, Gao G Y, Yakobson B 2015 Angew. Chem. 127 13214Google Scholar

    [46]

    Zhang Z, Mannix A J, Hu Z, Kiraly B, Guisinger N P, Hersam M C, Yakobson B I 2016 Nano Lett. 16 6622Google Scholar

    [47]

    Aufray B, Kara A, Vizzini S, Oughaddou H, Léandri C, Ealet B, Le Lay G 2010 Appl. Phys. Lett. 96 183102Google Scholar

    [48]

    Feng B J, Li H, Meng S, Chen L, Wu K H 2016 Surf. Sci. 645 74Google Scholar

    [49]

    Zhong Q, Kong L J, Gou J, Li W B, Sheng S X, Yang S, Cheng P, Li H, Wu K H, Chen L 2017 Phys. Rev. Mater. 1 021001Google Scholar

    [50]

    Wang Y, Kong L J, Chen C Y, Cheng P, Feng B J, Wu K H, Chen L 2020 Adv. Mater. 32 2005128Google Scholar

    [51]

    Buzea C, Yamashita T 2001 Supercond. Sci. Technol. 14 R115Google Scholar

    [52]

    Li W B, Kong L J, Chen C Y, Gou J, Sheng S X, Zhang W F, Li H, Chen L, Cheng P, Wu K H 2018 Sci. Bull. 63 282Google Scholar

    [53]

    Geng D, Yu K, Yue S, Cao J, Li W, Ma D, Cui C, Arita M, Kumar S, Schwier E F, Shimada K, Cheng P, Chen L, Wu K H, Yao Y, Feng B J 2020 Phys. Rev. B. 101 161407Google Scholar

    [54]

    Kiraly B, Liu X L, Wang L Q, Zhang Z H, Mannix A J, Fisher B L, Yakobson B I, Hersam M C, Guisinger N P 2019 ACS Nano 13 3816Google Scholar

    [55]

    Wu R T, Drozdov I K, Eltinge S, Zahl P, Ismail-Beigi S, Božović I, Gozar A 2019 Nat. Nanotechnol. 14 44Google Scholar

    [56]

    Wu R T, Gozar A, Božović I 2019 NPJ Quantum Mater. 4 1Google Scholar

    [57]

    Vinogradov N A, Lyalin A, Taketsugu T, Vinogradov A S, Preobrajenski A 2019 ACS Nano 13 14511Google Scholar

    [58]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [59]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Natures 556 43

    [60]

    Wang L, Shih E M, Ghiotto A, Xian L, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y, Kim B, Watanabe K, Taniguchi T, Zhu X, Hone J, Rubio A, Pasupathy A N, Dean C R 2020 Nat. Mater. 19 861Google Scholar

    [61]

    de la Barrera S C, Sinko M R, Gopalan D P, Sivadas N, Seyler K L, Watanabe K, Taniguchi T, Tsen A W, Xu X D, Xiao D, Hunt B M 2018 Nat. Commun. 9 1427Google Scholar

    [62]

    Cui J, Li P L, Zhou J D, He W Y, Huang X W, Yi J, Fan J, Ji Z Q, Jing X N, Qu F M, Cheng Z G, Yang C L, Lu L, Suenaga K, Liu J W, Law K T, Lin J H, Liu Z, Liu G T 2019 Nat. Commun. 10 2044Google Scholar

    [63]

    Regan E C, Wang D, Jin C, Utama M I, Gao B, Wei X, Zhao S, Zhao W, Zhang Z, Yumigeta K, Blei M, Carlstrom J D, Watanabe K, Taniguchi T, Tongay S, Crommie M, Zettl A, Wang F 2020 Nature 579 359Google Scholar

    [64]

    Tang Y, Li L, Li T, Xu Y, Liu S, Barmak K, Watanabe K, Taniguchi T, MacDonald A H, Shan J, Mak K F 2020 Nature 579 353Google Scholar

    [65]

    Jin C, Regan E C, Yan A, Iqbal Bakti U M, Wang D Q, Zhao S, Qin Y, Yang S, Zheng Z, Shi S, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wang F 2019 Nature 567 76Google Scholar

    [66]

    Alexeev E M, Ruiz-Tijerina D A, Danovich M, Hamer M J, Terry D J, Nayak P K, Ahn S, Pak S, Lee J, Sohn J I, Molas M R, Koperski M, Watanabe K, Taniguchi T, Novoselov K S, Gorbachev R V, Shin H S, Fal'ko V I, Tartakovskii A I 2019 Nature 567 81Google Scholar

    [67]

    Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W, Xu X 2019 Nature 567 66Google Scholar

    [68]

    Tran K, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J, Singh A, Embley J, Zepeda A, Campbell M, Autry T, Taniguchi T, Watanabe K, Lu N, Banerjee S K, Silverman K L, Kim S, Tutuc E, Yang L, MacDonald A H, Li X 2019 Nature 567 71Google Scholar

    [69]

    Gao N, Wu X, Jiang X, Bai Y, Zhao J 2018 FlatChem 7 48Google Scholar

    [70]

    Nakhaee M, Ketabi S A, Peeters F M 2018 Phys. Rev. B 98 115413Google Scholar

    [71]

    Li D, Tang Q, He J, Li B, Ding G, Feng C, Zhou H B, Zhang G 2019 ACS Omega. 4 8015Google Scholar

    [72]

    Xu S G, Zheng B, Xu H, Yang X B 2019 J. Phys. Chem. C 123 4977Google Scholar

    [73]

    Zhao Y, Zeng S, Ni J 2016 Phys. Rev. B 93 014502Google Scholar

    [74]

    Liu X L, Li Q C, Ruan Q Y, Rahn M S, Yakobson B I, Hersam M C 2021 Nat. Mater. 21 35Google Scholar

    [75]

    Chen C Y, Lv H F, Zhang P, Zhuo Z W, Wang Y, Ma C, Li W B, Wang X G, Feng B J, Cheng P, Wu X J, Wu K H, Chen L 2021 Nat. Chem. 14 25Google Scholar

    [76]

    Cuxart M G, Seufert K, Chesnyak V, Waqas W A, Robert A, Bocquet M L, Duesberg G S, Sachdev H, Auwärter W 2021 Sci. Adv. 7 eabk1490Google Scholar

    [77]

    Farwick zum Hagen F H, Zimmermann D M, Silva C C, Schlueter C, Atodiresei N, Jolie W, Martínez-Galera A J, Dombrowski D, Schröder U A, Will M, Lazić P, Caciuc V, Blügel S, Lee T L, Michely T, Busse C 2016 ACS Nano 10 11012Google Scholar

    [78]

    Allan M P, Berner S, Corso M, Greber T, Osterwalder J 2007 Nanoscale Res. Lett. 2 94Google Scholar

    [79]

    Petrović M, Hagemann U, Horn-von Hoegen M, zu Heringdorf F J M 2017 Appl. Surf. Sci. 420 504Google Scholar

    [80]

    Corso M, Auwärter W, Muntwiler M, Tamai A, Greber T, Osterwalder J 2004 Science 303 217Google Scholar

    [81]

    Sachdev H, Müller F, Hüfner S 2010 Diam. Relat. Mater. 19 1027Google Scholar

    [82]

    Tang H, Ismail-Beigi S 2009 Phys. Rev. B 80 134113Google Scholar

    [83]

    Zhou X F, Oganov A R, Wang Z, Popov I A, Boldyrev A I, Wang H T 2016 Phys. Rev. B 93 085406Google Scholar

    [84]

    Ma F, Jiao Y, Gao G, Gu Y, Bilic A, Chen Z, Du A 2016 Nano Lett. 16 3022Google Scholar

    [85]

    Zhong H, Huang K, Yu G, Yuan S 2018 Phys. Rev. B 98 054104Google Scholar

    [86]

    Ahn S, Kim G, Nayak P K, Yoon S I, Lim H, Shin H J, Shin H S 2016 ACS Nano 10 8973Google Scholar

    [87]

    Li L, Kim J, Jin C, Ye G J, Qiu D Y, da Jornada F H, Shi Z, Chen L, Zhang Z, Yang F, Watanabe K, Taniguchi T, Ren W, Louie S G, Chen X H, Zhang Y, Wang F 2017 Nat. Nanotechnol. 12 21Google Scholar

    [88]

    Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, Zhang Y 2018 Nature 563 94Google Scholar

  • [1] 赵世杰, 马浩南, 刘霞. 基于扫描热探针技术的二维材料物性调控研究进展. 物理学报, 2025, 74(3): . doi: 10.7498/aps.74.20241590
    [2] 韩同伟, 李选政, 赵泽若, 顾叶彤, 马川, 张小燕. 不同荷载作用下二维硼烯的力学性能及变形破坏机理. 物理学报, 2024, 73(11): 116201. doi: 10.7498/aps.73.20240066
    [3] 尤明慧, 李雪, 李士军, 刘国军. 晶格匹配InAs/AlSb超晶格材料的分子束外延生长研究. 物理学报, 2023, 72(1): 014203. doi: 10.7498/aps.72.20221383
    [4] 郑玉强, 王世勇. 低维石墨烯体系中的离域磁性. 物理学报, 2022, 71(18): 188101. doi: 10.7498/aps.71.20220895
    [5] 胡聚罡, 贾振宇, 李绍春. 碳化硅衬底上外延双层石墨烯的电输运性质. 物理学报, 2022, 71(12): 127204. doi: 10.7498/aps.71.20220062
    [6] 黄德饶, 宋俊杰, 何丕模, 黄凯凯, 张寒洁. Ru(0001)上的9,9′-二亚呫吨分子吸附行为和石墨烯摩尔超结构. 物理学报, 2022, 71(21): 216801. doi: 10.7498/aps.71.20221057
    [7] 黄德饶, 宋俊杰, 何丕模, 黄凯凯, 张寒洁. Ru(0001)上的9,9'-二亚呫吨分子吸附行为和石墨烯摩尔超结构研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120221057
    [8] 李培根, 张济海, 陶野, 钟定永. 二维磁性过渡金属卤化物的分子束外延制备及物性调控. 物理学报, 2022, 71(12): 127505. doi: 10.7498/aps.71.20220727
    [9] 郑晓虎, 张建峰, 杜瑞瑞. InSb(111)衬底上外延生长二维拓扑绝缘体锡烯/铋烯的差异性研究. 物理学报, 2022, 71(18): 186401. doi: 10.7498/aps.71.20221024
    [10] 王兴悦, 张辉, 阮子林, 郝振亮, 杨孝天, 蔡金明, 卢建臣. 超高真空条件下分子束外延生长的单层二维原子晶体材料的研究进展. 物理学报, 2020, 69(11): 118101. doi: 10.7498/aps.69.20200174
    [11] 陈勇, 李瑞. 纳米尺度硼烯与石墨烯的相互作用. 物理学报, 2019, 68(18): 186801. doi: 10.7498/aps.68.20190692
    [12] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [13] 张志模, 张文号, 付英双. 二维拓扑绝缘体的扫描隧道显微镜研究. 物理学报, 2019, 68(22): 226801. doi: 10.7498/aps.68.20191631
    [14] 郭泽堃, 田颜, 甘海波, 黎子娟, 张彤, 许宁生, 陈军, 陈焕君, 邓少芝, 刘飞. 硼烯和碱土金属硼化物二维纳米材料的制备、结构、物性及应用研究. 物理学报, 2017, 66(21): 217702. doi: 10.7498/aps.66.217702
    [15] 徐丹, 殷俊, 孙昊桦, 王观勇, 钱冬, 管丹丹, 李耀义, 郭万林, 刘灿华, 贾金锋. 铜箔上生长的六角氮化硼薄膜的扫描隧道显微镜研究. 物理学报, 2016, 65(11): 116801. doi: 10.7498/aps.65.116801
    [16] 庞宗强, 张悦, 戎舟, 江兵, 刘瑞兰, 唐超. 利用扫描隧道显微镜研究水分子在Cu(110)表面的吸附与分解. 物理学报, 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [17] 刘梦溪, 张艳锋, 刘忠范. 石墨烯-六方氮化硼面内异质结构的扫描隧道显微学研究. 物理学报, 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [18] 黄向前, 林陈昉, 尹秀丽, 赵汝光, 王恩哥, 胡宗海. 一维石墨烯超晶格上的氢吸附. 物理学报, 2014, 63(19): 197301. doi: 10.7498/aps.63.197301
    [19] 葛四平, 朱 星, 杨威生. 用扫描隧道显微镜操纵Cu亚表面自间隙原子. 物理学报, 2005, 54(2): 824-831. doi: 10.7498/aps.54.824
    [20] 陈永军, 赵汝光, 杨威生. 长链烷烃和醇在石墨表面吸附的扫描隧道显微镜研究. 物理学报, 2005, 54(1): 284-290. doi: 10.7498/aps.54.284
计量
  • 文章访问数:  8953
  • PDF下载量:  422
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-21
  • 修回日期:  2022-04-07
  • 上网日期:  2022-05-17
  • 刊出日期:  2022-05-20

/

返回文章
返回