搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

容性耦合放电等离子体增强氧化硅薄膜沉积模拟研究

宋柳琴 贾文柱 董婉 张逸凡 戴忠玲 宋远红

引用本文:
Citation:

容性耦合放电等离子体增强氧化硅薄膜沉积模拟研究

宋柳琴, 贾文柱, 董婉, 张逸凡, 戴忠玲, 宋远红

Numerical investigation of SiO2 film deposition enhanced by capacitively coupled discharge plasma

Song Liu-Qin, Jia Wen-Zhu, Dong Wan, Zhang Yi-Fan, Dai Zhong-Ling, Song Yuan-Hong
PDF
HTML
导出引用
  • 随着集成电路技术的快速发展, 芯片结构更加复杂, 尺寸越来越小, 对薄膜沉积的性能提出了更高的要求. 等离子增强化学气相沉积(PECVD)与CVD等传统工艺相比, 可以在低温下实现镀膜, 提供高密度、高性能的薄膜. 本工作采用二维流体蒙特卡罗模型耦合沉积剖面演化模块研究了容性耦合SiH4/N2O/Ar混合气体放电中的极板径向位置、气体比例和气压对PECVD氧化硅薄膜沉积的影响. 结果表明, 离子通量和中性基团通量在极板位置的差异化分布使得所沉积薄膜沿着径向存在较大的不均匀性. 进一步研究发现通过增大笑气、减小Ar含量或增大气压, 薄膜的沉积效率会得到提升. 但是, 过快的沉积速率会导致槽结构中出现 “钥匙孔结构”、空位和杂质过多等一系列不良现象. 这些问题在实际工艺中很棘手, 在后续的研究中将通过调控放电参数等来改善薄膜质量, 以期指导实际工艺.
    Higher requirements for the performances of thin films need to be fulfilled in the rapid development of integrated circuit technology, due to the more complicate structure and smaller size of chips. In plasma-enhanced chemical vapor deposition , high-density and high-performance thin films can be deposited at low temperature, compared with traditional chemical vapor deposition. In this work, a two-dimensional fluid/MC model coupled with the deposition module is used to describe the capacitively coupled SiH4/N2O/Ar discharges as well as the deposition processes, focusing on the influences of the radial position, gas ratio and gas pressure on the deposition of silicon oxide films. The results show that the edge effect which leads the plasma density to rise near the electrode edges gives rise to the non-uniform deposition rate along the radial direction. It is also found that the more N2O and less Ar content in the gas mixture, as well as an increased gas pressure will improve this uniformity. However, an excessive deposition rate will lead to a series of undesirable phenomena, such as “key hole structure”, vacancies and excessive impurities in films. These problems are also troublesome in the microelectronics manufacture processes. More detailed investigation into the deposition mechanism can be expected in the future .
      通信作者: 宋远红, songyh@dlut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12020101005, 11975067, 12005176)资助的课题.
      Corresponding author: Song Yuan-Hong, songyh@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12020101005, 11975067, 12005176).
    [1]

    Nam T, Lee H, Choi T, et al. 2019 Appl. Surf. Sci. 485 381Google Scholar

    [2]

    Beynet J, Wong P, Miller A, et al. 2009 Proceedings of SPIE - The International Society for Optical Engineering 7520

    [3]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New York: Wiley)

    [4]

    Wuu D, Lo W, Chang L, Horng R 2004 Thin Solid Films 468 105Google Scholar

    [5]

    Jeong C H, Lee J H, Lim J T, Gil Cho N, Moon C H, Yeom G Y 2005 Jpn. J. Appl. Phys. 44 1022Google Scholar

    [6]

    Courtney C H, Smith B C, Lamb H H 1998 J. Electrochem. Soc. 145 3957Google Scholar

    [7]

    Yanguas-Gil A 2017 Growth and Transport in Nanostructured Materials: Reactive Transport in PVD, CVD and ALD (Berlin: Springer)

    [8]

    Alvisi M, De Nunzio G, Di Giulio M, Ferrara M C, Perrone M R, Protopapa L, Vasanelli L 1999 Appl. Opt. 38 1237Google Scholar

    [9]

    Putkonen M, Bosund M, Ylivaara O M, et al. 2014 Thin Solid Films 558 93Google Scholar

    [10]

    Özkol E, Procel P, Zhao Y, et al. 2019 Phys. Status Solidi (RRL) Rapid Res. Lett. 14

    [11]

    Pai P, Chao S S, Takagi Y, Lucovsky G 1986 J. Vac. Sci. Technol. A 4 689Google Scholar

    [12]

    Kushner M J 1993 J. Appl. Phys. 74 6538Google Scholar

    [13]

    Barron A R 2013 Chemistry of Electronic Materials. (Houston: Rice University) pp1–359

    [14]

    Liu X, Ge J, Yang Y, Song Y, Ren T 2014 Plasma Sci. Technol. 16 385Google Scholar

    [15]

    Xu Q, Li Y X, Li X N, Wang J B, Yang F, Yang Y 2017 Modern Phys. Lett. B 31 1750055Google Scholar

    [16]

    Liu R Q, Liu Y, Jia W Z, Zhou Y W 2017 Phys. Plasmas 24 013517Google Scholar

    [17]

    贾文柱 2018 博士学位论文 (大连: 大连理工大学)

    Jia W Z 2018 Ph. D Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [18]

    Cheng C C, Guinn K V, Donnelly V M, Herman I P 1994 J. Vac. Sci. Technol. A 12 2630Google Scholar

    [19]

    Abrams C F, Graves D B 1999 J. Appl. Phys. 86 2263Google Scholar

    [20]

    Lu Y, Kobayashi A, Kondo, H, Ishikawa K, Sekine M, Hori M 2014 Jpn. J. Appl. Phys. 53 010305Google Scholar

    [21]

    Tinck S, W Boullart, A Bogaerts 2009 J. Phys. D Appl. Phys. 86 095204Google Scholar

    [22]

    Qu C, Sakiyama Y, Agarwal P, Kushner M J 2021 J. Vac. Sci. Technol. A 39 052403Google Scholar

    [23]

    张赛谦 2018 博士学位论文 (大连: 大连理工大学)

    Zhang S Q 2018 Ph. D Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [24]

    Date L, Radouane K, Despax B, Yousfi M, Caquineau H and Hennad A 1999 J. Phys. D Appl. Phys. 32 1478Google Scholar

  • 图 1  放电腔室结构示意图

    Fig. 1.  Chamber structure of discharge.

    图 2  元胞法网格划分和属性分配示意图

    Fig. 2.  Schematic diagram of cellular grid division and attribute allocation.

    图 3  沉积模块考虑的表面反应过程示意图

    Fig. 3.  Schematic diagram of the surface reaction processes considered by the deposition module.

    图 4  2D-fluid模块/IMC模块/沉积剖面演化模块信息传输示意图

    Fig. 4.  Schematic diagram of 2D-fluid module/MC module/trench module information transmission.

    图 5  在(a) 1 Torr (1 Torr ≈ 133 Pa)和(b) 2 Torr气压下的射频周期平均中性基团SiH3O密度和电子密度的空间分布. 放电气体密度比SiH4/N2O/Ar = 2∶8∶90, 放电频率$f=13.56\text{ MHz}$, 电压${V}_{\mathrm{s}}=50\text{ V}$

    Fig. 5.  Spatial density distributions of the neutral particle SiH3O and electron at different pressures, (a) 1 Torr (1 Torr ≈ 133 Pa) and (b) 2 Torr. The discharge gas density ratio is SiH4/N2O/Ar = 2∶8∶90, discharge frequency$f=13.56\text{ MHz}$, voltage${V}_{\mathrm{s}}=50\text{ V}$

    图 6  (a) 达到接地极板的离子通量随径向分布; (b) 达到接地极板的中性基团通量随径向分布. 放电气压2 Torr, 气体密度比SiH4/N2O/Ar = 2∶8∶90, 放电频率$f=13.56\text{ MHz}$, 电压${V}_{{{{\rm{s}}}}}=50\text{ V}$

    Fig. 6.  Radial flux distributions of (a) ions ($\rm O_2^+ $, O+) and (b) neutral particles (O, SiH3O, SiH3, SiO) on the grounded electrode. The discharge pressure is 2 Torr. The gas density ratio is SiH4/N2O/Ar = 2∶8∶90, discharge frequency$f=13.56\text{ MHz}$, voltage${V}_{{\rm{s}}}=50\text{ V}$

    图 7  在不同气压下中性基团达到接地极板$r=1\text{ cm}$的中性粒子通量. 放电气体密度比SiH4/N2O/Ar = 2∶8∶90, 放电频率$f=13.56\text{ MHz}$, 电压${V}_{\mathrm{s}}=50\text{ V}$

    Fig. 7.  Fluxes of neutral particles to the grounded electrode$r=1\;\mathrm{ }\mathrm{c}\mathrm{m}$at different pressures. The gas density ratio SiH4/N2O/Ar = 2∶8∶90, discharge frequency$f=13.56\text{ MHz}$, voltage${V}_{\mathrm{s}}=50\text{ V}$

    图 8  不同气压下接地极板$r=1\text{ cm}$ 处的(a)Ar+离子角度分布(IAD) 和(b)Ar+离子能量分布(IED). 放电气体密度比SiH4/N2O/Ar = 2∶8∶90, 放电频率$f=13.56\text{ MHz}$, 电压${V}_{\mathrm{s}}=50\text{ V}$

    Fig. 8.  (a) Ion angle distributions (IADs) and (b) ion energy distributions (IEDs) of Ar+ at different pressures, at the grounded electrode $r=1\text{ cm}$. The discharge gas density ratio is SiH4/N2O/Ar = 2∶8∶90, discharge frequency$f=13.56\text{ MHz}$, voltage ${V}_{\mathrm{s}}=50\text{ V}$

    图 9  接地极板表面$r=1\;\mathrm{c}\mathrm{m}$处的槽结构中沉积剖面随时间演化图. 放电气压2 Torr, 气体密度比SiH4/N2O/Ar = 2∶8∶90, 放电频率$f=13.56\text{ MHz}$, 电压${V}_{\mathrm{s}}=50\text{ V}$

    Fig. 9.  Temporal evolution of thin film profiles deposited in trench structure (depth-width ratio 3/1), at the grounded electrode $r=1\;\mathrm{ }\mathrm{c}\mathrm{m}$. The discharge pressure is 2 Torr, gas density ratio SiH4/N2O/Ar = 2∶8∶90, discharge frequency$f=13.56\text{ MHz}$, voltage${V}_{\mathrm{s}}=50\text{ V}$

    图 10  接地极板表面$r=1\text{ cm}$处, 不同时刻的薄膜沉积速率、杂质占比和空位占比. 放电气压2 Torr, 气体密度比SiH4/N2O/Ar = 2∶8∶90, 放电频率$f$ = 13.56 MHz, 电压${V}_{\mathrm{s}}= 50\;\mathrm{ }\mathrm{V}$

    Fig. 10.  Deposition rate and the proportions of impurities and vacancies at different periods, at the grounded electrode $r=1\;\mathrm{ }\mathrm{c}\mathrm{m}$. The discharge pressure is 2 Torr, gas density ratio SiH4/N2O/Ar = 2∶8∶90, discharge frequency$f=13.56\text{ MHz}$, voltage Vs = 50 V

    图 11  不同气压下沉积50 s接地极板表面$r=1\;\mathrm{c}\mathrm{m}$ 处槽结构中沉积的薄膜剖面 (a) 0.3 Torr; (b) 1.0 Torr; (c) 2.0 Torr. 放电气体密度比SiH4/N2O/Ar = 2∶8∶90, 放电频率$f=13.56\text{ MHz}$, 电压${V}_{\mathrm{s}}=50\text{ V}$

    Fig. 11.  Profiles formed after deposition time(50 s) for different pressures: (a) 0.3 Torr, (b) 1.0 Torr, (c) 2.0 Torr, at$r=1\;\mathrm{c}\mathrm{m}$. The discharge gas density ratio is SiH4/N2O/Ar = 2∶8∶90, discharge frequency$f=13.56\text{ MHz}$, voltage ${V}_{\mathrm{s}}= $$ 50\text{ V}$

    图 12  在接地极板表面$r=1\;\mathrm{ }\mathrm{c}\mathrm{m}$ 处, 不同气压下0—50 s期间的薄膜沉积速率、杂质占比和空位占比. 放电气体密度比SiH4/N2O/Ar = 2∶8∶90, 放电频率$f= 13.56\text{ MHz}$, 电压${V}_{\mathrm{s}}=50\text{ V}$

    Fig. 12.  Deposition rate and the proportions of impurities and vacancies during deposition period (0–50 s) with different pressures, at the grounded electrode $r=1\;\mathrm{ }\mathrm{c}\mathrm{m}$. The discharge gas density ratio is SiH4/N2O/Ar = 2∶8∶90, discharge frequency$f=13.56\text{ MHz}$, voltage ${V}_{\mathrm{s}}=50\text{ V}$

    图 13  沉积50 s处于接地极板上不同径向位置处槽结构中的薄膜剖面 (a) $r=4\;\mathrm{c}\mathrm{m}$; (b) $r=10\;\mathrm{c}\mathrm{m}$; (c) $r=13\;\mathrm{c}\mathrm{m}$; (d) $r= $$ 14.8\;\mathrm{c}\mathrm{m}$. 放电气压2 Torr, 气体密度比SiH4/N2O/Ar = 2∶8∶90, 放电频率$f=13.56\text{ MHz}$, 电压${V}_{\mathrm{s}}=50\text{ V}$

    Fig. 13.  Profiles formed after deposition time(50 s) for different radial positions: (a) r = 4 cm; (b) r = 10 cm; (c) r = 13 cm; (d) r = 14.8 cm. The discharge pressure is 2 Torr, gas density ratio SiH4/N2O/Ar = 2∶8∶90, discharge frequency$f=13.56\text{ MHz}$, voltage ${V}_{\mathrm{s}}=50\text{ V}$

    图 14  接地极板上不同径向位置处的(a)各离子平均离子能量和(b)总离子通量(c)中性基团O, SiH3O, SiH3和SiO的通量. 放电气压2 Torr, 气体密度比SiH4/N2O/Ar = 2∶8∶90, 放电频率$f=13.56\text{ MHz}$, 电压${V}_{\mathrm{s}}=50\text{ V}$

    Fig. 14.  (a) Average ion energies, (b) fluxes of all ions and (c) fluxes of neutral particles O, SiH3O, SiH3, SiO to the grounded electrode at different radial positions. The discharge pressure is 2 Torr, gas density ratio SiH4/N2O/Ar = 2∶8∶90, discharge frequency$f=13.56\text{ MHz}$, voltage ${V}_{\mathrm{s}}=50\text{ V}$

    图 15  沉积50 s时, 在接地极板表面$r=1\;\mathrm{c}\mathrm{m}$处的槽结构中薄膜沉积剖面图: SiH4/N2O 密度比固定为2∶ 8, Ar气含量所占比逐渐增大依次为 (a) 40 %; (b) 60 %; (c) 90 %. 放电气压2 Torr, 放电频率$f=13.56\text{ MHz}$, 电压Vs = 50 V

    Fig. 15.  Profiles formed after deposition time of 50 s for different Ar fraction of (a) 40 %, (b) 60 %, and (c) 90 % at the fixed SiH4/N2O density ratio of 2∶8, at the grounded electrode$r=1\;\mathrm{ }\mathrm{c}\mathrm{m}$. The discharge pressure is 2 Torr, discharge frequency$f=13.56\text{ MHz}$, voltage ${V}_{\mathrm{s}}=50\text{ V}$

    图 16  固定SiH4/N2O密度比为2∶8, 改变Ar含量, 达到接地极板$r=1\;\mathrm{ }\mathrm{c}\mathrm{m}$处 (a) 各离子的平均离子能量; (b) 所有离子通量; (c) 中性基团O, SiH3O, SiH3和SiO的通量. 放电气压2 Torr, 放电频率$f=13.56\text{ MHz}$, 电压${V}_{\mathrm{s}}=50\text{ V}$

    Fig. 16.  (a) The average energies of ions; (b) the sum flux of all ions; (c) fluxes of neutral particles O, SiH3O, SiH3, SiO to the grounded electrode under different Ar fraction at the fixed SiH4/N2O density ratio of 2∶8. The discharge pressure is 2 Torr, discharge frequency$f=13.56\text{ MHz}$, voltage ${V}_{\mathrm{s}}=50\text{ V}$

    图 17  沉积50 s以后, 在接地极板表面$r=1\;\mathrm{c}\mathrm{m}$处的槽结构中薄膜沉积剖面图 固定氩气含量不变, 增大SiH4/N2O密度比 (a) SiH4/N2O/Ar = 2∶8∶90; (b) SiH4/N2O/Ar = 5∶5∶90; (c) SiH4/N2O/Ar = 8∶2∶90. 放电气压2 Torr, 放电频率$f=13.56\text{ MHz}$, 电压Vs = 50 V

    Fig. 17.  Profiles formed after deposition time (50 s) for different SiH4/N2O density ratios: (a) SiH4/N2O/Ar = 2∶8∶90; (b) SiH4/N2O/Ar = 5∶5∶90; (c) SiH4/N2O/Ar = 8∶2∶90 at the fixed Ar content of 90%, at the grounded electrode$r=1\;\mathrm{ }\mathrm{c}\mathrm{m}$. The discharge pressure is 2 Torr, discharge frequency$f=13.56\text{ MHz}$, voltage ${V}_{\mathrm{s}}=50\text{ V}$

    图 18  固定混合气体Ar含量为90%, 改变SiH4/N2O密度比时, 达到接地极板$r=1\;\mathrm{ }\mathrm{c}\mathrm{m}$处 (a) 各离子的平均离子能量; (b) 所有离子通量; (c) 中性基团O, SiH3O, SiH3和SiO的通量. 放电气压2 Torr, 放电频率$f=13.56\text{ MHz}$, 电压${V}_{\mathrm{s}}=50\text{ V}$

    Fig. 18.  (a) Average energies of ions; (b) the sum flux of all ions; (c) fluxes of neutral particles O, SiH3O, SiH3 and SiO to the grounded electrode under different SiH4/N2O density ratios at the fixed Ar content of 90%. The discharge presuure is 2 Torr, the discharge frequency$f=13.56\text{ MHz}$, voltage ${V}_{\mathrm{s}}=50\text{ V}$

    表 1  沉积模块考虑的离子溅射反应

    Table 1.  The ion sputtering reactions considered in the deposition module.

    No.ReactionsPi0εth/eVεref/eV参考文献
    1Si(s) + Ar+ → Si(g) + Ar0.201550[21, 22]
    2SiO(s) + Ar+ → Si(g) + Ar + O0.201550[21, 22]
    3SiO2(s) + Ar+ → SiO(g) + Ar + O0.201550[21, 22]
    4SiH(s) + Ar+ → SiH(g) + Ar0.201550[22]
    5SiH2(s) + Ar+ → SiH2(g) + Ar0.201550[22]
    6SiH3(s) + Ar+ → SiH3(g) + Ar0.201550[22]
    7SiHO(s) + Ar+ → SiH(g) + Ar + O0.201550[22]
    8SiH2O(s) + Ar+ → SiH(g) + Ar + O0.201550[22]
    9SiH3O(s) + Ar+ → SiH3(g) + Ar + O0.201550[22]
    10SiO2(s) + $\rm SiH_3^+ $ → SiO2(s) + SiH30.0161435100[22]
    11Si(s) + H+ → Si(g) + H0.00074/35100/100[14, 15]
    12SiO(s) + H+ →Si(g) + OH0.00074/35100/100[14, 15]
    13SiO2(s) +H+ →SiO(g) + OH0.00074/35100/100[14, 15]
    14SiH(s) + H+ →SiH(g) + H0.00074/35100/100[14, 15]
    15SiH2(s) + H+ →SiH2(g) + H0.00074/35100/100[14, 15]
    16SiH3(s) + H+ →SiH3(g) + H0.00074/35100/100[14, 15]
    17SiHO(s) + H+ →SiH(g) + OH0.00074/35100/100[14, 15]
    18SiH2O(s) + H+ →SiH2(g) + OH0.00074/35100/100[14, 15]
    19SiH3O(s) + H+ → SiH3(g) + OH0.0074/35100/100[14, 15]
    20Si(s) + $\rm O_2^+ $ → SiO2(g)0.201550[22]
    21SiO(s) + $\rm O_2^+ $ → SiO2(g) + O0.201550[22]
    22SiO2(s) + $\rm O_2^+ $ → SiO2(g) + O20.01633550[14, 15]
    23Si(s) + O+ → SiO(g)0.201550[22]
    24SiO(s) + O+ → SiO2(g)0.201550[22]
    25SiO2(s) + O+ → SiO2(g) + O0.011533550[14, 15]
    26SiH4O(s) + O+ → SiO2(g) + 2H21.003550[14, 15]
    27SiO2(s) + N2O+ → SiO2(g) + N2O0.0235100[15]
    28SiO2(s) + $\rm N_2^+ $ → SiO2(g) + N20.0235100[15]
    下载: 导出CSV

    表 2  沉积模块考虑的中性基团与表面的反应

    Table 2.  The reactions between neutrals and surfaces considered in the deposition module

    No.ReactionsPn0参考文献No.ReactionsPn0参考文献
    1Si(s) + O → SiO(s)0.99[22]26SiH3O(s) + OH → SiH2O(s) + H2O1.00[14, 15]
    2SiO(s) + O → SiO2(s)0.10[22]27SiH(s) + H → Si (s) + H21.00[22]
    3SiH(s) + O → SiHO(s)1.00[22]28SiH2(s) + H → SiH (s) + H21.00[22]
    4SiH2(s) + O → SiH2O(s)1.00[22]29SiH3(s) + H → SiH2(s) + H20.955[22]
    5SiH3(s) + O → SiH3O(s)1.00[22]30SiH3(s) + H → SiH4(g)0.045[22]
    6SiHO(s) + O → SiO(s) + H1.00[22]31SiHO(s) + H → SiO(s) + H21.00[22]
    7SiH2O(s) + O → SiHO(s) + H1.00[22]32SiH2O(s) + H → SiHO(s) + H21.00[22]
    8SiH2O(s) + O → SiO2(s) + H20.50[15]33SiH3O(s) + H → SiH2O(s) + H21.00[22]
    9SiH3O(s) + O → SiH2O(s) + H21.00[22]34SiO(s) + SiH3O → SiO2(s) + SiH31.00[14, 15]
    10SiH4O(s) + O → SiO2(s) + 2H21.00[14, 15]35SiHO(s) + SiH3O → SiH3O(s)1.00[14, 15]
    11Si(s) + O2 → SiO2(s)1.00[22]36SiH4O(s) + SiHO → SiO2(s) + SiH3 + H21.00[14, 15]
    12SiO(s) + O2 → SiO2(s) + O0.99[22]37SiHO(s) + SiHO → SiHO + SiHO(s)1.00[22]
    13SiH(s) + O2 → SiHO(s) + O0.01[22]38Si(s) + SiO → SiO(s) + Si(s)0.80[22]
    14SiH2(s) + O2 → SiH2O(s) + O0.01[22]39SiO(s) + SiO → 2SiO(s)0.80[22]
    15SiH3(s) + O2 → SiH3O(s) + O0.01[22]40SiO2(s) + SiO → SiO(s) + SiO2(s)0.80[22]
    16SiHO(s) + O2 → SiO(s) + H + O20.01[22]41SiHO(s) + SiO → SiO(s)1.00[22]
    17SiH2O(s) + O2 → SiHO(s) + H + O20.01[14]42SiH4O(s) + SiO → SiO2(s) + SiH41.00[14, 15]
    18SiH3O(s) + O2 → SiH2O(s) + H + O20.01[22]43Si(s) + SiO2 → SiO2(s) + Si(s)0.80[22]
    19Si(s) + OH → SiHO(s)1.00[22]44SiO(s) + SiO2 → SiO2(s) + SiO(s)0.80[22]
    20SiO(s) + OH → SiO2(s) + H1.00[22]45SiO2(s) + SiO2 → SiO2(s) + SiO2(s)0.80[22]
    21SiH(s) + OH → SiH2O(s)1.00[22]46SiO2(s) → SiO2(s)1.00[22]
    22SiH2(s) + OH → SiH3O(s)1.00[15]47SiHO(s) + SiO2 → SiO2(s)1.00[22]
    23SiH3(s) + OH → SiH4O(s)1.00[15]48SiHO(s) + SiH3 → SiH3(s)0.30[22]
    24SiHO(s) + OH → SiO(s) + H2O1.00[22]49SiHO(s) + SiH2O → SiH2O(s)1.00[22]
    25SiH2O(s) + OH → SiHO(s) + H2O1.00[22]
    下载: 导出CSV
  • [1]

    Nam T, Lee H, Choi T, et al. 2019 Appl. Surf. Sci. 485 381Google Scholar

    [2]

    Beynet J, Wong P, Miller A, et al. 2009 Proceedings of SPIE - The International Society for Optical Engineering 7520

    [3]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New York: Wiley)

    [4]

    Wuu D, Lo W, Chang L, Horng R 2004 Thin Solid Films 468 105Google Scholar

    [5]

    Jeong C H, Lee J H, Lim J T, Gil Cho N, Moon C H, Yeom G Y 2005 Jpn. J. Appl. Phys. 44 1022Google Scholar

    [6]

    Courtney C H, Smith B C, Lamb H H 1998 J. Electrochem. Soc. 145 3957Google Scholar

    [7]

    Yanguas-Gil A 2017 Growth and Transport in Nanostructured Materials: Reactive Transport in PVD, CVD and ALD (Berlin: Springer)

    [8]

    Alvisi M, De Nunzio G, Di Giulio M, Ferrara M C, Perrone M R, Protopapa L, Vasanelli L 1999 Appl. Opt. 38 1237Google Scholar

    [9]

    Putkonen M, Bosund M, Ylivaara O M, et al. 2014 Thin Solid Films 558 93Google Scholar

    [10]

    Özkol E, Procel P, Zhao Y, et al. 2019 Phys. Status Solidi (RRL) Rapid Res. Lett. 14

    [11]

    Pai P, Chao S S, Takagi Y, Lucovsky G 1986 J. Vac. Sci. Technol. A 4 689Google Scholar

    [12]

    Kushner M J 1993 J. Appl. Phys. 74 6538Google Scholar

    [13]

    Barron A R 2013 Chemistry of Electronic Materials. (Houston: Rice University) pp1–359

    [14]

    Liu X, Ge J, Yang Y, Song Y, Ren T 2014 Plasma Sci. Technol. 16 385Google Scholar

    [15]

    Xu Q, Li Y X, Li X N, Wang J B, Yang F, Yang Y 2017 Modern Phys. Lett. B 31 1750055Google Scholar

    [16]

    Liu R Q, Liu Y, Jia W Z, Zhou Y W 2017 Phys. Plasmas 24 013517Google Scholar

    [17]

    贾文柱 2018 博士学位论文 (大连: 大连理工大学)

    Jia W Z 2018 Ph. D Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [18]

    Cheng C C, Guinn K V, Donnelly V M, Herman I P 1994 J. Vac. Sci. Technol. A 12 2630Google Scholar

    [19]

    Abrams C F, Graves D B 1999 J. Appl. Phys. 86 2263Google Scholar

    [20]

    Lu Y, Kobayashi A, Kondo, H, Ishikawa K, Sekine M, Hori M 2014 Jpn. J. Appl. Phys. 53 010305Google Scholar

    [21]

    Tinck S, W Boullart, A Bogaerts 2009 J. Phys. D Appl. Phys. 86 095204Google Scholar

    [22]

    Qu C, Sakiyama Y, Agarwal P, Kushner M J 2021 J. Vac. Sci. Technol. A 39 052403Google Scholar

    [23]

    张赛谦 2018 博士学位论文 (大连: 大连理工大学)

    Zhang S Q 2018 Ph. D Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [24]

    Date L, Radouane K, Despax B, Yousfi M, Caquineau H and Hennad A 1999 J. Phys. D Appl. Phys. 32 1478Google Scholar

  • [1] 宋青, 权伟龙, 冯田均, 俄燕. CH基团与金刚石(111)面的碰撞反应及其对碳膜生长的影响. 物理学报, 2016, 65(3): 030701. doi: 10.7498/aps.65.030701
    [2] 曹宇, 薛磊, 周静, 王义军, 倪牮, 张建军. 微晶硅锗薄膜作为近红外光吸收层在硅基薄膜太阳电池中的应用. 物理学报, 2016, 65(14): 146801. doi: 10.7498/aps.65.146801
    [3] 谭再上, 吴小蒙, 范仲勇, 丁士进. 热退火对等离子体增强化学气相沉积SiCOH薄膜结构与性能的影响. 物理学报, 2015, 64(10): 107701. doi: 10.7498/aps.64.107701
    [4] 何素明, 戴珊珊, 罗向东, 张波, 王金斌. 等离子体增强化学气相沉积工艺制备SiON膜及对硅的钝化. 物理学报, 2014, 63(12): 128102. doi: 10.7498/aps.63.128102
    [5] 侯国付, 薛俊明, 袁育杰, 张晓丹, 孙建, 陈新亮, 耿新华, 赵颖. 高压射频等离子体增强化学气相沉积制备高效率硅薄膜电池的若干关键问题研究. 物理学报, 2012, 61(5): 058403. doi: 10.7498/aps.61.058403
    [6] 丁艳丽, 朱志立, 谷锦华, 史新伟, 杨仕娥, 郜小勇, 陈永生, 卢景霄. 沉积速率对甚高频等离子体增强化学气相沉积制备微晶硅薄膜生长标度行为的影响. 物理学报, 2010, 59(2): 1190-1195. doi: 10.7498/aps.59.1190
    [7] 宋捷, 郭艳青, 王祥, 丁宏林, 黄锐. 激发频率对高氢稀释下纳米晶硅薄膜生长特性的影响. 物理学报, 2010, 59(10): 7378-7382. doi: 10.7498/aps.59.7378
    [8] 张晓丹, 孙福和, 许盛之, 王光红, 魏长春, 孙建, 侯国付, 耿新华, 熊绍珍, 赵颖. 单室沉积p-i-n型微晶硅薄膜太阳电池性能优化的研究. 物理学报, 2010, 59(2): 1344-1348. doi: 10.7498/aps.59.1344
    [9] 袁贺, 孙长征, 徐建明, 武庆, 熊兵, 罗毅. 基于等离子体增强化学气相沉积技术的光电子器件多层抗反膜的设计和制作. 物理学报, 2010, 59(10): 7239-7244. doi: 10.7498/aps.59.7239
    [10] 陈兆权, 刘明海, 刘玉萍, 陈伟, 罗志清, 胡希伟. PECVD制备AZO(ZnO:Al)透明导电薄膜. 物理学报, 2009, 58(6): 4260-4266. doi: 10.7498/aps.58.4260
    [11] 杨杭生. 等离子体增强化学气相沉积法制备立方氮化硼薄膜过程中的表面生长机理. 物理学报, 2006, 55(8): 4238-4246. doi: 10.7498/aps.55.4238
    [12] 曾湘波, 廖显伯, 王 博, 刁宏伟, 戴松涛, 向贤碧, 常秀兰, 徐艳月, 胡志华, 郝会颖, 孔光临. 等离子体增强化学气相沉积法实现硅纳米线掺硼. 物理学报, 2004, 53(12): 4410-4413. doi: 10.7498/aps.53.4410
    [13] 王 淼, 李振华, 竹川仁士, 齐藤弥八. 利用微波等离子体增强化学气相沉积法定向生长纳米碳管的研究. 物理学报, 2004, 53(3): 888-890. doi: 10.7498/aps.53.888
    [14] 纪爱玲, 马利波, 刘 澂, 王永谦. 纳米Si-SiOx和Si-SiNx复合薄膜的低温制备及其发光特性. 物理学报, 2004, 53(11): 3818-3822. doi: 10.7498/aps.53.3818
    [15] 杨恢东, 吴春亚, 赵 颖, 薛俊明, 耿新华, 熊绍珍. 甚高频等离子体增强化学气相沉积法沉积μc-Si∶H薄膜中氧污染的初步研究. 物理学报, 2003, 52(11): 2865-2869. doi: 10.7498/aps.52.2865
    [16] 于 威, 刘丽辉, 侯海虹, 丁学成, 韩 理, 傅广生. 螺旋波等离子体增强化学气相沉积氮化硅薄膜. 物理学报, 2003, 52(3): 687-691. doi: 10.7498/aps.52.687
    [17] 叶超, 宁兆元, 程珊华, 康健. 微波电子回旋共振等离子体增强化学气相沉积法沉积氟化非晶碳薄膜的研究. 物理学报, 2001, 50(4): 784-789. doi: 10.7498/aps.50.784
    [18] 宁兆元, 程珊华, 叶超. 电子回旋共振等离子体增强化学气相沉积a-CFx薄膜的化学键结构. 物理学报, 2001, 50(3): 566-571. doi: 10.7498/aps.50.566
    [19] 张永平, 顾有松, 高鸿钧, 张秀芳. 微波等离子体化学气相沉积法制备C3N4薄膜的结构研究. 物理学报, 2001, 50(7): 1396-1400. doi: 10.7498/aps.50.1396
    [20] 刘湘娜, 吴晓薇, 鲍希茂, 何宇亮. 用等离子体增强化学汽相沉积方法制备纳米晶粒硅薄膜光致发光. 物理学报, 1994, 43(6): 985-990. doi: 10.7498/aps.43.985
计量
  • 文章访问数:  5160
  • PDF下载量:  135
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-18
  • 修回日期:  2022-04-20
  • 上网日期:  2022-08-25
  • 刊出日期:  2022-09-05

/

返回文章
返回