搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柔性神经形态晶体管及其仿生感知应用

蒋子寒 柯硕 祝影 朱一新 朱力 万昌锦 万青

引用本文:
Citation:

柔性神经形态晶体管及其仿生感知应用

蒋子寒, 柯硕, 祝影, 朱一新, 朱力, 万昌锦, 万青

Flexible neuromorphic transistors and their biomimetric sensing application

Jiang Zi-Han, Ke Shuo, Zhu Ying, Zhu Yi-Xin, Zhu Li, Wan Chang-Jin, Wan Qing
PDF
HTML
导出引用
  • 生物感知系统具有高并行、高容错、自适应和低功耗等独特优点. 采用神经形态器件实现生物感知功能的仿生, 在脑机接口、智能感知、生物假体等领域具有重大应用前景. 与其他神经形态器件相比, 多端口神经形态晶体管不仅可以同时实现信号的传输和训练学习, 还可以对多路信号进行非线性的时空整合与协同调控. 然而, 传统刚性神经形态晶体管很难实现弯曲变形以及和人体密切贴合, 限制了神经形态器件应用范围. 所以, 具有良好弯曲特性的柔性神经形态晶体管的研究成为了最近的研究重点. 本文首先介绍了多种柔性神经形态晶体管的研究进展, 包括器件结构、工作原理和基本功能; 另外, 本文还将介绍上述柔性神经形态晶体管在仿生感知领域中的应用; 最后给出上述研究领域的总结和简单展望.
    Biological perception system has the unique advantages of high parallelism, high error tolerance, self-adaptation and low power consumption. Using neuromorphic devices to emulate biological perceptual system can effectively promote the development of brain-computer interfaces, intelligent perception, biological prosthesis and so on. Compared with other neuromorphic devices, multi-terminal neuromorphic transistors can not only realize signal transmission and training learning at the same time, but also carry out nonlinear spatio-temporal integration and collaborative regulation of multi-channel signals. However, the traditional rigid neuromorphic transistor is difficult to achieve bending deformation and close fit with the human body, which limits the application range of neuromorphic devices. Therefore, the research of flexible neuromorphic transistor with good bending characteristics has become the focus of recent research. Firstly, this review introduces the research progress of many kinds of flexible neuromorphic transistors, including device structure, working principle and basic functions. In addition, the application of the flexible neuromorphic transistor in the field of bionic perception is also introduced. Finally, this review also gives a summary and simple prospect of the above research fields.
      通信作者: 万昌锦, cjwan@nju.edu.cn ; 万青, wanqing@nju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62074075, 62174082) 资助的课题.
      Corresponding author: Wan Chang-Jin, cjwan@nju.edu.cn ; Wan Qing, wanqing@nju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62074075, 62174082).
    [1]

    Jung Y H, Park B, Kim J U, Kim T I 2019 Adv. Mater. 31 1803637Google Scholar

    [2]

    Lumpkin E A, Caterina M J 2007 Nature 445 858Google Scholar

    [3]

    Abraira Victoria E, Ginty David D 2013 Neuron 79 618Google Scholar

    [4]

    Wan C J, Zhu L Q, Liu Y H, Feng P, Liu Z P, Cao H L, Xiao P, Shi Y, Wan Q 2016 Adv. Mater. 28 3557Google Scholar

    [5]

    Indiveri G, Chicca E, Douglas R J 2009 Cognit. Comput. 1 119Google Scholar

    [6]

    James C D, Aimone J B, Miner N E, Vineyard C M, Rothganger F H, Carlson K D, Mulder S A, Draelos T J, Faust A, Marinella M J, Naegle J H, Plimpton S J 2017 Biol. Inspired Cogn. Archit. 19 49

    [7]

    Ho V M, Lee J A, Martin K C 2011 Science 334 623Google Scholar

    [8]

    Machens Christian K 2012 Science 338 1156Google Scholar

    [9]

    Kuzum D, Yu S, Wong H S 2013 Nanotechnology 24 382001Google Scholar

    [10]

    Khodagholy D, Gelinas J N, Thesen T, Doyle W, Devinsky O, Malliaras G G, Buzsáki G 2015 Nat. Neurosci. 18 310Google Scholar

    [11]

    Viventi J, Kim D H, Vigeland L, Frechette E S, Blanco J A, Kim Y S, Avrin A E, Tiruvadi V R, Hwang S W, Vanleer A C, Wulsin D F, Davis K, Gelber C E, Palmer L, Van der Spiegel J, Wu J, Xiao J, Huang Y, Contreras D, Rogers J A, Litt B 2011 Nat. Neurosci. 14 1599Google Scholar

    [12]

    Xu L, Gutbrod S R, Bonifas A P, Su Y, Sulkin M S, Lu N, Chung H J, Jang K I, Liu Z, Ying M, Lu C, Webb R C, Kim J S, Laughner J I, Cheng H, Liu Y, Ameen A, Jeong J W, Kim G T, Huang Y, Efimov I R, Rogers J A 2014 Nat. Commun. 5 3329Google Scholar

    [13]

    Lipomi D J, Vosgueritchian M, Tee B C K, Hellstrom S L, Lee J A, Fox C H, Bao Z 2011 Nat. Nanotechnol. 6 788Google Scholar

    [14]

    Wang C, Hwang D, Yu Z, Takei K, Park J, Chen T, Ma B, Javey A 2013 Nat. Mater. 12 899Google Scholar

    [15]

    Kim D H, Ghaffari R, Lu N, ’et al. 2012 Proc. Natl. Acad. Sci. U. S. A. 109 19910Google Scholar

    [16]

    Moore D R, Shannon R V 2009 Nat. Neurosci. 12 686Google Scholar

    [17]

    Minev Ivan R, Musienko P, Hirsch A, et al. 2015 Science 347 159Google Scholar

    [18]

    Luo Y H L, da Cruz L 2016 Prog. Retinal Eye Res. 50 89Google Scholar

    [19]

    Terabe K, Hasegawa T, Nakayama T, Aono M 2005 Nature 433 47Google Scholar

    [20]

    Aono M, Hasegawa T 2010 Proc. IEEE 98 2228Google Scholar

    [21]

    Hasegawa T, Ohno T, Terabe K, Tsuruoka T, Nakayama T, Gimzewski J K, Aono M 2010 Adv. Mater. 22 1831Google Scholar

    [22]

    Zhao M, Li R, Xue J 2020 AIP Adv. 10 045003Google Scholar

    [23]

    Jeon Y R, Choi J, Kwon J D, Park M H, Kim Y, Choi C 2021 ACS Appl. Mater. Interfaces 13 10161Google Scholar

    [24]

    Tuma T, Pantazi A, Le Gallo M, Sebastian A, Eleftheriou E 2016 Nat. Nanotechnol. 11 693Google Scholar

    [25]

    Hua L, Zhu H, Shi K, Zhong S, Tang Y, Liu Y 2021 IEEE Trans. Circuits Syst. I, Reg. Papers 68 1599Google Scholar

    [26]

    Yao P, Wu H, Gao B, Tang J, Zhang Q, Zhang W, Yang J J, Qian H 2020 Nature 577 641Google Scholar

    [27]

    Wen S, Wei H, Yan Z, Guo Z, Yang Y, Huang T, Chen Y 2020 IEEE Trans. Netw. Sci. Eng. 7 1431Google Scholar

    [28]

    Du F, Lu J G 2021 Appl. Math. Comput. 389 125616

    [29]

    Grollier J, Querlioz D, Camsari K Y, Everschor-Sitte K, Fukami S, Stiles M D 2020 Nat. Electron. 3 360Google Scholar

    [30]

    Jiang J, Guo J, Wan X, Yang Y, Xie H, Niu D, Yang J, He J, Gao Y, Wan Q 2017 Small 13 1700933Google Scholar

    [31]

    Jiang S S, He Y L, Liu R, Zhang C X, Shi Y, Wan Q 2021 J. Phys. D-Appl. Phys. 54 185106Google Scholar

    [32]

    Beck M E, Shylendra A, Sangwan V K, Guo S, Gaviria Rojas W A, Yoo H, Bergeron H, Su K, Trivedi A R, Hersam M C 2020 Nat. Commun. 11 1565Google Scholar

    [33]

    Taube Navaraj W, Garcia Nunez C, Shakthivel D, Vinciguerra V, Labeau F, Gregory D H, Dahiya R 2017 Front. Neurosci. 11 501Google Scholar

    [34]

    Cho Y, Lee J Y, Yu E, Han J H, Baek M H, Cho S, Park B G 2019 Micromachines 10 32Google Scholar

    [35]

    Dai S, Wu X, Liu D, Chu Y, Wang K, Yang B, Huang J 2018 ACS Appl. Mater. Interfaces 10 21472Google Scholar

    [36]

    John R A, Liu F, Nguyen Anh C, Kulkarni M R, Zhu C, Fu Q, Basu A, Liu Z, Mathews N 2018 Adv. Mater. 30 1800220Google Scholar

    [37]

    Kim M K, Lee J S 2019 Nano Lett. 19 2044Google Scholar

    [38]

    Nishitani Y, Kaneko Y, Ueda M, Morie T, Fujii E 2012 J. Appl. Phys. 111 124108Google Scholar

    [39]

    Sun J, Oh S, Choi Y, Seo S, Oh M J, Lee M, Lee W B, Yoo P J, Cho J H, Park J H 2018 Adv. Funct. Mater. 28 1804397Google Scholar

    [40]

    Wang J, Chen Y, Kong L A, Fu Y, Gao Y, Sun J 2018 Appl. Phys. Lett. 113 151101Google Scholar

    [41]

    Jiang J, Hu W, Xie D, Yang J, He J, Gao Y, Wan Q 2019 Nanoscale 11 1360Google Scholar

    [42]

    Park H L, Lee Y, Kim N, Seo D G, Go G T, Lee T W 2020 Adv. Mater. 32 1903558Google Scholar

    [43]

    Rogers J A, Someya T, Huang Y 2010 Science 327 1603Google Scholar

    [44]

    Tiwari N, Rajput M, John R A, Kulkarni M R, Nguyen A C, Mathews N 2018 ACS Appl. Mater. Interfaces 10 30506Google Scholar

    [45]

    Meng J, Wang T, Zhu H, Ji L, Bao W, Zhou P, Chen L, Sun Q Q, Zhang D W 2022 Nano Lett. 22 81Google Scholar

    [46]

    Kim S J, Jeong J S, Jang H W, Yi H, Yang H, Ju H, Lim J A 2021 Adv. Mater. 33 2100475Google Scholar

    [47]

    Wei H, Ni Y, Sun L, Yu H, Gong J, Du Y, Ma M, Han H, Xu W 2021 Nano Energy 81 105648Google Scholar

    [48]

    Wang Y, Huang W, Zhang Z, Fan L, Huang Q, Wang J, Zhang Y, Zhang M 2021 Nanoscale 13 11360Google Scholar

    [49]

    Yu F, Zhu L Q, Xiao H, Gao W T, Guo Y B 2018 Adv. Funct. Mater. 28 1804025Google Scholar

    [50]

    Li Z Y, Zhu L Q, Guo L Q, Ren Z Y, Xiao H, Cai J C 2021 ACS Appl. Mater. Interfaces 13 7784Google Scholar

    [51]

    Wang X, Yan Y, Li E, Liu Y, Lai D, Lin Z, Liu Y, Chen H, Guo T 2020 Nano Energy 75 104952Google Scholar

    [52]

    Ham S, Kang M, Jang S, Jang J, Choi S, Kim T-W, Wang G 2020 Sci. Adv. 6 eaba1178Google Scholar

    [53]

    Jang S, Jang S, Lee E H, Kang M, Wang G, Kim T W 2019 ACS Appl. Mater. Interfaces 11 1071Google Scholar

    [54]

    Zhong G K, Zi M F, Ren C L, Xiao Q, Tang M K, Wei L Y, An F, Xie S H, Wang J B, Zhong X L, Huang M Q, Li J Y 2020 Appl. Phys. Lett. 117 092903Google Scholar

    [55]

    Ren Y, Yang J Q, Zhou L, Mao J Y, Zhang S R, Zhou Y, Han S T 2018 Adv. Funct. Mater. 28 1805599Google Scholar

    [56]

    Kim S, Choi B, Lim M, Yoon J, Lee J, Kim H D, Choi S J 2017 ACS Nano 11 2814Google Scholar

    [57]

    Wang T Y, Meng J L, He Z Y, Chen L, Zhu H, Sun Q Q, Ding S J, Zhou P, Zhang D W 2020 Adv. Sci. 7 1903480Google Scholar

    [58]

    Meng J L, Wang T Y, Chen L, Sun Q Q, Zhu H, Ji L, Ding S J, Bao W Z, Zhou P, Zhang D W 2021 Nano Energy 83 105815Google Scholar

    [59]

    Cao G M, Meng P, Chen J G, Liu H S, Bian R J, Zhu C, Liu F C, Liu Z 2021 Adv. Funct. Mater. 31 2005443Google Scholar

    [60]

    Zhu J D, Zhang T, Yang Y C, Huang R 2020 Appl. Phys. Rev. 7 011312Google Scholar

    [61]

    He Y L, Zhu L, Zhu Y, Chen C S, Jiang S S, Liu R, Shi Y, Wan Q 2021 Adv. Intell. Syst. 3 2000210Google Scholar

    [62]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 117 500Google Scholar

    [63]

    Abbott L F 2008 Neuron 60 489Google Scholar

    [64]

    Abbott L F 1999 Brain Res. Bull. 50 303Google Scholar

    [65]

    Izhikevich E M 2004 IEEE Trans. Neural Netw. 15 1063Google Scholar

    [66]

    Burkitt A N 2006 Biol. Cybern. 95 1Google Scholar

    [67]

    Sun F, Lu Q, Feng S, Zhang T 2021 ACS Nano 15 3875Google Scholar

    [68]

    Choquet D, Triller A 2013 Neuron 80 691Google Scholar

    [69]

    Reyes A D 2011 Hear. Res. 279 60Google Scholar

    [70]

    Rotman Z, Deng P Y, Klyachko V A 2011 J. Neurosci. 31 14800Google Scholar

    [71]

    Fortune E S, Rose G J 2002 J. Physiol. Paris 96 539Google Scholar

    [72]

    Fortune E S, Rose G J 2000 J. Neurosci. 20 7122Google Scholar

    [73]

    Bliss T V P, Collingridge G L 1993 Nature 361 31Google Scholar

    [74]

    Kim M K, Lee J S 2018 ACS Nano 12 1680Google Scholar

    [75]

    Lamprecht R, LeDoux J 2004 Nat. Rev. Neurosci. 5 45Google Scholar

    [76]

    Fu Y, Kong L A, Chen Y, Wang J, Qian C, Yuan Y, Sun J, Gao Y, Wan Q 2018 ACS Appl. Mater. Interfaces 10 26443Google Scholar

    [77]

    Alibart F, Pleutin S, Bichler O, Gamrat C, Serrano-Gotarredona T, Linares-Barranco B, Vuillaume D 2012 Adv. Funct. Mater. 22 609Google Scholar

    [78]

    Yang Y, Wen J, Guo L, Wan X, Du P, Feng P, Shi Y, Wan Q 2016 ACS Appl. Mater. Interfaces 8 30281Google Scholar

    [79]

    Bear M F, Malenka R C 1994 Curr. Opin. Neurobiol. 4 389Google Scholar

    [80]

    Law C C, Cooper L N 1994 Proc. Natl. Acad. Sci. U. S. A. 91 7797Google Scholar

    [81]

    Yuan H, Shimotani H, Ye J, Yoon S, Aliah H, Tsukazaki A, Kawasaki M, Iwasa Y 2010 J. Am. Chem. Soc. 132 18402Google Scholar

    [82]

    Zhang L L, Zhao X S 2009 Chem. Soc. Rev. 38 2520Google Scholar

    [83]

    Wang J, Li Y, Liang R, Zhang Y, Mao W, Yang Y, Ren T L 2017 IEEE Electron Dev. Lett. 38 1496Google Scholar

    [84]

    Wan C J, Zhu L Q, Zhou J M, Shi Y, Wan Q 2014 Nanoscale 6 4491Google Scholar

    [85]

    Zhou J M, Wan C J, Zhu L Q, Shi Y, Wan Q 2013 IEEE Electron Dev. Lett. 34 1433Google Scholar

    [86]

    Liu N, Zhu L Q, Feng P, Wan C J, Liu Y H, Shi Y, Wan Q 2015 Sci Rep 5 18082Google Scholar

    [87]

    Wang X L, Shao Y, Wu X, Zhang M N, Li L, Liu W J, Zhang D W, Ding S J 2020 RSC Adv. 10 3572Google Scholar

    [88]

    Liang X, Li Z, Liu L, Chen S, Wang X, Pei Y 2020 Appl. Phys. Lett. 116 012102Google Scholar

    [89]

    Okaue D, Tanabe I, Ono S, Sakamoto K, Sato T, Imanishi A, Morikawa Y, Takeya J, Fukui K I 2020 J. Phys. Chem. C 124 2543Google Scholar

    [90]

    Ono S, Seki S, Hirahara R, Tominari Y, Takeya J 2008 Appl. Phys. Lett. 92 103313Google Scholar

    [91]

    Yang J T, Ge C, Du J Y, Huang H Y, He M, Wang C, Lu H B, Yang G Z, Jin K J 2018 Adv. Mater. 34 1801548

    [92]

    Eguchi K, Matsushita M M, Awaga K 2019 Phys. Chem. Chem. Phys. 21 18823Google Scholar

    [93]

    Sharbati M T, Du Y, Torres J, Ardolino N D, Yun M, Xiong F 2018 Adv. Mater. 30 1802353Google Scholar

    [94]

    Nikam R D, Kwak M, Lee J, Rajput K G, Hwang H 2020 Adv. Electron. Mater. 6 1901100Google Scholar

    [95]

    Qin J K, Zhou F, Wang J, Chen J, Wang C, Guo X, Zhao S, Pei Y, Zhen L, Ye P D, Lau S P, Zhu Y, Xu C Y, Chai Y 2020 ACS Nano 14 10018Google Scholar

    [96]

    Zhang C X, Li S, He Y L, Chen C S, Jiang S S, Yang X Q, Wang X R, Pan L J, Wan Q 2020 IEEE Electron Dev. Lett. 41 617Google Scholar

    [97]

    Ke S, He Y L, Zhu L, Jiang Z H, Mao H W, Zhu Y X, Wan C J, Wan Q 2021 Adv. Electron. Mater. 7 2100487Google Scholar

    [98]

    Chen C, He Y, Zhu L, Zhu Y, Shi Y, Wan Q 2021 IEEE Trans. Electron Dev. 68 3119Google Scholar

    [99]

    He Y L, Zhu Y, Chen C S, Liu R, Jiang S S, Zhu L, Shi Y, Wan Q 2020 IEEE Trans. Electron Dev. 67 5216Google Scholar

    [100]

    Kim S H, Hong K, Xie W, Lee K H, Zhang S, Lodge T P, Frisbie C D 2013 Adv. Mater. 25 1822Google Scholar

    [101]

    Cho J H, Lee J, Xia Y, Kim B, He Y, Renn M J, Lodge T P, Daniel Frisbie C 2008 Nat. Mater. 7 900Google Scholar

    [102]

    Lee Y, Oh J Y, Xu W, Kim O, Kim T R, Kang J, Kim Y, Son D, Tok J B H, Park M J, Bao Z, Lee T W 2018 Sci. Adv. 4 eaat7387Google Scholar

    [103]

    Molina-Lopez F, Gao T Z, Kraft U, Zhu C, Öhlund T, Pfattner R, Feig V R, Kim Y, Wang S, Yun Y, Bao Z 2019 Nat. Commun. 10 2676Google Scholar

    [104]

    Liu L, Xu W, Ni Y, Xu Z, Cui B, Liu J, Wei H, Xu W 2022 ACS Nano 16 2282Google Scholar

    [105]

    Zhu Y, Liu G, Xin Z, Fu C, Wan Q, Shan F 2020 ACS Appl. Mater. Interfaces 12 1061Google Scholar

    [106]

    Yao B W, Li J, Chen X D, Yu M X, Zhang Z C, Li Y, Lu T B, Zhang J 2021 Adv. Funct. Mater. 31 2100069Google Scholar

    [107]

    Ji D, Li T, Zou Y, Chu M, Zhou K, Liu J, Tian G, Zhang Z, Zhang X, Li L, Wu D, Dong H, Miao Q, Fuchs H, Hu W 2018 Nat. Commun. 9 2339Google Scholar

    [108]

    Stucchi E, Dell'Erba G, Colpani P, Kim Y H, Caironi M 2018 Adv. Electron. Mater. 4 1800340Google Scholar

    [109]

    Grey P, Pereira L, Pereira S, Barquinha P, Cunha I, Martins R, Fortunato E 2016 Adv. Electron. Mater. 2 1500414Google Scholar

    [110]

    Singaraju S A, Baby T T, Neuper F, Kruk R, Hagmann J A, Hahn H, Breitung B 2019 ACS Appl. Electron. Mater. 1 1538Google Scholar

    [111]

    Zhao D, Fabiano S, Berggren M, Crispin X 2017 Nat. Commun. 8 14214Google Scholar

    [112]

    Zhang W, Zhao Q, Yuan J 2018 Angew. Chem. Int. Ed. 57 6754Google Scholar

    [113]

    Kim Hyeong J, Chen B, Suo Z, Hayward Ryan C 2020 Science 367 773Google Scholar

    [114]

    Ali A, Ahmed S 2018 Int. J. Biol. Macromol. 109 273Google Scholar

    [115]

    Elgadir M A, Uddin M S, Ferdosh S, Adam A, Chowdhury A J K, Sarker M Z I 2015 J. Food Drug Anal. 23 619Google Scholar

    [116]

    Negm N A, Hefni H H H, Abd-Elaal A A A, Badr E A, Abou Kana M T H 2020 Int. J. Biol. Macromol. 152 681Google Scholar

    [117]

    Ways T M M, Lau W M, Khutoryanskiy V V 2018 Polymers 10 267Google Scholar

    [118]

    Ali T, Mertens K, Kuhnel K, Rudolph M, Oehler S, Lehninger D, Muller F, Revello R, Hoffmann R, Zimmermann K, Kampfe T, Czernohorsky M, Seidel K, Van Houdt J, Eng L M 2021 Nanotechnology 32 425201Google Scholar

    [119]

    Choi Y, Kim J H, Qian C, Kang J, Hersam M C, Park J H, Cho J H 2020 ACS Appl. Mater. Interfaces 12 4707Google Scholar

    [120]

    Tsai M F, Jiang J, Shao P W, Lai Y H, Chen J W, Ho S Z, Chen Y C, Tsai D P, Chu Y H 2019 ACS Appl. Mater. Interfaces 11 25882Google Scholar

    [121]

    Seo M, Kang M H, Jeon S B, Bae H, Hur J, Jang B C, Yun S, Cho S, Kim W K, Kim M S, Hwang K M, Hong S, Choi S Y, Choi Y K 2018 IEEE Electron Dev. Lett. 39 1445Google Scholar

    [122]

    Jung S W, Koo J B, Park C W, Na B S, Oh J Y, Lee S S, Koo K W 2015 J. Vac. Sci. Technol. B 33 051201Google Scholar

    [123]

    Hoffman J, Pan X A, Reiner J W, Walker F J, Han J P, Ahn C H, Ma T P 2010 Adv. Mater. 22 2957Google Scholar

    [124]

    Nishitani Y, Kaneko Y, Ueda M, Fujii E, Tsujimura A 2013 Jpn. J. Appl. Phys. 52 04CE06Google Scholar

    [125]

    Müller J, Böscke T S, Bräuhaus D, Schröder U, Böttger U, Sundqvist J, Kücher P, Mikolajick T, Frey L 2011 Appl. Phys. Lett. 99 112901Google Scholar

    [126]

    Dai S L, Zhao Y W, Wang Y, Zhang J Y, Fang L, Jin S, Shao Y L, Huang J 2019 Adv. Funct. Mater. 29 1903700Google Scholar

    [127]

    Narayanan Unni K N, de Bettignies R, Dabos-Seignon S, Nunzi J M 2004 Appl. Phys. Lett. 85 1823Google Scholar

    [128]

    Kang S J, Park Y J, Bae I, Kim K J, Kim H C, Bauer S, Thomas E L, Park C 2009 Adv. Funct. Mater. 19 2812Google Scholar

    [129]

    Kim K L, Lee W, Hwang S K, Joo S H, Cho S M, Song G, Cho S H, Jeong B, Hwang I, Ahn J H, Yu Y J, Shin T J, Kwak S K, Kang S J, Park C 2016 Nano Lett. 16 334Google Scholar

    [130]

    Tian B B, Zhong N, Duan C G 2020 Chin. Phys. B 29 097701Google Scholar

    [131]

    Park C, Lee K, Koo M, Park C 2021 Adv. Mater. 33 2004999Google Scholar

    [132]

    Lee K, Jang S, Kim K L, Koo M, Park C, Lee S, Lee J, Wang G, Park C 2020 Adv. Sci. 7 2001662Google Scholar

    [133]

    Yu S 2018 Proc. IEEE 106 260Google Scholar

    [134]

    Van Tho L, Baeg K J, Noh Y Y 2016 Nano Converg. 3 10Google Scholar

    [135]

    Zhang H, Zhang Y T, Yu Y, Song X X, Zhang H T, Cao M X, Che Y L, Dai H T, Yang J B, Yao J Q 2017 ACS Photonics 4 2220Google Scholar

    [136]

    Cho S W, Kwon S M, Kim Y H, Park S K 2021 Adv. Intell. Syst. 3 2000162Google Scholar

    [137]

    Sekitani T, Yokota T, Zschieschang U, Klauk H, Bauer S, Takeuchi K, Takamiya M, Sakurai T, Someya T 2009 Science 326 1516Google Scholar

    [138]

    He Y L, Liu R, Jiang S S, Chen C S, Zhu L, Shi Y, Wan Q 2020 J. Phys. D: Appl. Phys. 53 215106Google Scholar

    [139]

    Yang X X, Yu J R, Zhao J, Chen Y H, Gao G Y, Wang Y F, Sun Q J, Wang Z L 2020 Adv. Funct. Mater. 30 2002506Google Scholar

    [140]

    Zhao T S, Zhao C, Xu W Y, Liu Y N, Gao H, Mitrovic I Z, Lim E G, Yang L, Zhao C Z 2021 Adv. Funct. Mater. 31 2106000Google Scholar

    [141]

    Park E, Kim M, Kim T S, Kim I S, Park J, Kim J, Jeong Y, Lee S, Kim I, Park J K, Kim G T, Chang J, Kang K, Kwak J Y 2020 Nanoscale 12 24503Google Scholar

    [142]

    Feng G, Jiang J, Zhao Y, Wang S, Liu B, Yin K, Niu D, Li X, Chen Y, Duan H, Yang J, He J, Gao Y, Wan Q 2020 Adv. Mater. 32 1906171Google Scholar

    [143]

    Basbaum A I, Bautista D M, Scherrer G, Julius D 2009 Cell 139 267Google Scholar

    [144]

    Lee Y, Lee T W 2019 Accounts Chem. Res. 52 964Google Scholar

    [145]

    Hou Y X, Li Y, Zhang Z C, Li J Q, Qi D H, Chen X D, Wang J J, Yao B W, Yu M X, Lu T B, Zhang J 2021 ACS Nano 15 1497Google Scholar

    [146]

    Li Y, Xuan Z H, Lu J K, Wang Z R, Zhang X M, Wu Z H, Wang Y Z, Xu H, Dou C M, Kang Y, Liu Q, Lv H B, Shang D S 2021 Adv. Funct. Mater. 31 2100042Google Scholar

    [147]

    Jang Y W, Kang J, Jo J W, Kim Y H, Kim J, Park S K 2021 Sens. Actuator B: Chem. 342 130058Google Scholar

    [148]

    Yang J C, Mun J, Kwon S Y, Park S, Bao Z, Park S 2019 Adv. Mater. 31 1904765Google Scholar

    [149]

    Wan C J, Liu Y H, Feng P, Wang W, Zhu L Q, Liu Z P, Shi Y, Wan Q 2016 Adv. Mater. 28 5878Google Scholar

    [150]

    Kim Y, Chortos A, Xu W, Liu Y, Oh J Y, Son D, Kang J, Foudeh A M, Zhu C, Lee Y, Niu S, Liu J, Pfattner R, Bao Z, Lee T W 2018 Science 360 998Google Scholar

    [151]

    Jiang S, He Y, Liu R, Chen C, Zhu L, Zhu Y, Shi Y, Wan Q 2021 IEEE T. Electron Dev. 68 415Google Scholar

    [152]

    Ling H, Koutsouras D A, Kazemzadeh S, van de Burgt Y, Yan F, Gkoupidenis P 2020 Appl. Phys. Rev. 7 011307Google Scholar

    [153]

    Zhu Q B, Li B, Yang D D, Liu C, Feng S, Chen M L, Sun Y, Tian Y N, Su X, Wang X M, Qiu S, Li Q W, Li X M, Zeng H B, Cheng H M, Sun D M 2021 Nat. Commun. 12 1798Google Scholar

    [154]

    Gao S, Liu G, Yang H, Hu C, Chen Q, Gong G, Xue W, Yi X, Shang J, Li R W 2019 ACS Nano 13 2634Google Scholar

    [155]

    Wang G, Wang R, Kong W, Zhang J 2018 Cogn. Neurodynamics 12 615Google Scholar

    [156]

    Yamamoto Y, Harada S, Yamamoto D, Honda W, Arie T, Akita S, Takei K 2016 Sci. Adv. 2 e1601473Google Scholar

    [157]

    Wu X, Li E, Liu Y, Lin W, Yu R, Chen G, Hu Y, Chen H, Guo T 2021 Nano Energy 85 106000Google Scholar

    [158]

    Wan C, Cai P, Guo X, Wang M, Matsuhisa N, Yang L, Lv Z, Luo Y, Loh X J, Chen X 2020 Nat. Commun. 11 4602Google Scholar

    [159]

    Shastri B J, Tait A N, de Lima T F, Pernice W H P, Bhaskaran H, Wright C D, Prucnal P R 2021 Nat. Photonics 15 102Google Scholar

    [160]

    Song S, Kim J, Kwon S M, Jo J W, Park S K, Kim Y-H 2021 Adv. Intell. Syst. 3 2000119Google Scholar

    [161]

    Komar M S 2017 Autom. Control Comp. Sci. 51 701Google Scholar

  • 图 1  生物神经元(a)和生物突触(b)的结构示意图[66]

    Fig. 1.  Schematic diagram of biological neuron (a) and biological synapse (b)[66].

    图 2  (a)基于多栅 IZO 神经形态晶体管的柔性 pH 传感器的示意图[86]; (b) 神经纤维-OECT 的装置结构示意图和 OECT-神经纤维的照片, 插图: 离子在可渗透半导体中的掺杂机制示意图; (c) P3CT-神经纤维的 PSC 作为施加电压尖峰之间的时间间隔(Δt)的函数 (VGS = –0.7 V, 100 ms); (d) P3CT-和 P3HT-神经纤维中超过 45 个周期的LTP和LTD循环测试; (e) 生物神经网络和神经纤维晶体管网络示意图(左), 10 × 10 P3CT-神经纤维阵列的照片(右)[46]

    Fig. 2.  (a) Schematic illustration of the flexible pH sensor based on an IZO neuromorphic transistor with multiple gate electrodes[86]; (b) schematic of the device architecture for neurofiber-OECT and photograph of OECT-neurofiber, inset: schematic of the doping mechanism by ions in a permeable semiconductor; (c) PSC of a P3CT-neurofiber as a function of the time interval (Δt) between applied voltage spikes (VGS = –0.7 V, 100 ms); (d) cycle test of LTP and LTD in P3CT- and P3HT-neurofibers over 45 cycles; (e) schematic of biological neural network and neurofiber transistor network (left), photograph of a 10 × 10 array of P3CT-neurofibers (right)[46].

    图 3  (a) LiClO4溶解在PEO中作为栅极电解质的突触晶体管的结构示意图; (b) 双脉冲易化, 插图: PPF指数被绘制为两个脉冲之间时间间隔的函数; (c)由40个突触前脉冲触发的EPSC; (d) LTP和LTD的可重复性[105]

    Fig. 3.  (a) Schematic of synaptic transistors with LiClO4 dissolved in PEO as gate electrolyte; (b) paired-pulse facilitation, inset: PPF index is plotted as a function of time interval between the two pulses; (c) EPSC triggered by 40 presynaptic pluses; (d) repeatability of LTP and LTD[105].

    图 4  (a) 自支撑光电神经形态晶体管示意图; (b) 光刺激角膜伤害感受器示意图; (c) IGZO 晶体管中光学响应的能带图; (d) PCN“受伤”前后实验测量的光电流; (e) 利用VG = 0.1 V模拟的中枢敏化, PT降至 4.98 nW/µm2; (f) 利用VG = –0.1 V 模拟的镇痛作用, PT 增大到 17.62 nW/µm2[97]

    Fig. 4.  (a) Schematic diagram of the freestanding photoelectric neuromorphic transistor; (b) schematic illustration of photoexcited corneal nociceptor; (c) energy-band diagrams of optical responses in IGZO-based transistor; (d) experimentally measured photocurrents of the PCN before and after “wounded”; (e) central sensitization simulated by VG = 0.1 V with PT reduced to 4.98 nW/µm2 ; (f) analgesic effect simulated by VG = –0.1 V with PT increased to 17.62 nW/µm2[97].

    图 5  (a) 全无机柔性FeFET示意图; (b) 不同脉宽的突触前脉冲电压触发的EPSC; 不同弯曲半径(c)、不同弯曲循环次数(d)、不同弯曲时间(e)下的LTP和LTD; (f)—(h)对应的MNIST数字识别准确率[54]

    Fig. 5.  (a) Schematic of the all-inorganic flexible FeFET; (b) EPSC triggered by presynaptic voltage pulse with different spike widths; LTP and LTD with the different bending radius, (c) different bending cycles (d), and different bending durations (e); (f)–(h) the corresponding MNIST digit recognition accuracy[54].

    图 6  (a) 以P(VDF-TrFE)薄膜为栅介质的自支撑有机神经形态晶体管的结构示意图; (b) 贴合在大脑形状模型(上图)和弯曲半径为50 µm的FONTs(下图)照片; (c) 在6000次突触前脉冲期间, 折叠FONTs的LTP和LTD的重复转换, 上左、上右图分别代表最初和最后的10个LTP, LTD循环[53]

    Fig. 6.  (a) Schematic diagram of freestanding ferroelectric organic neuromorphic transistors with a P(VDF-TrFE) film as the dielectric layer; (b) photo images of the FONTs on the brain-shaped mold and folded FONTs with a bending radius of 50 µm (lower panel); (c) repetitive transition between the LTP and LTD in the folded FONTs during 6000 spikes of presynaptic pulses (±30 V for 500 ms), the left and the right in upper graph shows the LTP and LTD during the initial and final 10 cycles, respectively[53].

    图 7  (a) 生物触觉感知系统示意图(左)和人工触觉学习铁电皮肤的器件结构示意图(右); (b)三种不同手写风格(N1, N2N3)的“N”图案示意图(左)和用于识别手写图案的单层神经网络的组成部分(右)[132]

    Fig. 7.  (a) Schematic of the biological tactile perception system (left) and schematic device structure of the artificial tactile learning ferroelectric skin (right); (b) schematic illustrations of “N” patterns with three different handwriting styles (N1, N2, and N3) (left) and constituents of a single-layer neural network used to recognize handwriting pattern (right)[132].

    图 8  (a) 光电双调控的柔性人工异突触示意图; (b) 由两个连续光脉冲序列模拟的学习-遗忘-再学习行为; (c)光照条件下, 电脉冲产生的LTP和LTD, 并且通过单独的电脉冲获得进一步的抑制; (d) 在平坦状态和弯曲状态 (R = 10 mm) 下, PSC作为突触前脉冲数的函数[57]; (e) C60 浮栅突触晶体管的示意图(左)和横截面 SEM 形貌图像(右)[55]

    Fig. 8.  (a) Schematic diagram of flexible artificial heterosynapse with photoelectric dual modulation; (b) learning, forgetting and relearning behaviors emulated by two sequences of consecutive light pulses; (c ) electrical pulses induced the LTP and LTD under illumination of light, further depression was obtained by electrical pulse independently; (d) PSC as a function of pre-synaptic pulse number in a flat states and curved state (R = 10 mm)[57]; (e) schematic representation (left) and cross-sectional SEM topography image (right) of a C60 floating gate synaptic transistor[55].

    图 9  (a) 以CNTs/CsPbBr3-QDs为沟道的光电晶体管示意图; (b) 当观察到陌生和熟悉的面孔时, 人类视觉系统印象的示意图; (c) 不同训练脉冲数的训练权重结果; (d) 模拟人脸的学习过程[153]

    Fig. 9.  (a) Schematic diagram of the phototransistor with a CNTs/CsPbBr3-QDs channel; (b) schematics illustration of the impression of human visual systems when unfamiliar and familiar faces are observed; (c) training weight results with different number of training pulses; (d) simulation of the learning process of a human face[153].

    图 10  (a) 视觉-触觉融合的双模人工感觉神经元示意图; (b) 用于肌肉和机械手驱动的视觉-触觉融合示意图; (c)视觉(顶部, 粉红色)和触觉(底部, 蓝色)反馈分别用于在z轴和y轴上推断“是”或“否”; (d) 单感觉模式和双感觉模式各自的识别率[158]

    Fig. 10.  (a) Schematic illustration of bimodal artificial sensory neuron with visual-haptic fusion; (b) schematic diagram of visual-haptic fusion for muscle and robotic hand actuation; (c) visual (top, pink) and haptic (bottom, blue) feedback used to infer “YES” or “NO” in z-axis and y-axis respectively; (d) the recognition rates of unimodal and bimodal modes, respectively[158].

    表 1  不同类型柔性突触晶体管比较

    Table 1.  Comparison of different types of flexible synaptic transistors.

    器件
    类型
    衬底/栅介质/沟道弯曲
    半径/mm
    弯曲次数生物相容性神经功能文献
    电解质栅晶体管PET/Al2O3/IWO20EPSC、PPF、高通滤波[44]
    PET/LiClO4/MoSSe31000图像识别、存储和处理[45]
    —/离子凝胶/P3 CTLIF、语音识别[46]
    PEN/LiClO4+PEO/SnO281000学习规则、痛觉感知[47]
    PEN/SiO2+PVA/CNTs31000STP、LTP、LTD[48]
    PI/壳聚糖/ITO20STDP、学习规则[49]
    PET/蛋白质/ITO103500神经递质释放动力学[50]
    PDMS/离子凝胶/P3 HT学习规则[51]
    铁电晶体管—/P(VDF-TrFE)/并五苯2.5100SRDP、STDP、图像识别[52]
    —/P(VDF-TrFE)/并五苯5×10–5STDP[53]
    云母/PZT/IGZO4400数字识别[54]
    浮栅晶体管PET/Al2O3+PMMA:C60/并五苯10500STP、LTP[55]
    纸/Au+SiOx/CNTsSTDP、图像识别[56]
    PET/ZrO2+Al2O3/MoS210学习规则[57]
    PET/黑磷-QD+Al2O3/MoSSe51000学习规则[58]
    下载: 导出CSV
  • [1]

    Jung Y H, Park B, Kim J U, Kim T I 2019 Adv. Mater. 31 1803637Google Scholar

    [2]

    Lumpkin E A, Caterina M J 2007 Nature 445 858Google Scholar

    [3]

    Abraira Victoria E, Ginty David D 2013 Neuron 79 618Google Scholar

    [4]

    Wan C J, Zhu L Q, Liu Y H, Feng P, Liu Z P, Cao H L, Xiao P, Shi Y, Wan Q 2016 Adv. Mater. 28 3557Google Scholar

    [5]

    Indiveri G, Chicca E, Douglas R J 2009 Cognit. Comput. 1 119Google Scholar

    [6]

    James C D, Aimone J B, Miner N E, Vineyard C M, Rothganger F H, Carlson K D, Mulder S A, Draelos T J, Faust A, Marinella M J, Naegle J H, Plimpton S J 2017 Biol. Inspired Cogn. Archit. 19 49

    [7]

    Ho V M, Lee J A, Martin K C 2011 Science 334 623Google Scholar

    [8]

    Machens Christian K 2012 Science 338 1156Google Scholar

    [9]

    Kuzum D, Yu S, Wong H S 2013 Nanotechnology 24 382001Google Scholar

    [10]

    Khodagholy D, Gelinas J N, Thesen T, Doyle W, Devinsky O, Malliaras G G, Buzsáki G 2015 Nat. Neurosci. 18 310Google Scholar

    [11]

    Viventi J, Kim D H, Vigeland L, Frechette E S, Blanco J A, Kim Y S, Avrin A E, Tiruvadi V R, Hwang S W, Vanleer A C, Wulsin D F, Davis K, Gelber C E, Palmer L, Van der Spiegel J, Wu J, Xiao J, Huang Y, Contreras D, Rogers J A, Litt B 2011 Nat. Neurosci. 14 1599Google Scholar

    [12]

    Xu L, Gutbrod S R, Bonifas A P, Su Y, Sulkin M S, Lu N, Chung H J, Jang K I, Liu Z, Ying M, Lu C, Webb R C, Kim J S, Laughner J I, Cheng H, Liu Y, Ameen A, Jeong J W, Kim G T, Huang Y, Efimov I R, Rogers J A 2014 Nat. Commun. 5 3329Google Scholar

    [13]

    Lipomi D J, Vosgueritchian M, Tee B C K, Hellstrom S L, Lee J A, Fox C H, Bao Z 2011 Nat. Nanotechnol. 6 788Google Scholar

    [14]

    Wang C, Hwang D, Yu Z, Takei K, Park J, Chen T, Ma B, Javey A 2013 Nat. Mater. 12 899Google Scholar

    [15]

    Kim D H, Ghaffari R, Lu N, ’et al. 2012 Proc. Natl. Acad. Sci. U. S. A. 109 19910Google Scholar

    [16]

    Moore D R, Shannon R V 2009 Nat. Neurosci. 12 686Google Scholar

    [17]

    Minev Ivan R, Musienko P, Hirsch A, et al. 2015 Science 347 159Google Scholar

    [18]

    Luo Y H L, da Cruz L 2016 Prog. Retinal Eye Res. 50 89Google Scholar

    [19]

    Terabe K, Hasegawa T, Nakayama T, Aono M 2005 Nature 433 47Google Scholar

    [20]

    Aono M, Hasegawa T 2010 Proc. IEEE 98 2228Google Scholar

    [21]

    Hasegawa T, Ohno T, Terabe K, Tsuruoka T, Nakayama T, Gimzewski J K, Aono M 2010 Adv. Mater. 22 1831Google Scholar

    [22]

    Zhao M, Li R, Xue J 2020 AIP Adv. 10 045003Google Scholar

    [23]

    Jeon Y R, Choi J, Kwon J D, Park M H, Kim Y, Choi C 2021 ACS Appl. Mater. Interfaces 13 10161Google Scholar

    [24]

    Tuma T, Pantazi A, Le Gallo M, Sebastian A, Eleftheriou E 2016 Nat. Nanotechnol. 11 693Google Scholar

    [25]

    Hua L, Zhu H, Shi K, Zhong S, Tang Y, Liu Y 2021 IEEE Trans. Circuits Syst. I, Reg. Papers 68 1599Google Scholar

    [26]

    Yao P, Wu H, Gao B, Tang J, Zhang Q, Zhang W, Yang J J, Qian H 2020 Nature 577 641Google Scholar

    [27]

    Wen S, Wei H, Yan Z, Guo Z, Yang Y, Huang T, Chen Y 2020 IEEE Trans. Netw. Sci. Eng. 7 1431Google Scholar

    [28]

    Du F, Lu J G 2021 Appl. Math. Comput. 389 125616

    [29]

    Grollier J, Querlioz D, Camsari K Y, Everschor-Sitte K, Fukami S, Stiles M D 2020 Nat. Electron. 3 360Google Scholar

    [30]

    Jiang J, Guo J, Wan X, Yang Y, Xie H, Niu D, Yang J, He J, Gao Y, Wan Q 2017 Small 13 1700933Google Scholar

    [31]

    Jiang S S, He Y L, Liu R, Zhang C X, Shi Y, Wan Q 2021 J. Phys. D-Appl. Phys. 54 185106Google Scholar

    [32]

    Beck M E, Shylendra A, Sangwan V K, Guo S, Gaviria Rojas W A, Yoo H, Bergeron H, Su K, Trivedi A R, Hersam M C 2020 Nat. Commun. 11 1565Google Scholar

    [33]

    Taube Navaraj W, Garcia Nunez C, Shakthivel D, Vinciguerra V, Labeau F, Gregory D H, Dahiya R 2017 Front. Neurosci. 11 501Google Scholar

    [34]

    Cho Y, Lee J Y, Yu E, Han J H, Baek M H, Cho S, Park B G 2019 Micromachines 10 32Google Scholar

    [35]

    Dai S, Wu X, Liu D, Chu Y, Wang K, Yang B, Huang J 2018 ACS Appl. Mater. Interfaces 10 21472Google Scholar

    [36]

    John R A, Liu F, Nguyen Anh C, Kulkarni M R, Zhu C, Fu Q, Basu A, Liu Z, Mathews N 2018 Adv. Mater. 30 1800220Google Scholar

    [37]

    Kim M K, Lee J S 2019 Nano Lett. 19 2044Google Scholar

    [38]

    Nishitani Y, Kaneko Y, Ueda M, Morie T, Fujii E 2012 J. Appl. Phys. 111 124108Google Scholar

    [39]

    Sun J, Oh S, Choi Y, Seo S, Oh M J, Lee M, Lee W B, Yoo P J, Cho J H, Park J H 2018 Adv. Funct. Mater. 28 1804397Google Scholar

    [40]

    Wang J, Chen Y, Kong L A, Fu Y, Gao Y, Sun J 2018 Appl. Phys. Lett. 113 151101Google Scholar

    [41]

    Jiang J, Hu W, Xie D, Yang J, He J, Gao Y, Wan Q 2019 Nanoscale 11 1360Google Scholar

    [42]

    Park H L, Lee Y, Kim N, Seo D G, Go G T, Lee T W 2020 Adv. Mater. 32 1903558Google Scholar

    [43]

    Rogers J A, Someya T, Huang Y 2010 Science 327 1603Google Scholar

    [44]

    Tiwari N, Rajput M, John R A, Kulkarni M R, Nguyen A C, Mathews N 2018 ACS Appl. Mater. Interfaces 10 30506Google Scholar

    [45]

    Meng J, Wang T, Zhu H, Ji L, Bao W, Zhou P, Chen L, Sun Q Q, Zhang D W 2022 Nano Lett. 22 81Google Scholar

    [46]

    Kim S J, Jeong J S, Jang H W, Yi H, Yang H, Ju H, Lim J A 2021 Adv. Mater. 33 2100475Google Scholar

    [47]

    Wei H, Ni Y, Sun L, Yu H, Gong J, Du Y, Ma M, Han H, Xu W 2021 Nano Energy 81 105648Google Scholar

    [48]

    Wang Y, Huang W, Zhang Z, Fan L, Huang Q, Wang J, Zhang Y, Zhang M 2021 Nanoscale 13 11360Google Scholar

    [49]

    Yu F, Zhu L Q, Xiao H, Gao W T, Guo Y B 2018 Adv. Funct. Mater. 28 1804025Google Scholar

    [50]

    Li Z Y, Zhu L Q, Guo L Q, Ren Z Y, Xiao H, Cai J C 2021 ACS Appl. Mater. Interfaces 13 7784Google Scholar

    [51]

    Wang X, Yan Y, Li E, Liu Y, Lai D, Lin Z, Liu Y, Chen H, Guo T 2020 Nano Energy 75 104952Google Scholar

    [52]

    Ham S, Kang M, Jang S, Jang J, Choi S, Kim T-W, Wang G 2020 Sci. Adv. 6 eaba1178Google Scholar

    [53]

    Jang S, Jang S, Lee E H, Kang M, Wang G, Kim T W 2019 ACS Appl. Mater. Interfaces 11 1071Google Scholar

    [54]

    Zhong G K, Zi M F, Ren C L, Xiao Q, Tang M K, Wei L Y, An F, Xie S H, Wang J B, Zhong X L, Huang M Q, Li J Y 2020 Appl. Phys. Lett. 117 092903Google Scholar

    [55]

    Ren Y, Yang J Q, Zhou L, Mao J Y, Zhang S R, Zhou Y, Han S T 2018 Adv. Funct. Mater. 28 1805599Google Scholar

    [56]

    Kim S, Choi B, Lim M, Yoon J, Lee J, Kim H D, Choi S J 2017 ACS Nano 11 2814Google Scholar

    [57]

    Wang T Y, Meng J L, He Z Y, Chen L, Zhu H, Sun Q Q, Ding S J, Zhou P, Zhang D W 2020 Adv. Sci. 7 1903480Google Scholar

    [58]

    Meng J L, Wang T Y, Chen L, Sun Q Q, Zhu H, Ji L, Ding S J, Bao W Z, Zhou P, Zhang D W 2021 Nano Energy 83 105815Google Scholar

    [59]

    Cao G M, Meng P, Chen J G, Liu H S, Bian R J, Zhu C, Liu F C, Liu Z 2021 Adv. Funct. Mater. 31 2005443Google Scholar

    [60]

    Zhu J D, Zhang T, Yang Y C, Huang R 2020 Appl. Phys. Rev. 7 011312Google Scholar

    [61]

    He Y L, Zhu L, Zhu Y, Chen C S, Jiang S S, Liu R, Shi Y, Wan Q 2021 Adv. Intell. Syst. 3 2000210Google Scholar

    [62]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 117 500Google Scholar

    [63]

    Abbott L F 2008 Neuron 60 489Google Scholar

    [64]

    Abbott L F 1999 Brain Res. Bull. 50 303Google Scholar

    [65]

    Izhikevich E M 2004 IEEE Trans. Neural Netw. 15 1063Google Scholar

    [66]

    Burkitt A N 2006 Biol. Cybern. 95 1Google Scholar

    [67]

    Sun F, Lu Q, Feng S, Zhang T 2021 ACS Nano 15 3875Google Scholar

    [68]

    Choquet D, Triller A 2013 Neuron 80 691Google Scholar

    [69]

    Reyes A D 2011 Hear. Res. 279 60Google Scholar

    [70]

    Rotman Z, Deng P Y, Klyachko V A 2011 J. Neurosci. 31 14800Google Scholar

    [71]

    Fortune E S, Rose G J 2002 J. Physiol. Paris 96 539Google Scholar

    [72]

    Fortune E S, Rose G J 2000 J. Neurosci. 20 7122Google Scholar

    [73]

    Bliss T V P, Collingridge G L 1993 Nature 361 31Google Scholar

    [74]

    Kim M K, Lee J S 2018 ACS Nano 12 1680Google Scholar

    [75]

    Lamprecht R, LeDoux J 2004 Nat. Rev. Neurosci. 5 45Google Scholar

    [76]

    Fu Y, Kong L A, Chen Y, Wang J, Qian C, Yuan Y, Sun J, Gao Y, Wan Q 2018 ACS Appl. Mater. Interfaces 10 26443Google Scholar

    [77]

    Alibart F, Pleutin S, Bichler O, Gamrat C, Serrano-Gotarredona T, Linares-Barranco B, Vuillaume D 2012 Adv. Funct. Mater. 22 609Google Scholar

    [78]

    Yang Y, Wen J, Guo L, Wan X, Du P, Feng P, Shi Y, Wan Q 2016 ACS Appl. Mater. Interfaces 8 30281Google Scholar

    [79]

    Bear M F, Malenka R C 1994 Curr. Opin. Neurobiol. 4 389Google Scholar

    [80]

    Law C C, Cooper L N 1994 Proc. Natl. Acad. Sci. U. S. A. 91 7797Google Scholar

    [81]

    Yuan H, Shimotani H, Ye J, Yoon S, Aliah H, Tsukazaki A, Kawasaki M, Iwasa Y 2010 J. Am. Chem. Soc. 132 18402Google Scholar

    [82]

    Zhang L L, Zhao X S 2009 Chem. Soc. Rev. 38 2520Google Scholar

    [83]

    Wang J, Li Y, Liang R, Zhang Y, Mao W, Yang Y, Ren T L 2017 IEEE Electron Dev. Lett. 38 1496Google Scholar

    [84]

    Wan C J, Zhu L Q, Zhou J M, Shi Y, Wan Q 2014 Nanoscale 6 4491Google Scholar

    [85]

    Zhou J M, Wan C J, Zhu L Q, Shi Y, Wan Q 2013 IEEE Electron Dev. Lett. 34 1433Google Scholar

    [86]

    Liu N, Zhu L Q, Feng P, Wan C J, Liu Y H, Shi Y, Wan Q 2015 Sci Rep 5 18082Google Scholar

    [87]

    Wang X L, Shao Y, Wu X, Zhang M N, Li L, Liu W J, Zhang D W, Ding S J 2020 RSC Adv. 10 3572Google Scholar

    [88]

    Liang X, Li Z, Liu L, Chen S, Wang X, Pei Y 2020 Appl. Phys. Lett. 116 012102Google Scholar

    [89]

    Okaue D, Tanabe I, Ono S, Sakamoto K, Sato T, Imanishi A, Morikawa Y, Takeya J, Fukui K I 2020 J. Phys. Chem. C 124 2543Google Scholar

    [90]

    Ono S, Seki S, Hirahara R, Tominari Y, Takeya J 2008 Appl. Phys. Lett. 92 103313Google Scholar

    [91]

    Yang J T, Ge C, Du J Y, Huang H Y, He M, Wang C, Lu H B, Yang G Z, Jin K J 2018 Adv. Mater. 34 1801548

    [92]

    Eguchi K, Matsushita M M, Awaga K 2019 Phys. Chem. Chem. Phys. 21 18823Google Scholar

    [93]

    Sharbati M T, Du Y, Torres J, Ardolino N D, Yun M, Xiong F 2018 Adv. Mater. 30 1802353Google Scholar

    [94]

    Nikam R D, Kwak M, Lee J, Rajput K G, Hwang H 2020 Adv. Electron. Mater. 6 1901100Google Scholar

    [95]

    Qin J K, Zhou F, Wang J, Chen J, Wang C, Guo X, Zhao S, Pei Y, Zhen L, Ye P D, Lau S P, Zhu Y, Xu C Y, Chai Y 2020 ACS Nano 14 10018Google Scholar

    [96]

    Zhang C X, Li S, He Y L, Chen C S, Jiang S S, Yang X Q, Wang X R, Pan L J, Wan Q 2020 IEEE Electron Dev. Lett. 41 617Google Scholar

    [97]

    Ke S, He Y L, Zhu L, Jiang Z H, Mao H W, Zhu Y X, Wan C J, Wan Q 2021 Adv. Electron. Mater. 7 2100487Google Scholar

    [98]

    Chen C, He Y, Zhu L, Zhu Y, Shi Y, Wan Q 2021 IEEE Trans. Electron Dev. 68 3119Google Scholar

    [99]

    He Y L, Zhu Y, Chen C S, Liu R, Jiang S S, Zhu L, Shi Y, Wan Q 2020 IEEE Trans. Electron Dev. 67 5216Google Scholar

    [100]

    Kim S H, Hong K, Xie W, Lee K H, Zhang S, Lodge T P, Frisbie C D 2013 Adv. Mater. 25 1822Google Scholar

    [101]

    Cho J H, Lee J, Xia Y, Kim B, He Y, Renn M J, Lodge T P, Daniel Frisbie C 2008 Nat. Mater. 7 900Google Scholar

    [102]

    Lee Y, Oh J Y, Xu W, Kim O, Kim T R, Kang J, Kim Y, Son D, Tok J B H, Park M J, Bao Z, Lee T W 2018 Sci. Adv. 4 eaat7387Google Scholar

    [103]

    Molina-Lopez F, Gao T Z, Kraft U, Zhu C, Öhlund T, Pfattner R, Feig V R, Kim Y, Wang S, Yun Y, Bao Z 2019 Nat. Commun. 10 2676Google Scholar

    [104]

    Liu L, Xu W, Ni Y, Xu Z, Cui B, Liu J, Wei H, Xu W 2022 ACS Nano 16 2282Google Scholar

    [105]

    Zhu Y, Liu G, Xin Z, Fu C, Wan Q, Shan F 2020 ACS Appl. Mater. Interfaces 12 1061Google Scholar

    [106]

    Yao B W, Li J, Chen X D, Yu M X, Zhang Z C, Li Y, Lu T B, Zhang J 2021 Adv. Funct. Mater. 31 2100069Google Scholar

    [107]

    Ji D, Li T, Zou Y, Chu M, Zhou K, Liu J, Tian G, Zhang Z, Zhang X, Li L, Wu D, Dong H, Miao Q, Fuchs H, Hu W 2018 Nat. Commun. 9 2339Google Scholar

    [108]

    Stucchi E, Dell'Erba G, Colpani P, Kim Y H, Caironi M 2018 Adv. Electron. Mater. 4 1800340Google Scholar

    [109]

    Grey P, Pereira L, Pereira S, Barquinha P, Cunha I, Martins R, Fortunato E 2016 Adv. Electron. Mater. 2 1500414Google Scholar

    [110]

    Singaraju S A, Baby T T, Neuper F, Kruk R, Hagmann J A, Hahn H, Breitung B 2019 ACS Appl. Electron. Mater. 1 1538Google Scholar

    [111]

    Zhao D, Fabiano S, Berggren M, Crispin X 2017 Nat. Commun. 8 14214Google Scholar

    [112]

    Zhang W, Zhao Q, Yuan J 2018 Angew. Chem. Int. Ed. 57 6754Google Scholar

    [113]

    Kim Hyeong J, Chen B, Suo Z, Hayward Ryan C 2020 Science 367 773Google Scholar

    [114]

    Ali A, Ahmed S 2018 Int. J. Biol. Macromol. 109 273Google Scholar

    [115]

    Elgadir M A, Uddin M S, Ferdosh S, Adam A, Chowdhury A J K, Sarker M Z I 2015 J. Food Drug Anal. 23 619Google Scholar

    [116]

    Negm N A, Hefni H H H, Abd-Elaal A A A, Badr E A, Abou Kana M T H 2020 Int. J. Biol. Macromol. 152 681Google Scholar

    [117]

    Ways T M M, Lau W M, Khutoryanskiy V V 2018 Polymers 10 267Google Scholar

    [118]

    Ali T, Mertens K, Kuhnel K, Rudolph M, Oehler S, Lehninger D, Muller F, Revello R, Hoffmann R, Zimmermann K, Kampfe T, Czernohorsky M, Seidel K, Van Houdt J, Eng L M 2021 Nanotechnology 32 425201Google Scholar

    [119]

    Choi Y, Kim J H, Qian C, Kang J, Hersam M C, Park J H, Cho J H 2020 ACS Appl. Mater. Interfaces 12 4707Google Scholar

    [120]

    Tsai M F, Jiang J, Shao P W, Lai Y H, Chen J W, Ho S Z, Chen Y C, Tsai D P, Chu Y H 2019 ACS Appl. Mater. Interfaces 11 25882Google Scholar

    [121]

    Seo M, Kang M H, Jeon S B, Bae H, Hur J, Jang B C, Yun S, Cho S, Kim W K, Kim M S, Hwang K M, Hong S, Choi S Y, Choi Y K 2018 IEEE Electron Dev. Lett. 39 1445Google Scholar

    [122]

    Jung S W, Koo J B, Park C W, Na B S, Oh J Y, Lee S S, Koo K W 2015 J. Vac. Sci. Technol. B 33 051201Google Scholar

    [123]

    Hoffman J, Pan X A, Reiner J W, Walker F J, Han J P, Ahn C H, Ma T P 2010 Adv. Mater. 22 2957Google Scholar

    [124]

    Nishitani Y, Kaneko Y, Ueda M, Fujii E, Tsujimura A 2013 Jpn. J. Appl. Phys. 52 04CE06Google Scholar

    [125]

    Müller J, Böscke T S, Bräuhaus D, Schröder U, Böttger U, Sundqvist J, Kücher P, Mikolajick T, Frey L 2011 Appl. Phys. Lett. 99 112901Google Scholar

    [126]

    Dai S L, Zhao Y W, Wang Y, Zhang J Y, Fang L, Jin S, Shao Y L, Huang J 2019 Adv. Funct. Mater. 29 1903700Google Scholar

    [127]

    Narayanan Unni K N, de Bettignies R, Dabos-Seignon S, Nunzi J M 2004 Appl. Phys. Lett. 85 1823Google Scholar

    [128]

    Kang S J, Park Y J, Bae I, Kim K J, Kim H C, Bauer S, Thomas E L, Park C 2009 Adv. Funct. Mater. 19 2812Google Scholar

    [129]

    Kim K L, Lee W, Hwang S K, Joo S H, Cho S M, Song G, Cho S H, Jeong B, Hwang I, Ahn J H, Yu Y J, Shin T J, Kwak S K, Kang S J, Park C 2016 Nano Lett. 16 334Google Scholar

    [130]

    Tian B B, Zhong N, Duan C G 2020 Chin. Phys. B 29 097701Google Scholar

    [131]

    Park C, Lee K, Koo M, Park C 2021 Adv. Mater. 33 2004999Google Scholar

    [132]

    Lee K, Jang S, Kim K L, Koo M, Park C, Lee S, Lee J, Wang G, Park C 2020 Adv. Sci. 7 2001662Google Scholar

    [133]

    Yu S 2018 Proc. IEEE 106 260Google Scholar

    [134]

    Van Tho L, Baeg K J, Noh Y Y 2016 Nano Converg. 3 10Google Scholar

    [135]

    Zhang H, Zhang Y T, Yu Y, Song X X, Zhang H T, Cao M X, Che Y L, Dai H T, Yang J B, Yao J Q 2017 ACS Photonics 4 2220Google Scholar

    [136]

    Cho S W, Kwon S M, Kim Y H, Park S K 2021 Adv. Intell. Syst. 3 2000162Google Scholar

    [137]

    Sekitani T, Yokota T, Zschieschang U, Klauk H, Bauer S, Takeuchi K, Takamiya M, Sakurai T, Someya T 2009 Science 326 1516Google Scholar

    [138]

    He Y L, Liu R, Jiang S S, Chen C S, Zhu L, Shi Y, Wan Q 2020 J. Phys. D: Appl. Phys. 53 215106Google Scholar

    [139]

    Yang X X, Yu J R, Zhao J, Chen Y H, Gao G Y, Wang Y F, Sun Q J, Wang Z L 2020 Adv. Funct. Mater. 30 2002506Google Scholar

    [140]

    Zhao T S, Zhao C, Xu W Y, Liu Y N, Gao H, Mitrovic I Z, Lim E G, Yang L, Zhao C Z 2021 Adv. Funct. Mater. 31 2106000Google Scholar

    [141]

    Park E, Kim M, Kim T S, Kim I S, Park J, Kim J, Jeong Y, Lee S, Kim I, Park J K, Kim G T, Chang J, Kang K, Kwak J Y 2020 Nanoscale 12 24503Google Scholar

    [142]

    Feng G, Jiang J, Zhao Y, Wang S, Liu B, Yin K, Niu D, Li X, Chen Y, Duan H, Yang J, He J, Gao Y, Wan Q 2020 Adv. Mater. 32 1906171Google Scholar

    [143]

    Basbaum A I, Bautista D M, Scherrer G, Julius D 2009 Cell 139 267Google Scholar

    [144]

    Lee Y, Lee T W 2019 Accounts Chem. Res. 52 964Google Scholar

    [145]

    Hou Y X, Li Y, Zhang Z C, Li J Q, Qi D H, Chen X D, Wang J J, Yao B W, Yu M X, Lu T B, Zhang J 2021 ACS Nano 15 1497Google Scholar

    [146]

    Li Y, Xuan Z H, Lu J K, Wang Z R, Zhang X M, Wu Z H, Wang Y Z, Xu H, Dou C M, Kang Y, Liu Q, Lv H B, Shang D S 2021 Adv. Funct. Mater. 31 2100042Google Scholar

    [147]

    Jang Y W, Kang J, Jo J W, Kim Y H, Kim J, Park S K 2021 Sens. Actuator B: Chem. 342 130058Google Scholar

    [148]

    Yang J C, Mun J, Kwon S Y, Park S, Bao Z, Park S 2019 Adv. Mater. 31 1904765Google Scholar

    [149]

    Wan C J, Liu Y H, Feng P, Wang W, Zhu L Q, Liu Z P, Shi Y, Wan Q 2016 Adv. Mater. 28 5878Google Scholar

    [150]

    Kim Y, Chortos A, Xu W, Liu Y, Oh J Y, Son D, Kang J, Foudeh A M, Zhu C, Lee Y, Niu S, Liu J, Pfattner R, Bao Z, Lee T W 2018 Science 360 998Google Scholar

    [151]

    Jiang S, He Y, Liu R, Chen C, Zhu L, Zhu Y, Shi Y, Wan Q 2021 IEEE T. Electron Dev. 68 415Google Scholar

    [152]

    Ling H, Koutsouras D A, Kazemzadeh S, van de Burgt Y, Yan F, Gkoupidenis P 2020 Appl. Phys. Rev. 7 011307Google Scholar

    [153]

    Zhu Q B, Li B, Yang D D, Liu C, Feng S, Chen M L, Sun Y, Tian Y N, Su X, Wang X M, Qiu S, Li Q W, Li X M, Zeng H B, Cheng H M, Sun D M 2021 Nat. Commun. 12 1798Google Scholar

    [154]

    Gao S, Liu G, Yang H, Hu C, Chen Q, Gong G, Xue W, Yi X, Shang J, Li R W 2019 ACS Nano 13 2634Google Scholar

    [155]

    Wang G, Wang R, Kong W, Zhang J 2018 Cogn. Neurodynamics 12 615Google Scholar

    [156]

    Yamamoto Y, Harada S, Yamamoto D, Honda W, Arie T, Akita S, Takei K 2016 Sci. Adv. 2 e1601473Google Scholar

    [157]

    Wu X, Li E, Liu Y, Lin W, Yu R, Chen G, Hu Y, Chen H, Guo T 2021 Nano Energy 85 106000Google Scholar

    [158]

    Wan C, Cai P, Guo X, Wang M, Matsuhisa N, Yang L, Lv Z, Luo Y, Loh X J, Chen X 2020 Nat. Commun. 11 4602Google Scholar

    [159]

    Shastri B J, Tait A N, de Lima T F, Pernice W H P, Bhaskaran H, Wright C D, Prucnal P R 2021 Nat. Photonics 15 102Google Scholar

    [160]

    Song S, Kim J, Kwon S M, Jo J W, Park S K, Kim Y-H 2021 Adv. Intell. Syst. 3 2000119Google Scholar

    [161]

    Komar M S 2017 Autom. Control Comp. Sci. 51 701Google Scholar

  • [1] 李岩, 陈鑫力, 王伟胜, 石智文, 竺立强. 蛋壳膜电解质栅控氧化物神经形态晶体管. 物理学报, 2023, 72(15): 157302. doi: 10.7498/aps.72.20230411
    [2] 郭立强, 陶剑, 温娟, 程广贵, 袁宁一, 丁建宁. 玉米淀粉固态电解质质子\电子杂化突触晶体管. 物理学报, 2017, 66(16): 168501. doi: 10.7498/aps.66.168501
    [3] 李志鹏, 李晶, 孙静, 刘阳, 方进勇. 高功率微波作用下高电子迁移率晶体管的损伤机理. 物理学报, 2016, 65(16): 168501. doi: 10.7498/aps.65.168501
    [4] 刘阳, 柴常春, 于新海, 樊庆扬, 杨银堂, 席晓文, 刘胜北. GaN高电子迁移率晶体管强电磁脉冲损伤效应与机理. 物理学报, 2016, 65(3): 038402. doi: 10.7498/aps.65.038402
    [5] 任舰, 闫大为, 顾晓峰. AlGaN/GaN 高电子迁移率晶体管漏电流退化机理研究. 物理学报, 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [6] 苏丽娜, 顾晓峰, 秦华, 闫大为. 单电子晶体管电流解析模型及数值分析. 物理学报, 2013, 62(7): 077301. doi: 10.7498/aps.62.077301
    [7] 董京, 柴玉华, 赵跃智, 石巍巍, 郭玉秀, 仪明东, 解令海, 黄维. 柔性有机场效应晶体管研究进展. 物理学报, 2013, 62(4): 047301. doi: 10.7498/aps.62.047301
    [8] 余晨辉, 罗向东, 周文政, 罗庆洲, 刘培生. 新型双异质结高电子迁移率晶体管的电流崩塌效应研究. 物理学报, 2012, 61(20): 207301. doi: 10.7498/aps.61.207301
    [9] 马骥刚, 马晓华, 张会龙, 曹梦逸, 张凯, 李文雯, 郭星, 廖雪阳, 陈伟伟, 郝跃. AlGaN/GaN高电子迁移率晶体管中kink效应的半经验模型. 物理学报, 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [10] 吕玲, 张进成, 李亮, 马晓华, 曹艳荣, 郝跃. 3 MeV质子辐照对AlGaN/GaN高电子迁移率晶体管的影响. 物理学报, 2012, 61(5): 057202. doi: 10.7498/aps.61.057202
    [11] 毛维, 杨翠, 郝跃, 张进成, 刘红侠, 马晓华, 王冲, 张金风, 杨林安, 许晟瑞, 毕志伟, 周洲, 杨凌, 王昊. 场板抑制GaN高电子迁移率晶体管电流崩塌的机理研究. 物理学报, 2011, 60(1): 017205. doi: 10.7498/aps.60.017205
    [12] 冯朝文, 蔡理, 康强, 彭卫东, 柏鹏, 王甲富. 基于单电子晶体管 - 金属氧化物场效应晶体管电路的离散混沌系统实现. 物理学报, 2011, 60(11): 110502. doi: 10.7498/aps.60.110502
    [13] 隋兵才, 方粮, 张超. 单岛单电子晶体管的电导分析. 物理学报, 2011, 60(7): 077302. doi: 10.7498/aps.60.077302
    [14] 王冲, 全思, 马晓华, 郝跃, 张进城, 毛维. 增强型AlGaN/GaN高电子迁移率晶体管高温退火研究. 物理学报, 2010, 59(10): 7333-7337. doi: 10.7498/aps.59.7333
    [15] 林峰, 李缵轶, 王山鹰. TiO2纳米管的力学和电子学性质. 物理学报, 2009, 58(12): 8544-8548. doi: 10.7498/aps.58.8544
    [16] 林若兵, 王欣娟, 冯 倩, 王 冲, 张进城, 郝 跃. AlGaN/GaN高电子迁移率晶体管肖特基高温退火机理研究. 物理学报, 2008, 57(7): 4487-4491. doi: 10.7498/aps.57.4487
    [17] 李 潇, 张海英, 尹军舰, 刘 亮, 徐静波, 黎 明, 叶甜春, 龚 敏. 磷化铟复合沟道高电子迁移率晶体管击穿特性研究. 物理学报, 2007, 56(7): 4117-4121. doi: 10.7498/aps.56.4117
    [18] 郭荣辉, 赵正平, 郝 跃, 刘玉贵, 武一宾, 吕 苗. 多岛单电子晶体管的实现及其源漏特性分析. 物理学报, 2005, 54(4): 1804-1808. doi: 10.7498/aps.54.1804
    [19] 张志勇, 王太宏. 单电子晶体管-金属氧化物半导体场效应晶体管多峰值负微分电阻器件. 物理学报, 2003, 52(7): 1766-1770. doi: 10.7498/aps.52.1766
    [20] 吴凡, 王太宏. 单电子晶体管通断图及其分析. 物理学报, 2002, 51(12): 2829-2835. doi: 10.7498/aps.51.2829
计量
  • 文章访问数:  9798
  • PDF下载量:  443
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-21
  • 修回日期:  2022-03-22
  • 上网日期:  2022-07-12
  • 刊出日期:  2022-07-20

/

返回文章
返回