搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向第三代地基引力波探测的激光源需求分析

李庆回 李卫 孙瑜 王雅君 田龙 陈力荣 张鹏飞 郑耀辉

引用本文:
Citation:

面向第三代地基引力波探测的激光源需求分析

李庆回, 李卫, 孙瑜, 王雅君, 田龙, 陈力荣, 张鹏飞, 郑耀辉

Laser parameters requirement for third-generation ground-based gravitational wave detection

Li Qing-Hui, Li Wei, Sun Yu, Wang Ya-Jun, Tian Long, Chen Li-Rong, Zhang Peng-Fei, Zheng Yao-Hui
PDF
HTML
导出引用
  • 引力波探测是一项重大国际前沿科技研究, 对探索许多基础科学问题具有重大意义, 然而引力波探测装置的建设面临着极大的技术挑战. 山西大学提出利用废弃地下矿井, 建设臂长为10 km、灵敏度达10–24 Hz–1/2的地基引力波探测装置的建设计划. 理论上, 等臂迈克尔逊干涉仪的灵敏度不受光源噪声的限制. 但是实际的激光干涉仪受臂腔线宽差异、腔镜反射率差异、腔镜质量差异、腔内功率差异等因素限制, 灵敏度依赖于激光源的指标. 本文定量分析了激光源指标参数对干涉仪灵敏度的影响, 并从地基引力波探测装置的设计灵敏度出发, 对激光源的波长、振幅噪声、频率噪声、光束指向噪声和基模纯度提出具体要求. 该分析为建设我国的地基引力波探测装置(预期灵敏度达国际上第三代探测器水平)奠定了激光源噪声分析和干涉仪指标分解等方面的坚实基础.
    Gravitational waves (GWs), predicted by the general relativity of Albert Einstein, are ripples in space-time caused by massive accelerating objects. Since the first direct observation of GWs in 2015, more and more binary black hole mergers and neutron star merger were detected by the laser interferometer gravitational-wave observatory (LIGO) and the Virgo interferometric detector. The construction of the third-generation (3G) gravitational wave detector(GWD), whose sensitivity is ten times that of the second-generation (2G) GWD (Advanced LIGO and Virgo), can not only push the gravitational wave astronomy towards the edge of the observable universe, but also test the fundamental laws of physics and study the nature of matter. By utilizing the abandoned underground mines, Shanxi university proposes to construct a 3G ground-based gravitational wave detector with an arm length of 10 km and a strain sensitivity of 10–24 Hz–1/2, improving the location accuracy of wave source by participating in the global GWD network. The construction of 3G GWD has many technical challenges, including ultrahigh large-scale vacuum system, ultrastable seismic isolation system, high-precision control system, high-quality laser and quantum source. Theoretically, the sensitivity of GWD with equal arm length is not limited by the laser source noise. However, in the actual scenario, the sensitivity is limited by the differences in arm length, arm cavity linewidth, arm reflectivity, arm mass, arm power, and the laser parameters. In this work, based on the design sensitivity (10–24 Hz–1/2) of dual-recycled Fabry-Perot Michelson interferometer, we propose the requirements for an ultra low-noise laser, including wavelength, amplitude noise, frequency noise, beam pointing noise and fundamental mode purity. The results show that in order to achieve the design sensitivity at the Fourier frequency of 100 Hz, the wavelength of the laser source should be 1.5 μm, the output power should be higher than 200 W, the amplitude noise should be better than 10–8 Hz–1/2, and the frequency noise should be better than 100 Hz/Hz1/2. To achieve the sensitivity of 10–24 Hz–1/2 at 10 Hz analysis frequency, the requirements for the amplitude and frequency noise of the laser source are much more stringent. This study lays a solid foundation for the analysis of laser source noise and the decomposition of interferometer indexes .
      通信作者: 郑耀辉, yhzheng@sxu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2020YFC2200402)、国家自然科学基金(批准号: 62027821, 11874250, 62035015, 12174234)、山西省重点研发计划(批准号: 201903D111001)和山西省三晋学者特聘教授项目资助的课题.
      Corresponding author: Zheng Yao-Hui, yhzheng@sxu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFC2200402), the National Natural Science Foundation of China (Grant Nos. 62027821, 11874250, 62035015, 12174234), the Key Research and Development Projects of Shanxi Province (Grant No. 201903D111001), and the Program for Sanjin Scholar of Shanxi Province.
    [1]

    Abbott B P, Abbott R, Abbott T D, et al. 2016 Phys. Rev. Lett. 116 061102Google Scholar

    [2]

    Abbott B P, Abbott R, Abbott T D, et al. 2016 Phys. Rev. Lett. 116 241103Google Scholar

    [3]

    Vermeulen S M, Relton P, Grote H, et al. 2021 Nature 600 424Google Scholar

    [4]

    Bailes M, Berger B K, Brady P R, et al. 2021 Nat. Rev. Phys. 3 344Google Scholar

    [5]

    Abbott R, Abbott T D, Abraham S, et al. 2021 Astrophys. J. Lett. 915 L5Google Scholar

    [6]

    Badaracco F, Rossi C D, Fiori I, Harms J, Miyo K, Paoletti F, Tanaka T, Washimi T, Yokozawa T 2021 Phys. Rev. D 104 042006Google Scholar

    [7]

    Hall E D, Kuns K, Smith J R, et al. 2021 Phys. Rev. D 103 122004Google Scholar

    [8]

    Buikema A, Cahillane C, Mansell G L, et al. 2020 Phys. Rev. D 102 062003Google Scholar

    [9]

    Adhikari R X 2014 Rev. Mod. Phys. 86 121Google Scholar

    [10]

    Bond C, Brown D, Freise A, Strain K A 2016 Living Rev. Relativ. 19 3Google Scholar

    [11]

    Matichard F, Lantz B, Mittleman R, et al. 2015 Classical Quant. Grav. 32 185003Google Scholar

    [12]

    P. Nguyen, Schofield R M S, Effler A, et al. 2021 Classical Quant. Grav. 38 145001Google Scholar

    [13]

    Adhikari R X, Arai K, Brooks A F, et al. 2020 Classical Quant. Grav. 37 165003Google Scholar

    [14]

    Hammond G, Hild S, Pitkin M 2014 J. Mod. Optic. 61 S10Google Scholar

    [15]

    Heurs M 2018 Philos. T. R. Soc. A 376 20170289Google Scholar

    [16]

    Danilishin S L, Khalili F Y, Miao H 2019 Living Rev. Relativ. 22 2Google Scholar

    [17]

    Sigg D 1997 LIGO Report No. LIGO- T970084-00 D

    [18]

    Rana A 2004 Ph. D. Dissertation (Cambridge: Massachusetts Institute of Technology)

    [19]

    Somiya K, Chen Y 2006 Phys. Rev. D 73 122005Google Scholar

    [20]

    Izumi K, Sigg D, Kawabe K 2016 LIGO Report No. LIGO-T1500325

    [21]

    Izumi K, Sigg D, Kawabe K 2016 LIGO Report No. LIGO-T1500461

    [22]

    Izumi K, Sigg D, Kawabe K 2016 LIGO Report No. LIGO-T1500559

    [23]

    Cahillane C 2021 Ph. D. Dissertation (Pasadena: California Institute of Technology)

    [24]

    Cahillane C, Mansell G L, Sigg D 2021 Opt. Express 29 42144Google Scholar

    [25]

    Buonanno A, Chen Y 2001 Phys. Rev. D 64 042006Google Scholar

    [26]

    Pitkin M, Reid S, Rowan S, Hough J 2011 Living Rev. Relativ. 14 5Google Scholar

    [27]

    Kwee P 2010 Ph. D. Dissertation (Hanover: Wilhelm Leibniz University)

    [28]

    Chen Z, Guo M, Zhang R, Zhou B, Wei Q 2018 Sensors 18 02603Google Scholar

    [29]

    Degallaix J, Komma J, Forest D, Hofmann G 2014 Classical Quant. Grav. 31 185010Google Scholar

    [30]

    Khalaidovski A, Steinlechner J, Schnabel R 2013 Classical Quant. Grav. 30 165001Google Scholar

    [31]

    Biscans S, Gras S, Blair C D, Driggers J, Evans M, Fritschel P, Hardwick T, Mansell G 2019 Phys. Rev. D 100 122003Google Scholar

  • 图 1  引力波探测器光路图

    Fig. 1.  Diagram of the optical layout of Gravitational wave detection.

    图 2  探测灵敏度与激光功率的关系图

    Fig. 2.  Detection sensitivity as a function of laser power.

    图 3  激光源振幅噪声耦合传递函数图  (a) DARM偏移、辐射压力差异和对比度缺陷引起的振幅噪声耦合; (b) 辐射压力差异引起的振幅噪声耦合

    Fig. 3.  Coupling transfer function of laser amplitude noise: (a) Amplitude noise coupling due to DARM offset, radiation pressure difference and contrast defect; (b) amplitude noise coupling due to radiation pressure difference.

    图 4  探测灵敏度与激光源振幅噪声关系图

    Fig. 4.  Detection sensitivity as a function of laser amplitude noise.

    图 5  激光频率噪声耦合传递函数图

    Fig. 5.  Coupling transfer function of laser frequency noise.

    图 6  探测灵敏度与激光源频率噪声关系图

    Fig. 6.  Detection sensitivity as a function of laser frequency noise.

    表 1  山西大学引力波探测干涉仪参数表

    Table 1.  Parameter of Shanxi University gravitation waves detection interferometer.

    参数符号表示数值
    臂长$ L $10 km
    激光波长$ \lambda $1550 nm
    激光频率$ {\nu _0} $1.94 × 1014 Hz
    ITM, ETM质量$ M $200 kg
    约化质量$ \mu = \dfrac{{{m_{\text{i}}}{m_{\text{e}}}}}{{{m_{\text{i}}} + {m_{\text{e}}}}} = \dfrac{M}{2} $100 kg
    $ \delta \mu = \dfrac{{{\mu _x} - {\mu _y}}}{2} $–0.001 kg
    ITM透射率$ t_{\text{i}}^{\text{2}} $1.4%
    ETM透射率$ t_{\text{e}}^2 $5 × 10–6
    PRM透射率$ t_{\text{p}}^2 $3%
    SRM透射率$ t_{\text{s}}^{\text{2}} $20%
    激光功率$ {P_{{\text{in}}}} $200 W
    功率循环腔增益$ g_{\text{p}}^2 = {\left( {\dfrac{{{t_{\text{p}}}}}{{1 - {r_{\text{p}}}{r_{\text{a}}}}}} \right)^2} $120
    信号循环腔增益$ g_{\text{s}}^{\text{2}} = {\left( {\dfrac{{{t_{\text{s}}}}}{{1 + {r_{\text{s}}}{r_{\text{a}}}}}} \right)^2} $0.06
    臂腔增益$ g_{{\text{arm}}}^{\text{2}} = {\left( {\dfrac{{{t_{\text{i}}}}}{{1 - {r_{\text{e}}}{r_{\text{i}}}}}} \right)^2} $284
    臂腔反射率$ {r_{\text{a}}} = \dfrac{{ - {r_{\text{i}}} + {r_{\text{e}}}}}{{1 - {r_{\text{i}}}{r_{\text{e}}}}} $0.99929
    $ \delta {r_{\text{a}}} = \dfrac{{{r_{{\text{a}}x}} - {r_{{\text{a}}y}}}}{2} $31 × 10–6
    反射率导数$r_{\text{a} }' = \dfrac{ {t_{\text{i} }^{\text{2} }{r_{\text{e} } } }}{ { { {\left( {1 - {r_{\text{i} } }{r_{\text{e} } } } \right)}^2} } }$283.5
    臂腔线宽$ {f_c} = \dfrac{c}{{4{\text{π }}L}}\lg \left( {\dfrac{1}{{r_{\text{i}}^{\text{2}}r_{\text{e}}^{\text{2}}}}} \right) $14.6 Hz
    $ \delta {f_c} = \dfrac{{{f_{cx}} - {f_{cy}}}}{2} $0.05 Hz
    臂腔精细度$ F = \dfrac{{{\text{π }}\sqrt {{r_{\text{i}}}{r_{\text{e}}}} }}{{1 - {r_{\text{i}}}{r_{\text{e}}}}} $445.5
    总损耗$ T $2.24 %
    臂腔功率$ {P_{\text{a}}} = \dfrac{1}{2}{P_{{\text{laser}}}}g_{\text{p}}^{\text{2}}g_{{\text{arm}}}^2 $3.4 MW
    $ \delta {P_{\text{a}}} = \dfrac{{{P_{ax}} - {P_{ay}}}}{2} $–6.5 kW
    CARM腔
    线宽
    ${f_{cc} } = \dfrac{c}{ {4{\text{π } }L} }\lg \left( {\dfrac{ {1 + {r_{\text{i} } }{r_{\text{p} } } }}{ { {r_{\text{i} } }{r_{\text{e} } } + {r_{\text{p} } }{r_{\text{e} } }\left( {t_{\text{i} }^{\text{2} } + r_{\text{i} }^{\text{2} } } \right)} } } \right)$0.06 Hz
    DARM腔
    线宽
    $ {f_{{\text{rse}}}} = \dfrac{c}{{4{\text{π }}L}}\lg \left( {\dfrac{{1 - {r_{\text{i}}}{r_{\text{s}}}}}{{{r_{\text{i}}}{r_{\text{e}}} - {r_{\text{s}}}{r_{\text{e}}}\left( {t_{\text{i}}^{\text{2}} + r_{\text{i}}^{\text{2}}} \right)}}} \right) $131 Hz
    Schnupp
    不对称
    $ {l_{{\text{sch}}}} = {l_x} - {l_y} $0.08 m
    DARM偏移$ \Delta {L_{{\text{DC}}}} $10–13 m
    高阶模耦合$ {q_{{\text{HOM}}}} $1 × 10–7 W/RAN
    $ {k_{{\text{HOM}}}} $8 × 10–17 m/Hz
    下载: 导出CSV

    表 2  熔融石英和硅材料的物理性质对比

    Table 2.  Comparison of physical properties of fused silica and silicon materials.

    比较参数硅(~123 K)熔融石英(~300 K)
    密度/(g·cm3)3.432.21
    折射率(@1.5 μm)~3.48411.445
    热膨胀系数/K–10.001 × 10–65.5 × 10–7
    热导率/
    (W·(m K)–1)
    598.31.38
    吸收系数/cm–11.11×10 @1064 nm4×10–6@1064 nm
    3.2×10–8 @1550 nm2×10–5@1550 nm
    机械损耗角/rad0.00139 × 10–61 × 10–4
    杨氏模量/GPa131.173
    泊松比0.2790.17
    下载: 导出CSV
  • [1]

    Abbott B P, Abbott R, Abbott T D, et al. 2016 Phys. Rev. Lett. 116 061102Google Scholar

    [2]

    Abbott B P, Abbott R, Abbott T D, et al. 2016 Phys. Rev. Lett. 116 241103Google Scholar

    [3]

    Vermeulen S M, Relton P, Grote H, et al. 2021 Nature 600 424Google Scholar

    [4]

    Bailes M, Berger B K, Brady P R, et al. 2021 Nat. Rev. Phys. 3 344Google Scholar

    [5]

    Abbott R, Abbott T D, Abraham S, et al. 2021 Astrophys. J. Lett. 915 L5Google Scholar

    [6]

    Badaracco F, Rossi C D, Fiori I, Harms J, Miyo K, Paoletti F, Tanaka T, Washimi T, Yokozawa T 2021 Phys. Rev. D 104 042006Google Scholar

    [7]

    Hall E D, Kuns K, Smith J R, et al. 2021 Phys. Rev. D 103 122004Google Scholar

    [8]

    Buikema A, Cahillane C, Mansell G L, et al. 2020 Phys. Rev. D 102 062003Google Scholar

    [9]

    Adhikari R X 2014 Rev. Mod. Phys. 86 121Google Scholar

    [10]

    Bond C, Brown D, Freise A, Strain K A 2016 Living Rev. Relativ. 19 3Google Scholar

    [11]

    Matichard F, Lantz B, Mittleman R, et al. 2015 Classical Quant. Grav. 32 185003Google Scholar

    [12]

    P. Nguyen, Schofield R M S, Effler A, et al. 2021 Classical Quant. Grav. 38 145001Google Scholar

    [13]

    Adhikari R X, Arai K, Brooks A F, et al. 2020 Classical Quant. Grav. 37 165003Google Scholar

    [14]

    Hammond G, Hild S, Pitkin M 2014 J. Mod. Optic. 61 S10Google Scholar

    [15]

    Heurs M 2018 Philos. T. R. Soc. A 376 20170289Google Scholar

    [16]

    Danilishin S L, Khalili F Y, Miao H 2019 Living Rev. Relativ. 22 2Google Scholar

    [17]

    Sigg D 1997 LIGO Report No. LIGO- T970084-00 D

    [18]

    Rana A 2004 Ph. D. Dissertation (Cambridge: Massachusetts Institute of Technology)

    [19]

    Somiya K, Chen Y 2006 Phys. Rev. D 73 122005Google Scholar

    [20]

    Izumi K, Sigg D, Kawabe K 2016 LIGO Report No. LIGO-T1500325

    [21]

    Izumi K, Sigg D, Kawabe K 2016 LIGO Report No. LIGO-T1500461

    [22]

    Izumi K, Sigg D, Kawabe K 2016 LIGO Report No. LIGO-T1500559

    [23]

    Cahillane C 2021 Ph. D. Dissertation (Pasadena: California Institute of Technology)

    [24]

    Cahillane C, Mansell G L, Sigg D 2021 Opt. Express 29 42144Google Scholar

    [25]

    Buonanno A, Chen Y 2001 Phys. Rev. D 64 042006Google Scholar

    [26]

    Pitkin M, Reid S, Rowan S, Hough J 2011 Living Rev. Relativ. 14 5Google Scholar

    [27]

    Kwee P 2010 Ph. D. Dissertation (Hanover: Wilhelm Leibniz University)

    [28]

    Chen Z, Guo M, Zhang R, Zhou B, Wei Q 2018 Sensors 18 02603Google Scholar

    [29]

    Degallaix J, Komma J, Forest D, Hofmann G 2014 Classical Quant. Grav. 31 185010Google Scholar

    [30]

    Khalaidovski A, Steinlechner J, Schnabel R 2013 Classical Quant. Grav. 30 165001Google Scholar

    [31]

    Biscans S, Gras S, Blair C D, Driggers J, Evans M, Fritschel P, Hardwick T, Mansell G 2019 Phys. Rev. D 100 122003Google Scholar

  • [1] 李响, 王嘉伟, 李番, 黄天时, 党昊, 赵得胜, 田龙, 史少平, 李卫, 尹王保, 郑耀辉. 面向地基引力波探测频段的超低噪声激光强度噪声评估系统研究. 物理学报, 2025, 74(3): . doi: 10.7498/aps.74.20241319
    [2] 阮远东, 章志昊, 贾茳勰, 顾煜宁, 张善端, 崔旭高, 洪葳, 白彦峥, 田朋飞. 空间引力波探测中电荷管理系统的紫外光源应用. 物理学报, 2024, 73(22): 220401. doi: 10.7498/aps.73.20241115
    [3] 李培, 董志勇, 郭红霞, 张凤祁, 郭亚鑫, 彭治钢, 贺朝会. SiGe BiCMOS低噪声放大器激光单粒子效应研究. 物理学报, 2024, 73(4): 044301. doi: 10.7498/aps.73.20231451
    [4] 郭禧庆, 周静, 王晨曦, 秦琛, 郭成哲, 李刚, 张鹏飞, 张天才. 地基引力波探测激光干涉仪的真空残余气体噪声分析. 物理学报, 2024, 73(5): 050401. doi: 10.7498/aps.73.20231462
    [5] 寇科, 王错, 王晛, 连天虹, 焦明星, 樊毓臻. 线性调频激光回馈粒度探测灵敏度提升方法. 物理学报, 2023, 72(16): 169501. doi: 10.7498/aps.72.20230569
    [6] 王在渊, 王洁浩, 李宇航, 柳强. 面向空间引力波探测的毫赫兹频段低强度噪声单频激光器. 物理学报, 2023, 72(5): 054205. doi: 10.7498/aps.72.20222127
    [7] 王嘉伟, 李健博, 李番, 郑立昂, 高子超, 安炳南, 马正磊, 尹王保, 田龙, 郑耀辉. 面向空间引力波探测的程控低噪声高精度电压基准源. 物理学报, 2023, 72(4): 049502. doi: 10.7498/aps.72.20222119
    [8] 王凯, 林百科, 宋有建, 孟飞, 林弋戈, 曹士英, 胡明列, 方占军. 基于光学-微波同步的低噪声微波产生方法. 物理学报, 2022, 71(4): 044204. doi: 10.7498/aps.71.20211253
    [9] 李番, 王嘉伟, 高子超, 李健博, 安炳南, 李瑞鑫, 白禹, 尹王保, 田龙, 郑耀辉. 面向空间引力波探测的激光强度噪声评估系统. 物理学报, 2022, 71(20): 209501. doi: 10.7498/aps.71.20220841
    [10] 王凯, 林百科, 宋有建, 孟飞, 林弋戈, 曹士英, 胡明列, 方占军. 基于光学-微波同步的低噪声微波产生方法. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211253
    [11] 邵晓东, 韩海年, 魏志义. 基于光学频率梳的超低噪声微波频率产生. 物理学报, 2021, 70(13): 134204. doi: 10.7498/aps.70.20201925
    [12] 田晶, 侯美江, 江阳, 张红旭, 白光富, 冯豪. 一种高灵敏度复合环形腔结构的光纤激光拍频位移传感方案. 物理学报, 2020, 69(18): 184217. doi: 10.7498/aps.69.20200385
    [13] 李诗宇, 田剑锋, 杨晨, 左冠华, 张玉驰, 张天才. 探测器对量子增强马赫-曾德尔干涉仪相位测量灵敏度的影响. 物理学报, 2018, 67(23): 234202. doi: 10.7498/aps.67.20181193
    [14] 池浪, 费洪涛, 王腾, 易建鹏, 方月婷, 夏瑞东. 基于有机半导体激光材料的高灵敏度溶液检测传感器件. 物理学报, 2016, 65(6): 064202. doi: 10.7498/aps.65.064202
    [15] 史生才, 李婧, 张文, 缪巍. 超高灵敏度太赫兹超导探测器. 物理学报, 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [16] 曲建岭, 王小飞, 高峰, 周玉平, 张翔宇. 基于复数据经验模态分解的噪声辅助信号分解方法. 物理学报, 2014, 63(11): 110201. doi: 10.7498/aps.63.110201
    [17] 顾源, 石荣晔, 王延辉. 分布式反馈激光抽运铯磁力仪灵敏度相关参数研究. 物理学报, 2014, 63(11): 110701. doi: 10.7498/aps.63.110701
    [18] 李楠, 黄凯凯, 陆璇辉. 提高激光抽运铯原子磁力仪灵敏度的研究. 物理学报, 2013, 62(13): 133201. doi: 10.7498/aps.62.133201
    [19] 吴健雄, 程腾, 张青川, 高杰, 伍小平. 光学读出红外成像中面光源影响下的光学检测灵敏度研究. 物理学报, 2013, 62(22): 220703. doi: 10.7498/aps.62.220703
    [20] 黄显高, 徐健学, 何岱海, 夏军利, 吕泽均. 利用小波多尺度分解算法实现混沌系统的噪声减缩. 物理学报, 1999, 48(10): 1810-1817. doi: 10.7498/aps.48.1810
计量
  • 文章访问数:  4380
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-26
  • 修回日期:  2022-04-15
  • 上网日期:  2022-08-09
  • 刊出日期:  2022-08-20

/

返回文章
返回