搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

As/HfS2范德瓦耳斯异质结电子光学特性及量子调控效应

张仑 陈红丽 义钰 张振华

引用本文:
Citation:

As/HfS2范德瓦耳斯异质结电子光学特性及量子调控效应

张仑, 陈红丽, 义钰, 张振华

Electronic and optical properties and quantum tuning effects of As/Hfs2 van der Waals heterostructure

Zhang Lun, Chen Hong-Li, Yi Yu, Zhang Zhen-Hua
PDF
HTML
导出引用
  • 两种或两种以上的单层材料堆垛成范德瓦耳斯异质结是实现理想电子及光电子器件的有效策略. 本文选用As单层及HfS2单层, 采用6种堆垛方式构建As/HfS2异质结, 并选取最稳结构, 利用杂化泛函HSE06系统地研究了其电子和光学性质以及量子调控效应. 计算发现, As/HfS2本征异质结为Ⅱ型能带对齐半导体, 且相对两单层带隙(>2.0 eV)能明显减小(约0.84 eV), 特别是价带偏移(VBO)和导带偏移(CBO)可分别高达1.48 eV和1.31 eV, 非常有利于研发高性能光电器件和太阳能电池. 垂直应变能有效调节异质结的能带结构, 拉伸时带隙增大, 并出现间接带隙到直接带隙的转变现象, 而压缩时, 带隙迅速减少直到金属相发生. 外加电场可以灵活地调控异质结的带隙及能带对齐方式, 使异质结实现Ⅰ型、Ⅱ型和Ⅲ型之间的转变. 此外, As/HfS2异质结在可见光区域有较强的光吸收能力, 且可通过外加电场和垂直应变获得进一步提高. 这些结果表明As/HfS2异质结构在电子器件、光电子器件和光伏电池领域具有潜在的应用前景.
    Stacking two or more monolayer materials to form van der Waals heterostructures is an effective strategy to realize ideal electronic and optoelectronic devices. In this work, we use As and HfS2 monolayers to construct As/Hfs2 heterostructures by six stacking manners, and from among them the most stable structure is selected to study its electronic and optic-electronic properties and quantum regulation effects by hybrid functional HSE06 systematically. It is found that the As/Hfs2 intrinsic heterostructure is a II-type band aligned semiconductor, and its band gap can be significantly reduced (~ 0.84 eV) in comparison with two monolayers (band gap > 2.0 eV), especially the valence band offset and conduction band offset can increase up to 1.48 eV and 1.31 eV, respectively, which is very favorable for developing high-performance optoelectronic devices and solar cells. The vertical strain can effectively adjust the band structure of heterostructure. The band gap increases by tensile strain, accompanied with an indirect-direct band gap transition. However, by compressive strain, the band gap decreases rapidly until the metal phase occurs. The applied external electric field can flexibly adjust the band gap and band alignment mode of heterostructure, so that the heterostructure can realize the transformation between I-, II-, and III-type band alignments. In addition, intrinsic As/Hfs2 heterostructure has ability to strongly absorb light in the visible light region, and can be further enhanced by external electric field and vertical strain. These results suggest that the intrinsic As/Hfs2 heterostructure promises to have potential applications in the fields of electronic, optoelectronic devices and photovoltaic cells.
      通信作者: 张振华, csustjxt@163.com
    • 基金项目: 国家自然科学基金(批准号: 61371065, 61771076)资助的课题.
      Corresponding author: Zhang Zhen-Hua, csustjxt@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61371065, 61771076).
    [1]

    Gupta A, Sakthivel T, Seal S 2015 Prog. Mater. Sci. 73 44Google Scholar

    [2]

    Yang L, Chen W, Yu Q, Liu B 2021 Nano Res. 14 1583Google Scholar

    [3]

    Zhang R W, Zhang C W, Ji W X, Hu S J, Yan S S, Li S S, Li P, Wang P J, Liu Y S 2014 J. Phys. Chem. C 118 25278Google Scholar

    [4]

    Ni Z Y, Liu Q H, Tang K H, Zheng J X, Zhou J, Qin R, Gao Z X, Yu D P, Lu J 2012 Nano. Lett. 12 113Google Scholar

    [5]

    Massicotte M, Soavi G, Principi A, Tielrooij K J 2021 Nanoscale 13 8376Google Scholar

    [6]

    Blase X, Rubio A, Louie S G, Cohen M L, 1995 Phys. Rev. B 51 6868Google Scholar

    [7]

    Cahangirov S, Topsakal M, Aktürk E, Sahin H, Ciraci S 2009 Phys. Rev. Lett 102 236804Google Scholar

    [8]

    Kuang W, Hu R, Fan Z, Zhang Z 2019 Nanotechnology 30 145201Google Scholar

    [9]

    Xiao D, Liu G B, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett 108 196802Google Scholar

    [10]

    Li X, Zhu H 2015 J. Materiomics 1 33Google Scholar

    [11]

    Yang G, Li L H, Lee W B, Ng M C 2018 Sci. Technol. Adv. Mater. 19 613Google Scholar

    [12]

    Low J, Yu J, Jaroniec M, Wageh S, Al‐Ghamdi A A 2017 Adv. Mater. 29 1601694Google Scholar

    [13]

    Wang H, Zhang L, Chen Z, Hu J Q, Li S J, Wang Z H, Liu J S, Wang X C 2014 Chem. Soc. Rev. 43 5234Google Scholar

    [14]

    Yan J A, Stein R, Schaefer D M, Wang X Q, Chou M Y 2013 Phys. Rev. B 88 121403Google Scholar

    [15]

    She L, Zhang F, Jia C, Kang L, Li Q, He X, Sun J, Lei Z, Liu Z 2021 Nanoscale 13 15781Google Scholar

    [16]

    He C, Zhang J H, Zhang W X, Li T T 2019 J. Phys. Chem. Lett. 10 3122Google Scholar

    [17]

    He C, Han F, Zhang W 2021 Chin. Chem. Lett. 33 404

    [18]

    Li X, Li Z, Yang J 2014 Phys. Rev. Lett. 112 018301Google Scholar

    [19]

    Song W, Chen J, Li Z, Fang X 2021 Adv. Mater. 33 2101059Google Scholar

    [20]

    Chen F, Shi D, Yang M, Jiang H, Shao Y, Wang S, Zhang B, Shen J, Wu Y, Hao X 2021 Adv. Fun. Mater. 31 2007132Google Scholar

    [21]

    Peng D, Wang Y, Shi H, Wei J, Tao J, Zhao H, Chen Z 2022 J. Colloid Interface Sci. 613 194Google Scholar

    [22]

    Meitl M A, Zhu Z T, Kumar V, Lee K J, X. Feng, Huang Y Y, Adesida I, Nuzzo R G, Rogers J A 2006 Nat. Mater. 5 33Google Scholar

    [23]

    Castellanos-Gomez A, Buscema M, Molenaar R, Singh V, Janssen L, van der Zant H S J, Steele G A 2014 2D Mater. 1 011002Google Scholar

    [24]

    Gong Y, Lin J, Wang X, et al. 2014 Nat. Mater. 13 1135Google Scholar

    [25]

    Wang Y, Zhang C, Ji W, Wang P 2015 Appl. Phys. Express 8 065202Google Scholar

    [26]

    Kecik D, Durgun E, Ciraci S 2016 Phys. Rev. B 94 205410Google Scholar

    [27]

    Li Z J, Xu W, Yu Y Q, Du H Y, Zhen K, Wang J, Luo L B, Qiu H L, Yang X B, 2016 J. Mater. Chem. A 4 362Google Scholar

    [28]

    Xu C, Zhu M, Zheng H, Du X, Wang W, Yan Y 2016 RSC Adv. 6 43794Google Scholar

    [29]

    Sahin H, Sivek J, Li S, Partoens B, Peeters F M 2013 Phys. Rev. B 88 045434Google Scholar

    [30]

    Li Y, Xia C X, Wang T X, Tan X M, Zhao X, Wei S Y 2016 Solid State Commun. 230 6Google Scholar

    [31]

    Han J N, Zhang Z H, Fan Z Q, Zhou R L 2020 Nanotechnology 31 315206Google Scholar

    [32]

    Xie Z F, Sun F W, Yao R, Zhang Y, Zhang Y H, Zhang Z H, Fang Z B, Ni L, Duan L 2019 Appl. Surf. Sci. 475 839Google Scholar

    [33]

    Nie X R, Sun B Q, Zhu H, Zhang M, Zhao D H, Chen L, Sun Q Q, Zhang D W 2017 ACS Appl. Mater. Interfaces 9 26996Google Scholar

    [34]

    Kanazawa T, Amemiya T, Ishikawa A, Upadhyaya V, Tsuruta K, Tanaka T, Miyamoto Y 2016 Sci. Rep. 6 1Google Scholar

    [35]

    Fu L, Wang F, Wu B, Huang W 2017 Adv. Mater. 29 1700439Google Scholar

    [36]

    Xu K, Wang Z, Wang F, Huang Y, Wang F, Yin L, Jiang C, He J 2015 Adv. Mater. 27 7881Google Scholar

    [37]

    Wang B, Wang X, Wang P, Yang T, Yuan H, Wang H, Wang G, Chen H 2019 Nanomaterials 9 1706Google Scholar

    [38]

    Fu C F, Wu X, Yang J. 2018 Adv. Mater. 30 1802106Google Scholar

    [39]

    King'ori G W, Ouma C N M, Mishra A K, Amolo G O, Makau N W T 2020 RSC Adv. 10 30127Google Scholar

    [40]

    Lei C, Ma Y, Xu X, Zhang T, Huang B, Dai Y 2019 J. Phys. Chem. C 123 23089Google Scholar

    [41]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [42]

    Hu R, Wang D, Fan Z Q, Zhang Z H 2018 Phys. Chem. Chem. Phys. 20 13574Google Scholar

    [43]

    李野华, 范志强, 张振华 2019 物理学报 68 198503Google Scholar

    Li Y H, Fan Z Q, Zhang Z H 2019 Acta Phys. Sin. 68 198503Google Scholar

    [44]

    Zhao T, Fan Z Q, Zhang Z H, Zhou R L 2019 J. Phys. D Appl. Phys. 52 475301Google Scholar

    [45]

    Hu R, Li Y H, Zhang Z H, Fan Z Q, Sun L 2019 J. Mater. Chem. C 7 7745Google Scholar

    [46]

    He X, Deng X Q, Sun L, Zhang Z H, Fan Z Q 2022 Appl. Surf. Sci. 578 151844Google Scholar

    [47]

    Han J N, He X, Fan Z Q, Zhang Z H 2019 Phys. Chem. Chem. Phys. 21 1830Google Scholar

    [48]

    徐永虎, 邓小清, 孙琳, 范志强, 张振华 2022 物理学报 71 046102Google Scholar

    Xu Y H, Deng X Q, Sun L, Fang Z Q, Zhang Z H 2022 Acta Phys. Sin. 71 046102Google Scholar

    [49]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [50]

    Zhao J, Qi Z H, Xu Y, Dai J, Zeng X C, Guo W, Ma J 2019 Wiley Interdiscip. Rev. Comput. Mol. Sci. 9 e1387

    [51]

    Kamal C, Ezawa M 2015 Phys. Rev. B 91 085423Google Scholar

    [52]

    Deng S, Li L, Rees P 2019 ACS Appl. Nano Mater. 2 3977Google Scholar

    [53]

    Zheng X, Wei Y, Pang K, Tolbert N K, Kong D, Xu X, Yang J, Li X, Li W 2020 Sci. Rep. 10 1Google Scholar

    [54]

    Huang L, Huo N, Li Y, Chen H, Yang J, Wei Z, Li J, Li S 2015 J. Phys. Chem. Lett. 6 2483Google Scholar

  • 图 1  (a) As单层正视图和侧视图; (b) HfS2单层正视图和侧视图; (c) PBE计算的As单层能带结构; (d) PBE计算的HfS2单层能带结构; (e) HSE06计算的As单层能带结构; (f) HSE06计算的HfS2单层能带结构; (g)–(l) As/HfS2异质结的6种堆叠方式, 分别称为A1—A3和B1—B3

    Fig. 1.  (a) Top and side view of As monolayer; (b) top and side view of HfS2 monolayer; (c) band structure of As monolayer by PBE calculation; (d) band structure of HfS2 monolayer by PBE calculation; (e) band structure of As monolayer by HSE06 calculation; (f) band structure of HfS2 monolayer by HSE06 calculation; (g)–(l) six stacking for As/HfS2 heterostructure, called as A1–A3 and B1–B3, respectively.

    图 2  (a) As与HfS2单层以及As/HfS2异质结的电子局域函数(ELF); (b) B2堆叠的Forcite淬火的分子动力学模拟以检验结构的热稳定性

    Fig. 2.  (a) The electronic localization function (ELF) of As and HfS2 monolayers and As/HfS2 heterostructure; (b) Forcite quenching molecular dynamics simulation for the B2 stacking to examine the structural thermal stability.

    图 3  (a) As/HfS2异质结投影能带结构及投影态密度; (b) CBM与VBM的Bloch 态, 等值面为0.035 e/Å3; (c) As/HfS2异质结能带对齐; (d) 沿z轴电荷密度差及三维电荷密度差, 红色和蓝色分别代表电荷积累和消耗, 等值面为3.5×10–4 e/Å3; (e) 沿z轴方向有效势(eV)分布

    Fig. 3.  (a) Projected band structure and projected state density of As/HfS2 heterostructure; (b) Bloch state for CBM and VBM, the isosurface is set to 0.035 e/A3; (c) band alignment for As/HfS2 heterostructure; (d) charge density difference along the z-axis and three-dimensional charge density difference, red and blue respectively represent charge accumulation and depletion, the isosurface is set to 3.5×10–4 e/Å3, and (e) electrostatic potential distribution along the z-axis.

    图 4  (a)带隙及结合能随应变的变化; (b) 应变 ε = –0.6, –0.4, –0.2, 0, 0.2, 0.4, 0.6 Å 时有效势的变化; (c) 应变ε = –0.8, –0.3, –0.1, 0.1, 0.3, 0.8 Å 时异质结的能带结构, 最高导带上的红点代表VBM的位置

    Fig. 4.  (a) Band gap and binding energy changes with strain; (b) the effective potential distribution along z-axis at ε = –0.6, –0.4, –0.2, 0, 0.2, 0.4 and 0.6 Å, respectively; (c) the As/HfS2 band structure at ε = –0.8, –0.3, –0.1, 0.1, 0.3 and 0.8 Å , respectively, the red dot at top conduction band indicates the VBM position.

    图 5  不同垂直应变时的三维电荷密度差 (a) ε = –0.6 Å; (b) ε = –0.2 Å; (c) ε = 0.2 Å; (d) ε = 0.6 Å

    Fig. 5.  Three dimensional charge density difference at (a) ε = –0.6 Å, (b) ε = –0.2 Å, (c) ε = 0.2 Å, (d) ε = 0.6 Å, respectively.

    图 6  (a) 异质结外加电场方向示意图; (b)异质结带隙随外电场变化; (c) As与HfS2单层带边(VBM及CBM)位置以及能带对齐方式随外电场的变化; (d) 0.6 V/Å电场时, 异质结的电荷密度差; (e) –0.6 V/Å电场时, 异质结的电荷密度差; (f) 异质结电荷密度差随电场的变化趋势

    Fig. 6.  (a) Schematic diagram of applied external electric field on heterostructure; (b) band gap variation of heterostructure with electric field; (c) evolution of band edges (VBM and CBM) for As and HfS2 monolayers and heterostructure and its band alignment manner with electric field. The charge density difference of heterostructure at: (d) Eext = 0.6 eV/Å, (e) Eext = –0.6 eV/Å, and (f) various electric field.

    图 7  光吸收系数及调控效应 (a), (b)单层及本征异质结; (c), (d)应变调控的异质结; (e), (f)电场调控的异质结

    Fig. 7.  Light absorption coefficients and tuning effects: (a), (b) The monolayer and intrinsic heterostructure; (b), (c) strain tuning effects; (e), (f) the electric field tuning effects .

    表 1  不同堆叠异质结的结合能、层间距和带隙

    Table 1.  The binding energy, interlayer spacing and band gap for various stacking configurations.

    StructureA1A2A3B1B2B3
    Eb/(meV·Å–2)–14.59–8.81–11.26–8.93–16.19–11.71
    d3.13.63.43.63.03.4
    Gap/eV0.941.121.041.150.841.06
    下载: 导出CSV
  • [1]

    Gupta A, Sakthivel T, Seal S 2015 Prog. Mater. Sci. 73 44Google Scholar

    [2]

    Yang L, Chen W, Yu Q, Liu B 2021 Nano Res. 14 1583Google Scholar

    [3]

    Zhang R W, Zhang C W, Ji W X, Hu S J, Yan S S, Li S S, Li P, Wang P J, Liu Y S 2014 J. Phys. Chem. C 118 25278Google Scholar

    [4]

    Ni Z Y, Liu Q H, Tang K H, Zheng J X, Zhou J, Qin R, Gao Z X, Yu D P, Lu J 2012 Nano. Lett. 12 113Google Scholar

    [5]

    Massicotte M, Soavi G, Principi A, Tielrooij K J 2021 Nanoscale 13 8376Google Scholar

    [6]

    Blase X, Rubio A, Louie S G, Cohen M L, 1995 Phys. Rev. B 51 6868Google Scholar

    [7]

    Cahangirov S, Topsakal M, Aktürk E, Sahin H, Ciraci S 2009 Phys. Rev. Lett 102 236804Google Scholar

    [8]

    Kuang W, Hu R, Fan Z, Zhang Z 2019 Nanotechnology 30 145201Google Scholar

    [9]

    Xiao D, Liu G B, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett 108 196802Google Scholar

    [10]

    Li X, Zhu H 2015 J. Materiomics 1 33Google Scholar

    [11]

    Yang G, Li L H, Lee W B, Ng M C 2018 Sci. Technol. Adv. Mater. 19 613Google Scholar

    [12]

    Low J, Yu J, Jaroniec M, Wageh S, Al‐Ghamdi A A 2017 Adv. Mater. 29 1601694Google Scholar

    [13]

    Wang H, Zhang L, Chen Z, Hu J Q, Li S J, Wang Z H, Liu J S, Wang X C 2014 Chem. Soc. Rev. 43 5234Google Scholar

    [14]

    Yan J A, Stein R, Schaefer D M, Wang X Q, Chou M Y 2013 Phys. Rev. B 88 121403Google Scholar

    [15]

    She L, Zhang F, Jia C, Kang L, Li Q, He X, Sun J, Lei Z, Liu Z 2021 Nanoscale 13 15781Google Scholar

    [16]

    He C, Zhang J H, Zhang W X, Li T T 2019 J. Phys. Chem. Lett. 10 3122Google Scholar

    [17]

    He C, Han F, Zhang W 2021 Chin. Chem. Lett. 33 404

    [18]

    Li X, Li Z, Yang J 2014 Phys. Rev. Lett. 112 018301Google Scholar

    [19]

    Song W, Chen J, Li Z, Fang X 2021 Adv. Mater. 33 2101059Google Scholar

    [20]

    Chen F, Shi D, Yang M, Jiang H, Shao Y, Wang S, Zhang B, Shen J, Wu Y, Hao X 2021 Adv. Fun. Mater. 31 2007132Google Scholar

    [21]

    Peng D, Wang Y, Shi H, Wei J, Tao J, Zhao H, Chen Z 2022 J. Colloid Interface Sci. 613 194Google Scholar

    [22]

    Meitl M A, Zhu Z T, Kumar V, Lee K J, X. Feng, Huang Y Y, Adesida I, Nuzzo R G, Rogers J A 2006 Nat. Mater. 5 33Google Scholar

    [23]

    Castellanos-Gomez A, Buscema M, Molenaar R, Singh V, Janssen L, van der Zant H S J, Steele G A 2014 2D Mater. 1 011002Google Scholar

    [24]

    Gong Y, Lin J, Wang X, et al. 2014 Nat. Mater. 13 1135Google Scholar

    [25]

    Wang Y, Zhang C, Ji W, Wang P 2015 Appl. Phys. Express 8 065202Google Scholar

    [26]

    Kecik D, Durgun E, Ciraci S 2016 Phys. Rev. B 94 205410Google Scholar

    [27]

    Li Z J, Xu W, Yu Y Q, Du H Y, Zhen K, Wang J, Luo L B, Qiu H L, Yang X B, 2016 J. Mater. Chem. A 4 362Google Scholar

    [28]

    Xu C, Zhu M, Zheng H, Du X, Wang W, Yan Y 2016 RSC Adv. 6 43794Google Scholar

    [29]

    Sahin H, Sivek J, Li S, Partoens B, Peeters F M 2013 Phys. Rev. B 88 045434Google Scholar

    [30]

    Li Y, Xia C X, Wang T X, Tan X M, Zhao X, Wei S Y 2016 Solid State Commun. 230 6Google Scholar

    [31]

    Han J N, Zhang Z H, Fan Z Q, Zhou R L 2020 Nanotechnology 31 315206Google Scholar

    [32]

    Xie Z F, Sun F W, Yao R, Zhang Y, Zhang Y H, Zhang Z H, Fang Z B, Ni L, Duan L 2019 Appl. Surf. Sci. 475 839Google Scholar

    [33]

    Nie X R, Sun B Q, Zhu H, Zhang M, Zhao D H, Chen L, Sun Q Q, Zhang D W 2017 ACS Appl. Mater. Interfaces 9 26996Google Scholar

    [34]

    Kanazawa T, Amemiya T, Ishikawa A, Upadhyaya V, Tsuruta K, Tanaka T, Miyamoto Y 2016 Sci. Rep. 6 1Google Scholar

    [35]

    Fu L, Wang F, Wu B, Huang W 2017 Adv. Mater. 29 1700439Google Scholar

    [36]

    Xu K, Wang Z, Wang F, Huang Y, Wang F, Yin L, Jiang C, He J 2015 Adv. Mater. 27 7881Google Scholar

    [37]

    Wang B, Wang X, Wang P, Yang T, Yuan H, Wang H, Wang G, Chen H 2019 Nanomaterials 9 1706Google Scholar

    [38]

    Fu C F, Wu X, Yang J. 2018 Adv. Mater. 30 1802106Google Scholar

    [39]

    King'ori G W, Ouma C N M, Mishra A K, Amolo G O, Makau N W T 2020 RSC Adv. 10 30127Google Scholar

    [40]

    Lei C, Ma Y, Xu X, Zhang T, Huang B, Dai Y 2019 J. Phys. Chem. C 123 23089Google Scholar

    [41]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [42]

    Hu R, Wang D, Fan Z Q, Zhang Z H 2018 Phys. Chem. Chem. Phys. 20 13574Google Scholar

    [43]

    李野华, 范志强, 张振华 2019 物理学报 68 198503Google Scholar

    Li Y H, Fan Z Q, Zhang Z H 2019 Acta Phys. Sin. 68 198503Google Scholar

    [44]

    Zhao T, Fan Z Q, Zhang Z H, Zhou R L 2019 J. Phys. D Appl. Phys. 52 475301Google Scholar

    [45]

    Hu R, Li Y H, Zhang Z H, Fan Z Q, Sun L 2019 J. Mater. Chem. C 7 7745Google Scholar

    [46]

    He X, Deng X Q, Sun L, Zhang Z H, Fan Z Q 2022 Appl. Surf. Sci. 578 151844Google Scholar

    [47]

    Han J N, He X, Fan Z Q, Zhang Z H 2019 Phys. Chem. Chem. Phys. 21 1830Google Scholar

    [48]

    徐永虎, 邓小清, 孙琳, 范志强, 张振华 2022 物理学报 71 046102Google Scholar

    Xu Y H, Deng X Q, Sun L, Fang Z Q, Zhang Z H 2022 Acta Phys. Sin. 71 046102Google Scholar

    [49]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [50]

    Zhao J, Qi Z H, Xu Y, Dai J, Zeng X C, Guo W, Ma J 2019 Wiley Interdiscip. Rev. Comput. Mol. Sci. 9 e1387

    [51]

    Kamal C, Ezawa M 2015 Phys. Rev. B 91 085423Google Scholar

    [52]

    Deng S, Li L, Rees P 2019 ACS Appl. Nano Mater. 2 3977Google Scholar

    [53]

    Zheng X, Wei Y, Pang K, Tolbert N K, Kong D, Xu X, Yang J, Li X, Li W 2020 Sci. Rep. 10 1Google Scholar

    [54]

    Huang L, Huo N, Li Y, Chen H, Yang J, Wei Z, Li J, Li S 2015 J. Phys. Chem. Lett. 6 2483Google Scholar

  • [1] 马泽成, 刘增霖, 程斌, 梁世军, 缪峰. 范德瓦耳斯材料的原位应变工程与应用. 物理学报, 2024, 73(11): 110701. doi: 10.7498/aps.73.20240353
    [2] 汪帆帆, 陈栋, 袁军, 张珠峰, 姜涛, 周骏. Sb/SnC范德瓦耳斯异质结光电性质的层间转角依赖性及其应用. 物理学报, 2024, 73(22): 227101. doi: 10.7498/aps.73.20241138
    [3] 汤家鑫, 李占海, 邓小清, 张振华. GaN/VSe2范德瓦耳斯异质结电接触特性及调控效应. 物理学报, 2023, 72(16): 167101. doi: 10.7498/aps.72.20230191
    [4] 黄敏, 李占海, 程芳. 石墨烯/C3N范德瓦耳斯异质结的可调电子特性和界面接触. 物理学报, 2023, 72(14): 147302. doi: 10.7498/aps.72.20230318
    [5] 孙婷钰, 吴量, 何贤娟, 姜楠, 周文哲, 欧阳方平. 应变和电场对Ga2SeTe/In2Se3异质结电子结构和光学性质的影响. 物理学报, 2023, 72(7): 076301. doi: 10.7498/aps.72.20222250
    [6] 邓霖湄, 司君山, 吴绪才, 张卫兵. 过渡金属二硫化物/三卤化铬范德瓦耳斯异质结的反折叠能带. 物理学报, 2022, 71(14): 147101. doi: 10.7498/aps.71.20220326
    [7] 姚熠舟, 曹丹, 颜洁, 刘雪吟, 王建峰, 姜舟婷, 舒海波. 氧氯化铋/铯铅氯范德瓦耳斯异质结环境稳定性与光电性质的第一性原理研究. 物理学报, 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [8] 孔宇晗, 王蓉, 徐明生. CuPc/MoS2范德瓦耳斯异质结荧光特性. 物理学报, 2022, 71(12): 128103. doi: 10.7498/aps.71.20220132
    [9] 周畅, 龚蕊, 冯小波. 垂直电场下扭转双层石墨烯光学吸收性质的理论研究. 物理学报, 2022, 71(5): 054203. doi: 10.7498/aps.71.20211406
    [10] 廖俊懿, 吴娟霞, 党春鹤, 谢黎明. 二维材料的转移方法. 物理学报, 2021, 70(2): 028201. doi: 10.7498/aps.70.20201425
    [11] 姜程鑫, 陈令修, 王慧山, 王秀君, 陈晨, 王浩敏, 谢晓明. 六方氮化硼层间气泡制备与压强研究. 物理学报, 2021, 70(6): 069801. doi: 10.7498/aps.70.20201482
    [12] 徐翔, 张莹, 闫庆, 刘晶晶, 王骏, 徐新龙, 华灯鑫. 不同堆垛结构二硫化铼/石墨烯异质结的光电化学特性. 物理学报, 2021, 70(9): 098203. doi: 10.7498/aps.70.20201904
    [13] 吴甜, 姚梦丽, 龙孟秋. 钙钛矿CsPbX3(X=Cl, Br, I)与五环石墨烯范德瓦耳斯异质结的界面相互作用和光电性能的第一性原理研究. 物理学报, 2021, 70(5): 056301. doi: 10.7498/aps.70.20201246
    [14] 周畅, 龚蕊, 冯小波. 垂直电场下扭转双层石墨烯光学吸收性质的理论研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211406
    [15] 张芳, 贾利群, 孙现亭, 戴宪起, 黄奇祥, 李伟. 电场对graphene/InSe范德瓦耳斯异质结肖特基势垒的调控. 物理学报, 2020, 69(15): 157302. doi: 10.7498/aps.69.20191987
    [16] 张增星, 李东. 基于双极性二维晶体的新型p-n结. 物理学报, 2017, 66(21): 217302. doi: 10.7498/aps.66.217302
    [17] 陆爱江. 高温隐形材料SiBN陶瓷. 物理学报, 2013, 62(21): 217101. doi: 10.7498/aps.62.217101
    [18] 郭立强, 丁建宁, 杨继昌, 王书博, 叶枫, 程广贵, 凌智勇, 范慧娟, 袁宁一, 王秀琴. 氢化硅薄膜光吸收近似特性研究. 物理学报, 2010, 59(11): 8184-8190. doi: 10.7498/aps.59.8184
    [19] 陈一匡, 林揆训, 罗 志, 梁锐生, 周甫方. 铝诱导非晶硅薄膜的场致低温快速晶化及其结构表征. 物理学报, 2004, 53(2): 582-586. doi: 10.7498/aps.53.582
    [20] 侯柱锋, 朱梓忠, 黄美纯, 黄荣彬, 郑兰荪. Ag,Au,K吸附在W(001)表面上的功函数随外加电场的变化. 物理学报, 2002, 51(7): 1591-1595. doi: 10.7498/aps.51.1591
计量
  • 文章访问数:  4800
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-02
  • 修回日期:  2022-05-04
  • 上网日期:  2022-08-22
  • 刊出日期:  2022-09-05

/

返回文章
返回