搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电光晶体平板部分相位调制动态产生涡旋光束

范钰婷 朱恩旭 赵超樱 谭维翰

引用本文:
Citation:

基于电光晶体平板部分相位调制动态产生涡旋光束

范钰婷, 朱恩旭, 赵超樱, 谭维翰

Dynamic generation of vortex beam based on partial phase modulation of electro-optical crystal plate

Fan Yu-Ting, Zhu En-Xu, Zhao Chao-Ying, Tan Wei-Han
PDF
HTML
导出引用
  • 随着现代光学各个领域对涡旋光束的潜在应用需求的增加, 涡旋光束的产生引起了人们的极大兴趣. 基于电光晶体平板, 本文提出了一种利用Pockels效应产生涡旋光束的方法, 在有限的相位调制区域内可以获得$ \pm 2\hbar $的轨道角动量可调范围. 模拟了光束在平板上的传输过程, 研究了透射光束的轨道角动量模式谱. 模式谱与仿真结果吻合较好. 该方法可用于光通信和光操作等需要可调谐涡旋光束的领域 .
    With the increasing demand for potential applications of vortex beams in various fields of modern optics, the generation of optical vortex beams has attracted great interest. Based on a flat plate made of an electro-optical crystal, a method to generate optical vortex beams assisted by the Pockels effect is proposed. This method allows an orbital-angular-momentum-tunable range of $ \pm 2\hbar$ with a finite phase-modulated region. We simulate the propagation of optical beams transmitted from the flat plate and investigate the orbital-angular-momentum-mode spectra of the transmitted optical beams. The mode spectra accord well with the simulation results. The proposed method will be applied to fields where tunable optical vortex beams are required, such as optical communication and optical manipulation.
      通信作者: 赵超樱, zchy49@163.com
    • 基金项目: 教育部量子光学重点实验室 (批准号: KF201801, KF202004, KF202205)资助的课题.
      Corresponding author: Zhao Chao-Ying, zchy49@163.com
    • Funds: Project supported by the Key Laboratory of Quantum Optics, Ministry of Education, China (Grant Nos. KF201801, KF202004, KF202205).
    [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Xie Z, Gao S, Lei T, Feng S, Zhang Y, Li F, Zhang J, Li Z, Yuan X 2018 Photon. Res. 6 743Google Scholar

    [3]

    Gecevičius M, Drevinskas R, Beresna M, Kazansky P G 2014 Appl. Phys. Lett. 104 231110Google Scholar

    [4]

    Li Y, Zhou L M, Zhao N 2021 Opt. Lett. 46 106Google Scholar

    [5]

    Kozawa Y, Matsunaga D, Sato S 2018 Optica 5 86Google Scholar

    [6]

    Stav T, Faerman A, Maguid E, Oren D, Kleiner V, Hasman E, Segev M 2018 Science 361 1101Google Scholar

    [7]

    Beijersbergen M W, Coerwinkel R P C, Kristensen M, Woerdman J P 1994 Opt. Commun. 112 321Google Scholar

    [8]

    Sueda K, Miyaji G, Miyanaga N, Nakatsuka M 2004 Opt. Express 12 3548Google Scholar

    [9]

    Khonina S N, Podlipnov V V, Karpeev S V, Ustinov A V, Volotovsky S G, Ganchevskaya S V 2020 Opt. Express 28 18407Google Scholar

    [10]

    Marrucci L, Manzo C, Paparo D 2006 Phys. Rev. Lett. 96 163905Google Scholar

    [11]

    Piccirillo B, D'Ambrosio V, Slussarenko S, Marrucci L, Santamato E 2010 Appl. Phys. Lett. 97 241104Google Scholar

    [12]

    Brasselet E 2018 Phys. Rev. Lett. 121 033901Google Scholar

    [13]

    Forbes A, Dudley A, McLaren M 2016 Adv. Opt. Photon. 8 200Google Scholar

    [14]

    Shalaev M I, Sun J, Tsukernik A, Pandey A, Nikolskiy K, Litchinitser N M 2015 Nano Lett. 15 6261Google Scholar

    [15]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [16]

    Cai X, Wang J, Strain M J, Johnson-Morris B, Zhu J, Sorel M, O’Brien J L, Thompson M G, Yu S 2012 Science 338 363Google Scholar

    [17]

    Wang A, Zhu L, Liu J, Du C, Mo Q, Wang J 2015 Opt. Express 23 29457Google Scholar

    [18]

    Lyubopytov V S, Porfirev A P, Gurbatov S O, Paul S, Schumann M F, Cesar J, Malekizi M, Haidar M T, Wegener M, Chipouline A, Küppers F 2017 Opt. Express 25 9634Google Scholar

    [19]

    Zhang W, Wei K, Huang L, Mao D, Jiang B, Gao F, Zhang G, Mei T, Zhao J 2016 Opt. Express 24 19278Google Scholar

    [20]

    Yao S, Ren G, Shen Y, JiangY, Zhu B, Jian S 2018 IEEE Photon. Tech. Lett. 30 99Google Scholar

    [21]

    Shen Y, Meng Y, Fu X, Gong M 2018 Opt. Lett. 43 291Google Scholar

    [22]

    Wang S, Zhang S-l, Li P, Hao M h, Yang H m, Xie J, Feng G Y, Zhou S h 2018 Opt. Express 26 18164Google Scholar

    [23]

    Zhang Z, Qiao X, Midya B, Liu K, Sun J, Wu T, Liu W, Agarwal R, Jornet J M, Longhi S, Litchinitser N M, Feng L 2020 Science 368 760Google Scholar

    [24]

    Ji Z, Liu W, Krylyuk S, Fan X, Zhang Z, Pan A, Feng L, Davydov A, Agarwal R 2020 Science 368 763Google Scholar

    [25]

    Thomaschewski M, ZeninV A, Wolff C, Bozhevolnyi S I 2020 Nat. Commun. 11 748Google Scholar

    [26]

    Alexander K, George J P, Verbist J, Neyts K, Kuyken B, Thourhout D Van, Beeckman J 2018 Nat. Commun. 9 3444Google Scholar

    [27]

    Boyd RW 2008 Nonlinear Optics (Third Edition) (Beijing: Academic Press)

    [28]

    Hourmand M, Sarhan A A D, Sayuti M 2017 Int. J. Adv. Manuf. Tech. 91 1023Google Scholar

    [29]

    Kulkarni G U, Kiruthika S, Gupta R, Rao K D M 2015 Curr. Opin. Chem. Eng. 8 60Google Scholar

    [30]

    Zhu W, She W 2012 Opt. Express 20 25876Google Scholar

    [31]

    Khonina S N, Podlipnov V V, Volotovskiĭ S G 2018 J. Opt. Tech. 85 388Google Scholar

    [32]

    Chu H, Li Y, Zhao S 2011 Appl. Opt. 50 360Google Scholar

    [33]

    Zhang M, BuscainB, Wang C, Shams-Ansari A, Reimer C, Zhu R, Kahn J M, Lončar M 2019 Nature 568 373Google Scholar

    [34]

    Lao G M, Zhang Z H, Zhao D M 2016 Opt. Express 24 18082Google Scholar

    [35]

    Molina-Terriza G, Torres J P, Torner L 2001 Phys. Rev. Lett. 88 013601Google Scholar

  • 图 1  (a)通过传统SPP产生的涡旋光束, 入射光具有高斯强度分布; (b)通过由电光晶体制成的平板产生涡旋光束, 其中局部折射率由微电极板阵列控制, 从而部分调制入射光的相位

    Fig. 1.  (a) The generation of optical vortex beams through a traditional SPP, the incident light has a Gaussian intensity distribution; (b) the generation of optical vortex beams through a flat plate made of electro-optical crystals, where the local refractive index is controlled by a micro-electrode plate array so that the phase of the incident light is partially modulated.

    图 2  电场施加区域之一的示意图. XYZ坐标是没有施加电场的KDP晶体的所谓主轴坐标. 晶体的光轴沿Z方向. 当施加外部电场时, 由于 Pockels效应[29], 主轴围绕Z轴旋转45°

    Fig. 2.  Schematic of one of the electric-field-applied regions. The XYZ coordinate is the so-called principal-axis coordinate of the KDP crystal with no applied electric field. The crystal is prepared cut so that the optical axis is in the Z direction. When an external electric field applies, the principal axes rotate 45° about the Z-axis due to the Pockels effect [29].

    图 3  所有入射光穿过板时, 透射光在自由空间中传播时的光强分布. 第1列中的黑色圆圈表示具有高斯模式的入射光的调制区域, 白色值表示方位角调制的光学相位, 其相应的施加电压可以通过(4)式计算, 未调制区域相应的光学相位为${{\text{π}}/4}$ (a) $ 2{\text{π }} $相移; (b)$-2{\text{π }} $相移; (c) $ 4{\text{π }} $相移; (d) $ -4{\text{π }} $相移; (e) $ {\text{π }} $相移

    Fig. 3.  The intensity distribution of the transmitted light propagating in free space for the case that the whole incident light passing through the plate. The black circles in the first column denote the modulation regions of the incident light with Gaussian mode, and the white values represent the azimuthally modulated optical phase whose corresponding applied voltages can be calculated by Eq. (4). The corresponding optical phase of the unmodulated region is${{\text{π}}/4}$: (a)$ 2{\text{π}} $ phase shift; (b)$ -2{\text{π}} $phase shift; (c)$ 4{\text{π}} $phase shift; (d)$-4{\text{π}} $phase shift; (e)$ {\text{π}} $phase shift.

    图 4  所有入射光穿过板时, 透射光在自由空间中传播时的相位分布. 每一行的相位调制方案与图3中的相位调制方案一致 (a)$ 2{\text{π }} $相移; (b)$-2{\text{π }} $相移; (c) $ 4{\text{π }} $相移; (d) $ -4{\text{π }} $相移; (e) $ {\text{π }} $相移

    Fig. 4.  The phase distribution of the transmitted light propagating in free space for the case that the whole incident light passing through the plate. The phase modulation scheme of each row is consistent with those of Fig. 3: (a)$ 2{\text{π }} $ phase shift; (b)$ -2{\text{π }} $phase shift; (c)$ 4{\text{π }} $ phase shift; (d) $ -4{\text{π }} $ phase shift; (e)$ {\text{π }} $ phase shift.

    图 5  只有调制区域的入射光通过板时, 透射光在自由空间中传播时的光强分布. 第1列显示了调制方案 (a) 没有施加电场; (b) $ 2{\text{π }} $相移; (c) $ -2{\text{π }} $相移; (d) $ 4{\text{π }} $相移; (e) $ -4{\text{π }} $相移; (f) $ {\text{π }} $相移

    Fig. 5.  The intensity distribution of the transmitted light propagating in free space for the case that only the modulated regions of the incident light passing through the plate. The first column shows the modulation schemes for (a) absence of applied electric field; (b)$ 2{\text{π }} $phase shift; (c) $-2{\text{π }} $ phase shift; (d) $ 4{\text{π }} $phase shift; (e) $ -4{\text{π }} $phase shift; (f) $ {\text{π }} $phase shift.

    图 6  只有调制区域的入射光通过板时, 透射光在自由空间中传播时的相位分布. 每一行的相位调制方案与图5中的相位调制方案一致 (a) 没有施加电场; (b) $ 2{\text{π }} $相移; (c) $ -2{\text{π }} $相移; (d) $ 4{\text{π }} $相移; (e) $ -4{\text{π }} $相移; (f)$ {\text{π }} $相移.

    Fig. 6.  The phase distribution of the transmitted light propagating in free space for the case that only the modulated regions of the incident light passing through the plate. The phase modulation scheme of each row is consistent with that in Fig. 5: (a) Absence of applied electric field; (b) $ 2{\text{π }} $phase shift; (c) $ -2{\text{π }} $phase shift; (d) $ 4{\text{π }} $phase shift; (e) $ -4{\text{π }} $phase shift; (f) $ {\text{π }} $ phase shift.

    图 7  所有入射光通过板时, 不同调制方案的OAM模式光谱 (a)—(e) 的调制方案分别与图3(a)(e) 中的相同; (f) 插入显示调制方案的模式频谱, 其中也实现了$ 2{\text{π }} $相移, 但调制区域的面积大于 (a) 中的区域

    Fig. 7.  OAM-mode spectra with different modulation schemes for the case that the whole incident light passing through the plate. The modulation schemes of (a)–(e) are the same as in Fig. 3 (a)-(e), respectively. (f) The mode spectrum with the insert showing the modulation scheme, in which a $ 2{\text{π }} $ phase shift is also achieved but the area of modulated regions is more than the one in (a).

    图 8  仅调制区域的入射光通过板时, 具有不同调制方案的OAM模式谱. (a)—(f)的调制方案分别与图7(a)(f)相同

    Fig. 8.  OAM-mode spectra with different modulation schemes for the case that only the modulated regions of the incident light passing through the plate. The modulation schemes of (a)–(f) are the same as in Fig. 7 (a)-(f), respectively.

  • [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Xie Z, Gao S, Lei T, Feng S, Zhang Y, Li F, Zhang J, Li Z, Yuan X 2018 Photon. Res. 6 743Google Scholar

    [3]

    Gecevičius M, Drevinskas R, Beresna M, Kazansky P G 2014 Appl. Phys. Lett. 104 231110Google Scholar

    [4]

    Li Y, Zhou L M, Zhao N 2021 Opt. Lett. 46 106Google Scholar

    [5]

    Kozawa Y, Matsunaga D, Sato S 2018 Optica 5 86Google Scholar

    [6]

    Stav T, Faerman A, Maguid E, Oren D, Kleiner V, Hasman E, Segev M 2018 Science 361 1101Google Scholar

    [7]

    Beijersbergen M W, Coerwinkel R P C, Kristensen M, Woerdman J P 1994 Opt. Commun. 112 321Google Scholar

    [8]

    Sueda K, Miyaji G, Miyanaga N, Nakatsuka M 2004 Opt. Express 12 3548Google Scholar

    [9]

    Khonina S N, Podlipnov V V, Karpeev S V, Ustinov A V, Volotovsky S G, Ganchevskaya S V 2020 Opt. Express 28 18407Google Scholar

    [10]

    Marrucci L, Manzo C, Paparo D 2006 Phys. Rev. Lett. 96 163905Google Scholar

    [11]

    Piccirillo B, D'Ambrosio V, Slussarenko S, Marrucci L, Santamato E 2010 Appl. Phys. Lett. 97 241104Google Scholar

    [12]

    Brasselet E 2018 Phys. Rev. Lett. 121 033901Google Scholar

    [13]

    Forbes A, Dudley A, McLaren M 2016 Adv. Opt. Photon. 8 200Google Scholar

    [14]

    Shalaev M I, Sun J, Tsukernik A, Pandey A, Nikolskiy K, Litchinitser N M 2015 Nano Lett. 15 6261Google Scholar

    [15]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [16]

    Cai X, Wang J, Strain M J, Johnson-Morris B, Zhu J, Sorel M, O’Brien J L, Thompson M G, Yu S 2012 Science 338 363Google Scholar

    [17]

    Wang A, Zhu L, Liu J, Du C, Mo Q, Wang J 2015 Opt. Express 23 29457Google Scholar

    [18]

    Lyubopytov V S, Porfirev A P, Gurbatov S O, Paul S, Schumann M F, Cesar J, Malekizi M, Haidar M T, Wegener M, Chipouline A, Küppers F 2017 Opt. Express 25 9634Google Scholar

    [19]

    Zhang W, Wei K, Huang L, Mao D, Jiang B, Gao F, Zhang G, Mei T, Zhao J 2016 Opt. Express 24 19278Google Scholar

    [20]

    Yao S, Ren G, Shen Y, JiangY, Zhu B, Jian S 2018 IEEE Photon. Tech. Lett. 30 99Google Scholar

    [21]

    Shen Y, Meng Y, Fu X, Gong M 2018 Opt. Lett. 43 291Google Scholar

    [22]

    Wang S, Zhang S-l, Li P, Hao M h, Yang H m, Xie J, Feng G Y, Zhou S h 2018 Opt. Express 26 18164Google Scholar

    [23]

    Zhang Z, Qiao X, Midya B, Liu K, Sun J, Wu T, Liu W, Agarwal R, Jornet J M, Longhi S, Litchinitser N M, Feng L 2020 Science 368 760Google Scholar

    [24]

    Ji Z, Liu W, Krylyuk S, Fan X, Zhang Z, Pan A, Feng L, Davydov A, Agarwal R 2020 Science 368 763Google Scholar

    [25]

    Thomaschewski M, ZeninV A, Wolff C, Bozhevolnyi S I 2020 Nat. Commun. 11 748Google Scholar

    [26]

    Alexander K, George J P, Verbist J, Neyts K, Kuyken B, Thourhout D Van, Beeckman J 2018 Nat. Commun. 9 3444Google Scholar

    [27]

    Boyd RW 2008 Nonlinear Optics (Third Edition) (Beijing: Academic Press)

    [28]

    Hourmand M, Sarhan A A D, Sayuti M 2017 Int. J. Adv. Manuf. Tech. 91 1023Google Scholar

    [29]

    Kulkarni G U, Kiruthika S, Gupta R, Rao K D M 2015 Curr. Opin. Chem. Eng. 8 60Google Scholar

    [30]

    Zhu W, She W 2012 Opt. Express 20 25876Google Scholar

    [31]

    Khonina S N, Podlipnov V V, Volotovskiĭ S G 2018 J. Opt. Tech. 85 388Google Scholar

    [32]

    Chu H, Li Y, Zhao S 2011 Appl. Opt. 50 360Google Scholar

    [33]

    Zhang M, BuscainB, Wang C, Shams-Ansari A, Reimer C, Zhu R, Kahn J M, Lončar M 2019 Nature 568 373Google Scholar

    [34]

    Lao G M, Zhang Z H, Zhao D M 2016 Opt. Express 24 18082Google Scholar

    [35]

    Molina-Terriza G, Torres J P, Torner L 2001 Phys. Rev. Lett. 88 013601Google Scholar

  • [1] 张卓, 张景风, 孔令军. 基于光束偏移器的光的轨道角动量分束器. 物理学报, 2024, 73(7): 074201. doi: 10.7498/aps.73.20231874
    [2] 徐梦敏, 李晓庆, 唐荣, 季小玲. 风控热晕对双模涡旋光束大气传输的轨道角动量和相位奇异性的影响. 物理学报, 2023, 72(16): 164202. doi: 10.7498/aps.72.20230684
    [3] 蒋基恒, 余世星, 寇娜, 丁召, 张正平. 基于平面相控阵的轨道角动量涡旋电磁波扫描特性. 物理学报, 2021, 70(23): 238401. doi: 10.7498/aps.70.20211119
    [4] 崔粲, 王智, 李强, 吴重庆, 王健. 长周期多芯手征光纤轨道角动量的调制. 物理学报, 2019, 68(6): 064211. doi: 10.7498/aps.68.20182036
    [5] 吴文兵, 圣宗强, 吴宏伟. 平板式螺旋相位板的设计与应用. 物理学报, 2019, 68(5): 054102. doi: 10.7498/aps.68.20181677
    [6] 尹霄丽, 郭翊麟, 闫浩, 崔小舟, 常欢, 田清华, 吴国华, 张琦, 刘博, 忻向军. 汉克-贝塞尔光束在海洋湍流信道中的螺旋相位谱分析. 物理学报, 2018, 67(11): 114201. doi: 10.7498/aps.67.20180155
    [7] 付时尧, 高春清. 利用衍射光栅探测涡旋光束轨道角动量态的研究进展. 物理学报, 2018, 67(3): 034201. doi: 10.7498/aps.67.20171899
    [8] 王亚东, 甘雪涛, 俱沛, 庞燕, 袁林光, 赵建林. 利用非传统螺旋相位调控高阶涡旋光束的拓扑结构. 物理学报, 2015, 64(3): 034204. doi: 10.7498/aps.64.034204
    [9] 施建珍, 许田, 周巧巧, 纪宪明, 印建平. 用波晶片相位板产生角动量可调的无衍射涡旋空心光束. 物理学报, 2015, 64(23): 234209. doi: 10.7498/aps.64.234209
    [10] 施建珍, 杨深, 邹亚琪, 纪宪明, 印建平. 用四台阶相位板产生涡旋光束. 物理学报, 2015, 64(18): 184202. doi: 10.7498/aps.64.184202
    [11] 柯熙政, 谌娟, 杨一明. 在大气湍流斜程传输中拉盖高斯光束的轨道角动量的研究. 物理学报, 2014, 63(15): 150301. doi: 10.7498/aps.63.150301
    [12] 齐晓庆, 高春清, 辛璟焘, 张戈. 基于激光光束轨道角动量的8位数据信号产生与检测的实验研究. 物理学报, 2012, 61(17): 174204. doi: 10.7498/aps.61.174204
    [13] 齐晓庆, 高春清. 螺旋相位光束轨道角动量态测量的实验研究. 物理学报, 2011, 60(1): 014208. doi: 10.7498/aps.60.014208
    [14] 齐晓庆, 高春清, 刘义东. 利用相位型衍射光栅生成能量按比例分布的多个螺旋光束的研究. 物理学报, 2010, 59(1): 264-270. doi: 10.7498/aps.59.264
    [15] 刘曼, 陈小艺, 李海霞, 宋洪胜, 滕树云, 程传福. 利用干涉光场的相位涡旋测量拉盖尔-高斯光束的轨道角动量. 物理学报, 2010, 59(12): 8490-8498. doi: 10.7498/aps.59.8490
    [16] 吕宏, 柯熙政. 具有轨道角动量光束入射下的单球粒子散射研究. 物理学报, 2009, 58(12): 8302-8308. doi: 10.7498/aps.58.8302
    [17] 苏志锟, 王发强, 路轶群, 金锐博, 梁瑞生, 刘颂豪. 基于光子轨道角动量的密码通信方案研究. 物理学报, 2008, 57(5): 3016-3021. doi: 10.7498/aps.57.3016
    [18] 高明伟, 高春清, 林志锋. 扭转对称光束的产生及其变换过程中的轨道角动量传递. 物理学报, 2007, 56(4): 2184-2190. doi: 10.7498/aps.56.2184
    [19] 董一鸣, 徐云飞, 张 璋, 林 强. 复杂像散椭圆光束的轨道角动量的实验研究. 物理学报, 2006, 55(11): 5755-5759. doi: 10.7498/aps.55.5755
    [20] 高明伟, 高春清, 何晓燕, 李家泽, 魏光辉. 利用具有轨道角动量的光束实现微粒的旋转. 物理学报, 2004, 53(2): 413-417. doi: 10.7498/aps.53.413
计量
  • 文章访问数:  3977
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-27
  • 修回日期:  2022-05-20
  • 上网日期:  2022-10-11
  • 刊出日期:  2022-10-20

/

返回文章
返回