搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可调自旋-轨道耦合玻色-爱因斯坦凝聚体的隧穿动力学

马赟娥 乔鑫 高瑞 梁俊成 张爱霞 薛具奎

引用本文:
Citation:

可调自旋-轨道耦合玻色-爱因斯坦凝聚体的隧穿动力学

马赟娥, 乔鑫, 高瑞, 梁俊成, 张爱霞, 薛具奎

Tunneling dynamics of tunable spin-orbit coupled Bose-Einstein condensates

Ma Yun-E, Qiao Xin, Gao Rui, Liang Jun-Cheng, Zhang Ai-Xia, Xue Ju-Kui
PDF
HTML
导出引用
  • 研究了在周期驱动拉曼耦合下的可调自旋-轨道耦合玻色-爱因斯坦凝聚体的能带结构、非线性朗道-齐纳隧穿动力学以及隧穿率. 利用高频近似得到了与时间无关的Floquet哈密顿量, 发现周期驱动可以有效地调控自旋-轨道耦合和非线性相互作用. 与两能级模型对比, 解析地得到了能带出现loop的临界条件以及loop的宽度. 研究发现, 当种内原子间相互作用等于种间原子间相互作用时, 不出现loop结构. 而当种内原子间相互作用小于(大于)种间原子间相互作用时, loop出现在下(上)能带. 此时, 自旋-轨道耦合和拉曼耦合都会抑制loop的出现. 特别地, 通过调节外部驱动能控制能带出现loop结构的临界条件. 还研究了可调自旋-轨道耦合玻色-爱因斯坦凝聚体的隧穿动力学. 通过调节周期驱动强度可以调控系统的隧穿动力学, 控制在动量空间发生非线性朗道-齐纳隧穿的位置, 并使系统的自旋组分发生翻转. 最后计算了系统的朗道-齐纳隧穿率, 研究表明周期驱动能够有效调控系统的隧穿率.
    We theoretically study the band structure, tunneling dynamics, and tunneling probability of tunable spin-orbit-coupled Bose-Einstein condensates under the periodic driving of Raman coupling. The time-independent Floquet Hamiltonian is obtained in the high-frequency approximation. It is found that the periodic driving can effectively tune spin-orbit coupling and nonlinear interaction. The system is mapped to a standard nonlinear two-level model, and the critical condition for the appearance of the loop in energy band structure and the width of the loop are obtained analytically. When the interspecies atomic interaction is equal to the intraspecies atomic interaction, there is no loop. However, when the intraspecies atomic interaction is smaller (larger) than the interspecies atomic interaction, the loop appears in the lower (upper) energy band. In this case, both spin-orbit coupling and Raman coupling will suppress the appearance of loop. In particular, the critical condition for the appearance of loop structure can be controlled by adjusting external driving. We also study the tunneling dynamics of Bose-Einstein condensate with tunable spin-orbit coupling. More importantly, by tuning the periodic driving, the tunneling dynamics of the system and the location of nonlinear Landau-Zener tunneling can be controlled. We also find that the spin components of the system can be reversed. Finally, the Landau-Zener tunneling probability of the system is calculated. The research shows that the periodic driving can effectively change the tunneling probability of the system.
      通信作者: 薛具奎, xuejk@nwnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12164042, 11764039, 11865014, 11847304)、甘肃省自然科学基金(批准号: 17JR5RA076, 20JR5RA526)、甘肃省高等学校科研基金(批准号: 2016A-005)、甘肃省高等学校创新能力提升项目(批准号: 2020A-146, 2019A-014)、西北师范大学科技创新项目(批准号: NWNU-LKQN-18-33)和甘肃省教育厅优秀研究生创新之星项目(批准号: 2021CXZX-180)资助的课题
      Corresponding author: Xue Ju-Kui, xuejk@nwnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12164042, 11764039, 11865014, 11847304), the Natural Science Foundation of Gansu Province, China (Grant Nos. 17JR5RA076, 20JR5RA526), the Scientific Research Project of Gansu Higher Education, China (Grant No. 2016A-005), the Innovation Capability Enhancement Project of Gansu Higher Education, China (Grant Nos. 2020A-146, 2019A-014), the Creation of Science and Technology of Northwest Normal University, China (Grant No. NWNU-LKQN-18-33), and the Excellent Graduate Innovation Star Project of Education Department of Gansu Province, China (Grant No. 2021CXZX-180)
    [1]

    Goldman N, Juzeliunas G, Öhberg P, Spielman I B 2014 Rep. Prog. Phys. 77 126401Google Scholar

    [2]

    Zhai H 2015 Rep. Prog. Phys. 78 026001Google Scholar

    [3]

    Zhang S, Jo G B 2019 J. Phys. Chem. Solids 128 75Google Scholar

    [4]

    Lin Y J, Jiménez-García K, Spielman I B 2011 Nature 471 83

    [5]

    Wang C, Gao C, Jian C M, Zhai H 2010 Phys. Rev. Lett. 105 160403Google Scholar

    [6]

    Li Y, Pitaevskii L P, Stringari S 2012 Phys. Rev. Lett. 108 225301Google Scholar

    [7]

    Ho T L, Zhang S 2011 Phys. Rev. Lett. 107 150403Google Scholar

    [8]

    Jian C M, Zhai H 2011 Phys. Rev. B 84 060508Google Scholar

    [9]

    Zhou X F, Zhou J, Wu C 2011 Phys. Rev. A 84 063624Google Scholar

    [10]

    Xu Y, Mao L, Wu B, Zhang C 2014 Phys. Rev. Lett. 113 130404Google Scholar

    [11]

    Xu X Q, Han J H 2011 Phys. Rev. Lett. 107 200401Google Scholar

    [12]

    Radic J, Sedrakyan T A, Spielman I B, Galitski V 2011 Phys. Rev. A 84 063604Google Scholar

    [13]

    Xu P, Yi S, Zhang W 2019 Phys. Rev. Lett. 123 073001Google Scholar

    [14]

    van der Bijl E, Duine R A 2011 Phys. Rev. Lett. 107 195302Google Scholar

    [15]

    Grass T, Saha K, Sengupta K, Lewenstein M 2011 Phys. Rev. A 84 053632Google Scholar

    [16]

    Li Y, Martone G I, Pitaevski L P, Stringari S 2013 Phys. Rev. Lett. 110 235302Google Scholar

    [17]

    Li S, Wang H, Li F, Cui X, Liu B 2020 Phys. Rev. A 102 033328Google Scholar

    [18]

    Zhang Y, Mao L, Zhang C 2012 Phys. Rev. Lett. 108 035302Google Scholar

    [19]

    Zhang D W, Xue Z Y, Yan H, Wang Z D, Zhu S L 2012 Phys. Rev. A 85 013628

    [20]

    Wu C J, Mondragon-Shem I, Zhou X F 2011 Chin. Phys. Lett. 28 097102Google Scholar

    [21]

    Sinha S, Nath R, Santos L 2011 Phys. Rev. Lett. 107 270401Google Scholar

    [22]

    Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S, Pan J W 2012 Phys. Rev. Lett. 109 115301Google Scholar

    [23]

    Zheng W, Yu Z Q, Cui X, Zhai H 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134007Google Scholar

    [24]

    Ji S C, Zhang L, Xu X T, Wu Z, Deng Y, Chen S, Pan J W 2015 Phys. Rev. Lett. 114 105301Google Scholar

    [25]

    Olson A J, Wang S J, Niffenegger R J, Li C H, Greene C H, Chen Y P 2014 Phys. Rev. A 90 013616Google Scholar

    [26]

    Xiong B, Zheng J H, Wang D W 2015 Phys. Rev. A 91 063602Google Scholar

    [27]

    Llorente J M G, Plata J 2016 Phys. Rev. A 94 053605Google Scholar

    [28]

    Wu H, Wang B Q, An J H 2021 Phys. Rev. B 103 L041115Google Scholar

    [29]

    Jiménez-García K, LeBlanc L J, Williams R A, Beeler M C, Qu C, Gong M, Zhang C, Spielman I B 2015 Phys. Rev. Lett. 114 125301Google Scholar

    [30]

    Zhang Y, Chen G, Zhang C 2013 Sci. Rep. 3 1937Google Scholar

    [31]

    Li J R, Lee J, Huang W, Burchesky S, Shteynas B, Top F C, Jamison A O, Ketterle W 2017 Nature 543 91Google Scholar

    [32]

    Yao J, Zhang S 2014 Phys. Rev. A 90 023608Google Scholar

    [33]

    Olson A J, Blasing D B, Qu C, Li C H, Niffenegger R J, Zhang C, Chen Y P 2017 Phys. Rev. A 95 043623

    [34]

    Gomez Llorente J M, Plata J 2016 Phys. Rev. A 93 063633Google Scholar

    [35]

    Abdullaev F Kh, Salerno M 2018 Phys. Rev. A 98 053606Google Scholar

    [36]

    Liang J C, Zhang Y C, Jiao C, Zhang A X, Xue J K 2021 Phys. Rev. E 103 022204

    [37]

    Zhang Y, Mossman M E, Busch T, Engels P, Zhang C 2016 Front. Phys. 11 118103Google Scholar

    [38]

    Liu J, Fu L, Ou B Y, Chen S G, Choi D I, Wu B, Niu Q 2002 Phys. Rev. A 66 023404Google Scholar

    [39]

    Zhang Y, Gui Z, Chen Y 2019 Phys. Rev. A 99 023616Google Scholar

    [40]

    刘杰 2009 玻色-爱因斯坦凝聚体动力学: 非线性隧穿、相干及不稳定性 (北京: 科学出版社) 第40—50页

    Liu J 2009 Dynamics of Bose-Einstein Condensates: Nonlinear Tunneling, Coherence, and Instability (Beijing: Science Press) pp40–50 (in Chinese)

    [41]

    Wu B, Qian N 2003 New J. Phys. 5 104Google Scholar

  • 图 1  动量空间中不同相互作用关系下的能带结构 (a1), (a2) $g=0.0<g_{12}=0.7$; (b1), (b2) $g=g_{12}=0.7$; (c1), (c2) $g= $$ 1.5 > g_{12}=0.7$

    Fig. 1.  Energy band structure in momentum space under different interactions: (a1), (a2) $g=0.0<g_{12}=0.7$; (b1), (b2) $g=g_{12}= $$ 0.7$; (c1), (c2) $g=1.5>g_{12}=0.7$

    图 2  不同周期驱动强度下能带出现loop结构的临界拉曼耦合$\varOmega_{0}$随种内原子间相互作用的变化规律. $g_{12}=0.7$. 图中“Loop down”表示loop出现在下能带, “Loop up”表示loop出现在上能带

    Fig. 2.  Critical Raman coupling $\varOmega_{0}$ as a function of intraspecies atomic interaction for different periodic driving strength with $g_{12}=0.7$. “Loop down” means that the loop appears in lower band, while “Loop up” means that the loop appears in upper band

    图 3  不同种内原子间相互作用下出现loop的临界拉曼耦合$\varOmega_{0}$随周期驱动强度$\chi$的变化规律  (a) $g<g_{12}$; (b) $g>g_{12}$. $g_{12}=0.7$. 图中“Loop down”表示loop出现在下能带, “Loop up”表示loop出现在上能带

    Fig. 3.  Critical Raman coupling $\varOmega_{0}$ as a function of periodic driving strength for different intraspecies atomic interaction: (a) $g<g_{12}$; (b) $g>g_{12}$. The other parameters are $g_{12}=0.7$. “Loop down” means that the loop appears in lower band, while “Loop up” means that the loop appears in upper band

    图 4  (a1), (a2) $g<g_{12}$($g=0.2< g_{12}=0.7$)时不同自旋-轨道耦合强度$k_{0}$下loop宽度随$\chi$的变化规律($\varOmega_{0}=0.3$); (b1), (b2) $g> $$ g_{12}$($g=1.5> g_{12}=0.7$)时不同拉曼耦合$\varOmega_{0}$下loop宽度随$\chi$的变化规律($k_{0}=1$)

    Fig. 4.  (a1), (a2) Loop width as a function of $\chi$ for various spin-orbit coupled strength $k_{0}$ when $g<g_{12}$($ g=0.2< g_{12}=0.7$) with $\varOmega_{0}=0.3$; (b1), (b2) loop width as a function of $\chi$ for various Raman coupling $\varOmega_{0}$ when $g>g_{12}$ ($ g=1.5> g_{12}=0.7 $) with $k_{0}=1$.

    图 5  (a1)—(e1)存在loop结构时的能带结构, 原子最初制备在系统的上 (下) 能带用正方形(圆)标记; (a2)—(e2)原子初始制备在上能带中时对应的非线性朗道-齐纳隧穿动力学; (a3)—(e3)原子初始制备在下能带中时对应的非线性朗道-齐纳隧穿动力学. 第一行至第四行分别取$\chi=0$, 1, 2, 3, 4. $k_{0}=1$, $\varOmega_{0}=0.3$, $g=1.5$, $g_{12}=0.7$, $\alpha=0.0001$

    Fig. 5.  (a1)−(e1) Energy band structure. The Bose-Einstein condensates are initially prepared in the lower (upper) band of the system labeled by the square (circle). (a2)−(e2) The corresponding nonlinear Landau-Zener tunneling dynamics when the atomics are initially prepared in the upper band. (a3)−(e3) The corresponding nonlinear Landau-Zener tunneling dynamics when the atomics are initially prepared in the lower band. From the first row to the fourth row: $\chi=0, 1, 2, 3, 4$, respectively. The other parameters are $k_{0}=1, \varOmega_{0}=0.3, g=1.5, g_{12}=0.7, \alpha=0.0001$

    图 6  不同周期驱动强度$\chi$下朗道-齐纳隧穿率随(a)自旋-轨道耦合强度$k_{0}$和(b)拉曼耦合$\varOmega_{0}$的变化规律  (a) $\varOmega_{0}=0.03$; (b) $k_{0}= $$ 1.0$. 不同形状的符号代表方程 (12) 给出的理论值, 不同的线条代表从方程 (8) 得到的数值解. $g=g_{12}=0.02$, $\alpha=0.001$

    Fig. 6.  The Landau-Zener tunneling probabilities as a function of (a) the spin-orbit coupling strength $k_{0}$ and (b) Raman coupling $\varOmega_{0}$ for various periodic driving strength $\chi$: (a) $\varOmega_{0}=0.03$; (b) $k_{0}=1.0$. The different symbols represent the theoretical values given by Eq. (12) and different lines represent the results obtained by Eq. (8). The other parameters are $g=g_{12}=0.02, \alpha=0.001$

    图 7  不同周期驱动强度下非线性朗道-齐纳隧穿率随(a)拉曼耦合$\varOmega_{0}$和(b)自旋-轨道耦合强度$k_{0}$的变化规律  (a) $k_{0}=1$; (b) $\varOmega_{0}=0.1$. 不同形状的符号代表方程 (14) 给出的理论值, 不同的线条代表从方程 (8) 得到的数值解. $g=1.5>g_{12}=0.7$, $\alpha=0.005$

    Fig. 7.  The nonlinear Landau-Zener tunneling probabilities as a function of (a) Raman coupling $\varOmega_{0}$ and (b) the spin-orbit coupling strength $k_{0}$ for various periodic driving strength $\chi$. (a) $k_{0}=1$, (b) $\varOmega_{0}=0.1$. The different symbols represent the theoretical values given by Eq. (14) and different lines represent the results obtained by Eq. (8). The other parameters are $g=1.5 > $$ g_{12}=0.7, \;\alpha=0.005$

  • [1]

    Goldman N, Juzeliunas G, Öhberg P, Spielman I B 2014 Rep. Prog. Phys. 77 126401Google Scholar

    [2]

    Zhai H 2015 Rep. Prog. Phys. 78 026001Google Scholar

    [3]

    Zhang S, Jo G B 2019 J. Phys. Chem. Solids 128 75Google Scholar

    [4]

    Lin Y J, Jiménez-García K, Spielman I B 2011 Nature 471 83

    [5]

    Wang C, Gao C, Jian C M, Zhai H 2010 Phys. Rev. Lett. 105 160403Google Scholar

    [6]

    Li Y, Pitaevskii L P, Stringari S 2012 Phys. Rev. Lett. 108 225301Google Scholar

    [7]

    Ho T L, Zhang S 2011 Phys. Rev. Lett. 107 150403Google Scholar

    [8]

    Jian C M, Zhai H 2011 Phys. Rev. B 84 060508Google Scholar

    [9]

    Zhou X F, Zhou J, Wu C 2011 Phys. Rev. A 84 063624Google Scholar

    [10]

    Xu Y, Mao L, Wu B, Zhang C 2014 Phys. Rev. Lett. 113 130404Google Scholar

    [11]

    Xu X Q, Han J H 2011 Phys. Rev. Lett. 107 200401Google Scholar

    [12]

    Radic J, Sedrakyan T A, Spielman I B, Galitski V 2011 Phys. Rev. A 84 063604Google Scholar

    [13]

    Xu P, Yi S, Zhang W 2019 Phys. Rev. Lett. 123 073001Google Scholar

    [14]

    van der Bijl E, Duine R A 2011 Phys. Rev. Lett. 107 195302Google Scholar

    [15]

    Grass T, Saha K, Sengupta K, Lewenstein M 2011 Phys. Rev. A 84 053632Google Scholar

    [16]

    Li Y, Martone G I, Pitaevski L P, Stringari S 2013 Phys. Rev. Lett. 110 235302Google Scholar

    [17]

    Li S, Wang H, Li F, Cui X, Liu B 2020 Phys. Rev. A 102 033328Google Scholar

    [18]

    Zhang Y, Mao L, Zhang C 2012 Phys. Rev. Lett. 108 035302Google Scholar

    [19]

    Zhang D W, Xue Z Y, Yan H, Wang Z D, Zhu S L 2012 Phys. Rev. A 85 013628

    [20]

    Wu C J, Mondragon-Shem I, Zhou X F 2011 Chin. Phys. Lett. 28 097102Google Scholar

    [21]

    Sinha S, Nath R, Santos L 2011 Phys. Rev. Lett. 107 270401Google Scholar

    [22]

    Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S, Pan J W 2012 Phys. Rev. Lett. 109 115301Google Scholar

    [23]

    Zheng W, Yu Z Q, Cui X, Zhai H 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134007Google Scholar

    [24]

    Ji S C, Zhang L, Xu X T, Wu Z, Deng Y, Chen S, Pan J W 2015 Phys. Rev. Lett. 114 105301Google Scholar

    [25]

    Olson A J, Wang S J, Niffenegger R J, Li C H, Greene C H, Chen Y P 2014 Phys. Rev. A 90 013616Google Scholar

    [26]

    Xiong B, Zheng J H, Wang D W 2015 Phys. Rev. A 91 063602Google Scholar

    [27]

    Llorente J M G, Plata J 2016 Phys. Rev. A 94 053605Google Scholar

    [28]

    Wu H, Wang B Q, An J H 2021 Phys. Rev. B 103 L041115Google Scholar

    [29]

    Jiménez-García K, LeBlanc L J, Williams R A, Beeler M C, Qu C, Gong M, Zhang C, Spielman I B 2015 Phys. Rev. Lett. 114 125301Google Scholar

    [30]

    Zhang Y, Chen G, Zhang C 2013 Sci. Rep. 3 1937Google Scholar

    [31]

    Li J R, Lee J, Huang W, Burchesky S, Shteynas B, Top F C, Jamison A O, Ketterle W 2017 Nature 543 91Google Scholar

    [32]

    Yao J, Zhang S 2014 Phys. Rev. A 90 023608Google Scholar

    [33]

    Olson A J, Blasing D B, Qu C, Li C H, Niffenegger R J, Zhang C, Chen Y P 2017 Phys. Rev. A 95 043623

    [34]

    Gomez Llorente J M, Plata J 2016 Phys. Rev. A 93 063633Google Scholar

    [35]

    Abdullaev F Kh, Salerno M 2018 Phys. Rev. A 98 053606Google Scholar

    [36]

    Liang J C, Zhang Y C, Jiao C, Zhang A X, Xue J K 2021 Phys. Rev. E 103 022204

    [37]

    Zhang Y, Mossman M E, Busch T, Engels P, Zhang C 2016 Front. Phys. 11 118103Google Scholar

    [38]

    Liu J, Fu L, Ou B Y, Chen S G, Choi D I, Wu B, Niu Q 2002 Phys. Rev. A 66 023404Google Scholar

    [39]

    Zhang Y, Gui Z, Chen Y 2019 Phys. Rev. A 99 023616Google Scholar

    [40]

    刘杰 2009 玻色-爱因斯坦凝聚体动力学: 非线性隧穿、相干及不稳定性 (北京: 科学出版社) 第40—50页

    Liu J 2009 Dynamics of Bose-Einstein Condensates: Nonlinear Tunneling, Coherence, and Instability (Beijing: Science Press) pp40–50 (in Chinese)

    [41]

    Wu B, Qian N 2003 New J. Phys. 5 104Google Scholar

  • [1] 温丽, 卢卯旺, 陈嘉丽, 陈赛艳, 曹雪丽, 张安琪. 电子在自旋-轨道耦合调制下磁受限半导体纳米结构中的传输时间及其自旋极化. 物理学报, 2024, 73(11): 118504. doi: 10.7498/aps.73.20240285
    [2] 高建华, 黄旭光, 梁作堂, 王群, 王新年. 强相互作用自旋-轨道耦合与夸克-胶子等离子体整体极化. 物理学报, 2023, 72(7): 072501. doi: 10.7498/aps.72.20230102
    [3] 贺亚萍, 陈明霞, 潘杰锋, 李冬, 林港钧, 黄新红. Rashba自旋-轨道耦合调制的单层半导体纳米结构中电子的自旋极化效应. 物理学报, 2023, 72(2): 028503. doi: 10.7498/aps.72.20221381
    [4] 袁家望, 陈立, 张云波. 自旋-轨道耦合玻色爱因斯坦凝聚中多能级绝热消除理论. 物理学报, 2023, 72(21): 216701. doi: 10.7498/aps.72.20231052
    [5] 焦宸, 简粤, 张爱霞, 薛具奎. 自旋-轨道耦合玻色-爱因斯坦凝聚体激发谱及其有效调控. 物理学报, 2023, 72(6): 060302. doi: 10.7498/aps.72.20222306
    [6] 王欢, 贺夏瑶, 李帅, 刘博. 非线性相互作用的自旋-轨道耦合玻色-爱因斯坦凝聚体的淬火动力学. 物理学报, 2023, 72(10): 100309. doi: 10.7498/aps.72.20222401
    [7] 李新月, 祁娟娟, 赵敦, 刘伍明. 自旋-轨道耦合二分量玻色-爱因斯坦凝聚系统的孤子解. 物理学报, 2023, 72(10): 106701. doi: 10.7498/aps.72.20222319
    [8] 张爱霞, 姜艳芳, 薛具奎. 光晶格中自旋轨道耦合玻色-爱因斯坦凝聚体的非线性能谱特性. 物理学报, 2021, 70(20): 200302. doi: 10.7498/aps.70.20210705
    [9] 李吉, 刘斌, 白晶, 王寰宇, 何天琛. 环形势阱中自旋-轨道耦合旋转玻色-爱因斯坦凝聚体的基态. 物理学报, 2020, 69(14): 140301. doi: 10.7498/aps.69.20200372
    [10] 文林, 梁毅, 周晶, 余鹏, 夏雷, 牛连斌, 张晓斐. 线性塞曼劈裂对自旋-轨道耦合玻色-爱因斯坦凝聚体中亮孤子动力学的影响. 物理学报, 2019, 68(8): 080301. doi: 10.7498/aps.68.20182013
    [11] 李吉, 刘伍明. 梯度磁场中自旋-轨道耦合旋转两分量玻色-爱因斯坦凝聚体的基态研究. 物理学报, 2018, 67(11): 110302. doi: 10.7498/aps.67.20180539
    [12] 贺丽, 余增强. 自旋-轨道耦合作用下玻色-爱因斯坦凝聚在量子相变附近的朗道临界速度. 物理学报, 2017, 66(22): 220301. doi: 10.7498/aps.66.220301
    [13] 贺丽, 余增强. 自旋-轨道耦合作用下双组分量子气体中的动力学结构因子与求和规则. 物理学报, 2016, 65(13): 131101. doi: 10.7498/aps.65.131101
    [14] 陈光平. 简谐+四次势中自旋轨道耦合旋转玻色-爱因斯坦凝聚体的基态结构. 物理学报, 2015, 64(3): 030302. doi: 10.7498/aps.64.030302
    [15] 李志, 曹辉. 自旋轨道耦合玻色-爱因斯坦凝聚体在尖端势垒散射中的Klein隧穿. 物理学报, 2014, 63(11): 110306. doi: 10.7498/aps.63.110306
    [16] 李志, 王建忠. 自旋-轨道耦合玻色-爱因斯坦凝聚势垒散射特性的研究. 物理学报, 2013, 62(10): 100306. doi: 10.7498/aps.62.100306
    [17] 刘超飞, 万文娟, 张赣源. 自旋轨道耦合的23Na自旋-1玻色-爱因斯坦凝聚体中的涡旋斑图的研究. 物理学报, 2013, 62(20): 200306. doi: 10.7498/aps.62.200306
    [18] 奚玉东, 王登龙, 佘彦超, 王凤姣, 丁建文. 双色光晶格势阱中玻色-爱因斯坦凝聚体的Landau-Zener隧穿行为. 物理学报, 2010, 59(6): 3720-3726. doi: 10.7498/aps.59.3720
    [19] 赵兴东, 谢征微, 张卫平. 玻色凝聚的原子自旋链中的非线性自旋波. 物理学报, 2007, 56(11): 6358-6366. doi: 10.7498/aps.56.6358
    [20] 王冠芳, 刘 彬, 傅立斌, 赵 鸿. 非线性三能级体系的绝热朗道-齐纳隧穿. 物理学报, 2007, 56(7): 3733-3738. doi: 10.7498/aps.56.3733
计量
  • 文章访问数:  4314
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-14
  • 修回日期:  2022-06-09
  • 上网日期:  2022-10-21
  • 刊出日期:  2022-11-05

/

返回文章
返回