搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铌掺杂锆钛酸铅铁电薄膜调控CuInS2量子点的阻变性能

朱茂聪 邵雅洁 周静 陈文 王志青 田晶

引用本文:
Citation:

铌掺杂锆钛酸铅铁电薄膜调控CuInS2量子点的阻变性能

朱茂聪, 邵雅洁, 周静, 陈文, 王志青, 田晶

Resistive properties of CuInS2 quantum dots regulated by niobium-doped lead zirconate titanate ferroelectric films

Zhu Mao-Cong, Shao Ya-Jie, Zhou Jing, Chen Wen, Wang Zhi-Qing, Tian Jing
PDF
HTML
导出引用
  • CuInS2量子点 (quantum dots, QDs)具有宽尺寸调节范围 (2—20 nm)、丰富的电子俘获位点、高光吸收系数、较高的载流子迁移率和制备工艺简单等优势, 可应用于下一代非易失性存储器, 但其开关电压(–4.5/4.5 V)和阻变开关比 (103)还达不到实际使用要求. 本文引入铌掺杂锆钛酸铅 (Nb:Pb(Zr0.52Ti0.48)O3, PNZT)制备CuInS2 QDs/PNZT复合薄膜, 发现PNZT的引入可以明显改善QDs的阻变性能, 开关电压降至–4.1/3.4 V, 阻变开关比提升至106, 在103次的循环耐久性测试中始终保持良好的稳定性. 切换PNZT薄膜的铁电极化方向可以改变CuInS2 QDs/PNZT复合薄膜界面势垒高度和耗尽区宽度, 以此调控CuInS2 QDs/PNZT复合薄膜的阻变性能.
    As a new type of non-volatile memory, quantum dot resistive random access memory (RRAM) has attracted much attention for its easy preparation, fast responding time, high storage density, and smaller device size. CuInS2 quantum dot (CuInS2 QD) is a kind of excellent resistive functional material with abundant electron capture sites, high optical absorption coefficient, and high carrier mobility. In this work, CuInS2 QDs/Nb:Pb (Zr0.52Ti0.48)O3 (PNZT) films are prepared by spin-coating CuInS2 QDs on PNZT films. The results show that the resistive properties of CuInS2 QDs RRAMs can be effectively improved by introducing PNZT films and can be controlled by changing the polarization direction. The CuInS2 QDs/PNZT film in the negative polarization state promotes the interfacial electrons to enter into the PNZT film, which will reduce the height of the interfacial barrier and the thickness of the interfacial depletion region. And it will reduce the resistance of the composite film at the low resistance state (LRS). Compared with the switching voltage and resistive switching ratio of the pure CuInS2 QDs film (103), the switching voltage of the device decreases to –4.1/3.4 V and the resistive switching ratio increases to 106. Furthermore, it maintains good stability in the 103 cycle durability test. In contrast, the CuInS2 QDs/PNZT film interface has a larger barrier height and depletion-layer thickness when the PNZT is in the positive polarization state, which increases the resistance of the composite film in the LRS state. As a result, the switching voltage of the device increases to –6.4/5.7 V with a resistive switching ratio of 104. The resistive properties of the CuInS2 QDs/PNZT film can be tuned by changing the polarization direction, as the polarization direction of the PNZT changes the interfacial energy band structure and affects the conduction mechanism. This work reveals the feasibility of using ferroelectric thin films to improve the resistive properties of quantum dots RRAMs and thus providing an approach to further developing RRAMs.
      通信作者: 周静, zhoujing@whut.edu.cn
    • 基金项目: 湖北省重点研发计划(批准号: 2021BAA214)和武汉理工大学三亚科教园开放基金 (批准号: 2020KF0026, 2021KF0013)资助的课题.
      Corresponding author: Zhou Jing, zhoujing@whut.edu.cn
    • Funds: Project supported by the Key Research and Development Project of Hubei Province, China (Grant No. 2021BAA214) and the Sanya Science and Education Innovation Park of Wuhan University of Technology, China (Grant Nos. 2020KF0026, 2021KF0013).
    [1]

    Wang Z J, Bai Y 2019 Small 15 1805088Google Scholar

    [2]

    曾凡菊, 谭永前, 唐孝生, 张小梅, 尹海峰 2021 物理学报 70 157301Google Scholar

    Zeng F J, Tan Y Q, Tang X S, Zhang X M, Yin H F 2021 Acta Phys. Sin. 70 157301Google Scholar

    [3]

    Lü Z Y, Wang Y, Chen J G, Wang J J, Zhou Y, Han S T 2020 Chem. Rev. 120 3941Google Scholar

    [4]

    Yan X B, Pei Y F, Chen H W, et al. 2019 Adv. Mater. 31 1805284Google Scholar

    [5]

    Han S T, Hu L, Wang X, Zhou Y, Zeng Y J, Ruan S, Pan C, Peng Z 2017 Adv. Sci. 4 1600435Google Scholar

    [6]

    Kim T W, Yang Y, Li F, Kwan W L 2012 NPG Asia Mater. 4 e18Google Scholar

    [7]

    Wang Y, Lü Z, Chen J, Wang Z, Zhou Y, Zhou L, Chen X, Han S T 2018 Adv. Mater. 30 1802883Google Scholar

    [8]

    Thomas A, Resmi A, Ganguly A, Jinesh K 2020 Sci. Rep. 10 12450Google Scholar

    [9]

    Chen Z, He L, Zhang F, Jiang J, Meng J, Zhao B, Jiang A 2013 J. Appl. Phys. 113 184106Google Scholar

    [10]

    贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫 2012 物理学报 21 217306Google Scholar

    Jia L N, Huang A P, Zheng X H, Xiao Z S, Wang Z 2012 Acta Phys. Sin. 21 217306Google Scholar

    [11]

    Fan Z, Fan H, Yang L, Li P, Lu Z, Tian G, Huang Z, Li Z, Yao J, Luo Q 2017 J. Mater. Chem. C 5 7317Google Scholar

    [12]

    Peng Z, Liu Y, Chen K, Yang G, Chen W 2014 Chem. Eng. J. 244 335Google Scholar

    [13]

    Zhang M, Jing Y, Zhang J, Sheng Z, Hou Y, Xu J, Chen B, Liu J, Wang M, Hou X 2022 Interdiscip. Mater. 1 157Google Scholar

    [14]

    高小钦, 卓宁泽, 王海波, 崔一平, 张家雨 2015 物理学报 64 137801Google Scholar

    Gao X Q, Zhuo N Z, Wang H B, Cui Y P, Zhang J Y 2015 Acta Phys. Sin. 64 137801Google Scholar

    [15]

    Liu L, Li H, Liu Z, Xie Y H 2018 Mater. Des. 149 145Google Scholar

    [16]

    Wang H, Yan X 2019 Phys. Status Solidi-Rapid Res. Lett. 13 1900073Google Scholar

    [17]

    Lee Y C, Tsai C C, Liou Y C, Hong C S, Chu S Y 2021 ECS J. Solid State Sci. Technol. 10 063010Google Scholar

    [18]

    Onlaor K, Thiwawong T, Tunhoo B 2014 Org. Electron. 15 1254Google Scholar

    [19]

    Ma Z, Wu C, Lee D U, Li F, Kim T W 2016 Org. Electron. 28 20Google Scholar

    [20]

    Zhang X G, Pantelides S T 2012 Phys. Rev. Lett. 108 266602Google Scholar

    [21]

    Feng Y, Lin S, Huang S, Shrestha S, Conibeer G 2015 J. Appl. Phys. 117 125701Google Scholar

    [22]

    Durruthy-Rodríguez M, Gervacio-Arciniega J, Hernández-García M, Yáñez-Limón J 2018 J. Adv. Ceram. 7 109Google Scholar

    [23]

    邵雅洁, 沈杰, 龚少康, 陈文, 周静 2020 无机化学学报 36 2093Google Scholar

    Shao Y J, Shen J, Gong S K, Chen W, Zhou J 2020 Inorg. Chim. Acta. 36 2093Google Scholar

    [24]

    Adamu B I, Falak A, Tian Y, Tan X, Meng X, Chen P, Wang H, Chu W 2020 ACS Appl. Mater. Interfaces 12 8411Google Scholar

    [25]

    郝国强, 张瑞, 张文静, 陈娜, 叶晓军, 李红波 2022 物理学报 71 017104Google Scholar

    Hao G Q, Zhang R, Zhang W J, Chen N, Ye X J, Li H B 2022 Acta Phys. Sin. 71 017104Google Scholar

  • 图 1  CuInS2 QDs/PNZT RRAM结构示意图

    Fig. 1.  Schematic diagram of CuInS2 QDs/PNZT RRAM structure.

    图 2  (a) CuInS2 QDs的TEM图像 (插图为CuInS2 QDs 尺寸分布直方图); (b) CuInS2 QDs的HRTEM图像; (c) CuInS2 QDs的XRD图谱

    Fig. 2.  (a) TEM image of CuInS2 QDs (Inset is the size distribution histogram of CuInS2 QDs); (b) HRTEM image of CuInS2 QDs; (c) XRD pattern of CuInS2 QDs.

    图 3  PNZT薄膜的XRD图谱 (a) 和电滞回线 (b)

    Fig. 3.  XRD pattern (a) and hysteresis loop (b) of PNZT film.

    图 4  (a) CuInS2 QDs/PNZT RRAM的断面FESEM图像; (b) PNZT薄膜与(c) CuInS2 QDs薄膜的表面FESEM图像; (d) CuInS2 QDs薄膜表面元素分布图

    Fig. 4.  (a) Cross-sectional FESEM image of CuInS2 QDs/PNZT RRAM; FESEM image of the surface for (b) PNZT film and (c) CuInS2 QDs film; (d) surface element distribution of CuInS2 QDs film.

    图 5  CuInS2 QDs RRAM与正负向和无极化下CuInS2 QDs/PNZT RRAM的 (a) I-V曲线与 (b) 开关电压直方图; (c) CuInS2 QDs RRAM循环稳定性测试; (d) 无极化, (e) 负向极化和 (f) 正向极化的CuInS2 QDs/PNZT RRAM循环稳定性测试(插图为施加的脉冲电压)

    Fig. 5.  (a) I-V curves and (b) SET/RESET voltage histograms of CuInS2 QDs RRAM and CuInS2 QDs/PNZT RRAM with the different polarization orientations; (c) cycling stability test of CuInS2 QDs RRAM; cycling stability test of (d) no polarized, (e) negative polarized and (f) positive polarized CuInS2 QDs/PNZT RRAM (Inset is the applied pulse voltage).

    图 6  CuInS2 QDs RRAM在(a) 设置过程及(b) 复位过程的拟合曲线

    Fig. 6.  Fitting curves of CuInS2 QDs RRAM during (a) set process and (b) reset process.

    图 7  负向极化下CuInS2 QDs/PNZT RRAM (a) 设置过程及(b) Slope10阶段的拟合曲线, (c) 复位过程及(d) Slope15阶段的拟合曲线; 正向极化下CuInS2 QDs/PNZT RRAM (e) 设置过程及(f) Slope18阶段的拟合曲线, (g) 复位过程及(h) Slope23阶段的拟合曲线

    Fig. 7.  Fitting curves of CuInS2 QDs/PNZT RRAM under negative polarization in (a) set process and (b) Slope10 stage, (c) reset process and (d) Slope15 stage; fitting curves of CuInS2 QDs/PNZT RRAM under positive polarization in (e) set process and (f) Slope18 stage, (g) reset process and (h) Slope23 stage.

    图 8  PNZT薄膜的光学性能 (a) UV-Vis光谱图; (b) 光学带隙图; (c) PNZT薄膜的UPS; (d) 二次电子截止边谱和费米边谱

    Fig. 8.  Optical performance of PNZT films: (a) UV-Vis spectrum; (b) optical band gap; (c) UPS of PNZT film; (d) secondary electron cutoff and Fermi edge intercepts.

    图 9  (a) PNZT与CuInS2 QDs的能带结构. CuInS2 QDs/PNZT复合薄膜界面能带结构示意图 (b) 无极化; (c) 负向极化; (d) 正向极化

    Fig. 9.  (a) Band structures of PNZT and CuInS2 QDs. Schematic diagram of the interfacial band structure of CuInS2 QDs/PNZT film: (b) No polarization; (c) negative polarization; (d) positive polarization.

    表 1  不同器件的阻变性能

    Table 1.  Resistance switching performance of the different devices.

    测试单元工作电
    压/V
    阻变开
    关比
    CuInS2 QDs RRAM–4.5/4.53.4×103
    无极化PNZT/CuInS2 QDs RRAM–5.6/5.01.7×105
    正向极化PNZT/CuInS2 QDs RRAM–6.4/5.71.8×104
    负向极化PNZT/CuInS2 QDs RRAM–4.1/3.44.8×106
    下载: 导出CSV
  • [1]

    Wang Z J, Bai Y 2019 Small 15 1805088Google Scholar

    [2]

    曾凡菊, 谭永前, 唐孝生, 张小梅, 尹海峰 2021 物理学报 70 157301Google Scholar

    Zeng F J, Tan Y Q, Tang X S, Zhang X M, Yin H F 2021 Acta Phys. Sin. 70 157301Google Scholar

    [3]

    Lü Z Y, Wang Y, Chen J G, Wang J J, Zhou Y, Han S T 2020 Chem. Rev. 120 3941Google Scholar

    [4]

    Yan X B, Pei Y F, Chen H W, et al. 2019 Adv. Mater. 31 1805284Google Scholar

    [5]

    Han S T, Hu L, Wang X, Zhou Y, Zeng Y J, Ruan S, Pan C, Peng Z 2017 Adv. Sci. 4 1600435Google Scholar

    [6]

    Kim T W, Yang Y, Li F, Kwan W L 2012 NPG Asia Mater. 4 e18Google Scholar

    [7]

    Wang Y, Lü Z, Chen J, Wang Z, Zhou Y, Zhou L, Chen X, Han S T 2018 Adv. Mater. 30 1802883Google Scholar

    [8]

    Thomas A, Resmi A, Ganguly A, Jinesh K 2020 Sci. Rep. 10 12450Google Scholar

    [9]

    Chen Z, He L, Zhang F, Jiang J, Meng J, Zhao B, Jiang A 2013 J. Appl. Phys. 113 184106Google Scholar

    [10]

    贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫 2012 物理学报 21 217306Google Scholar

    Jia L N, Huang A P, Zheng X H, Xiao Z S, Wang Z 2012 Acta Phys. Sin. 21 217306Google Scholar

    [11]

    Fan Z, Fan H, Yang L, Li P, Lu Z, Tian G, Huang Z, Li Z, Yao J, Luo Q 2017 J. Mater. Chem. C 5 7317Google Scholar

    [12]

    Peng Z, Liu Y, Chen K, Yang G, Chen W 2014 Chem. Eng. J. 244 335Google Scholar

    [13]

    Zhang M, Jing Y, Zhang J, Sheng Z, Hou Y, Xu J, Chen B, Liu J, Wang M, Hou X 2022 Interdiscip. Mater. 1 157Google Scholar

    [14]

    高小钦, 卓宁泽, 王海波, 崔一平, 张家雨 2015 物理学报 64 137801Google Scholar

    Gao X Q, Zhuo N Z, Wang H B, Cui Y P, Zhang J Y 2015 Acta Phys. Sin. 64 137801Google Scholar

    [15]

    Liu L, Li H, Liu Z, Xie Y H 2018 Mater. Des. 149 145Google Scholar

    [16]

    Wang H, Yan X 2019 Phys. Status Solidi-Rapid Res. Lett. 13 1900073Google Scholar

    [17]

    Lee Y C, Tsai C C, Liou Y C, Hong C S, Chu S Y 2021 ECS J. Solid State Sci. Technol. 10 063010Google Scholar

    [18]

    Onlaor K, Thiwawong T, Tunhoo B 2014 Org. Electron. 15 1254Google Scholar

    [19]

    Ma Z, Wu C, Lee D U, Li F, Kim T W 2016 Org. Electron. 28 20Google Scholar

    [20]

    Zhang X G, Pantelides S T 2012 Phys. Rev. Lett. 108 266602Google Scholar

    [21]

    Feng Y, Lin S, Huang S, Shrestha S, Conibeer G 2015 J. Appl. Phys. 117 125701Google Scholar

    [22]

    Durruthy-Rodríguez M, Gervacio-Arciniega J, Hernández-García M, Yáñez-Limón J 2018 J. Adv. Ceram. 7 109Google Scholar

    [23]

    邵雅洁, 沈杰, 龚少康, 陈文, 周静 2020 无机化学学报 36 2093Google Scholar

    Shao Y J, Shen J, Gong S K, Chen W, Zhou J 2020 Inorg. Chim. Acta. 36 2093Google Scholar

    [24]

    Adamu B I, Falak A, Tian Y, Tan X, Meng X, Chen P, Wang H, Chu W 2020 ACS Appl. Mater. Interfaces 12 8411Google Scholar

    [25]

    郝国强, 张瑞, 张文静, 陈娜, 叶晓军, 李红波 2022 物理学报 71 017104Google Scholar

    Hao G Q, Zhang R, Zhang W J, Chen N, Ye X J, Li H B 2022 Acta Phys. Sin. 71 017104Google Scholar

  • [1] 任俊文, 姜国庆, 陈志杰, 魏华超, 赵莉华, 贾申利. 氮化硼纳米管表面结构设计及其对环氧复合电介质性能调控机理. 物理学报, 2024, 73(2): 027703. doi: 10.7498/aps.73.20230708
    [2] 李伟, 朱慧文, 孙彤, 屈文山, 李建刚, 杨辉, 高志翔, 施薇, 魏斌, 王华. 基于1, 2 - 二氰基苯/聚合物复合材料的高耐久性有机阻变存储器. 物理学报, 2023, 72(4): 048501. doi: 10.7498/aps.72.20221507
    [3] 王英, 黄慧香, 黄香林, 郭婷婷. 光电协同调控下HfOx基阻变存储器的阻变特性. 物理学报, 2023, 72(19): 197201. doi: 10.7498/aps.72.20230797
    [4] 周正, 黄鹏, 康晋锋. 基于非挥发存储器的存内计算技术. 物理学报, 2022, 71(14): 148507. doi: 10.7498/aps.71.20220397
    [5] 白刚, 林翠, 刘端生, 许杰, 李卫, 高存法. 取向相关的Pb(Zr0.52Ti0.48)O3外延薄膜的相图和介电性能. 物理学报, 2021, 70(12): 127701. doi: 10.7498/aps.70.20202164
    [6] 曾凡菊, 谭永前, 唐孝生, 张小梅, 尹海峰. 非铅卤素钙钛矿及其阻变性能研究进展. 物理学报, 2021, 70(15): 157301. doi: 10.7498/aps.70.20210065
    [7] 龚少康, 周静, 王志青, 朱茂聪, 沈杰, 吴智, 陈文. 尺寸调控SnO2量子点的阻变性能及调控机理. 物理学报, 2021, 70(19): 197301. doi: 10.7498/aps.70.20210608
    [8] 张志超, 王芳, 吴仕剑, 李毅, 弭伟, 赵金石, 张楷亮. 氧分压对Ni/HfOx/TiN阻变存储单元阻变特性的影响. 物理学报, 2018, 67(5): 057301. doi: 10.7498/aps.67.20172194
    [9] 郭家俊, 董静雨, 康鑫, 陈伟, 赵旭. 过渡金属元素X(X=Mn,Fe,Co,Ni)掺杂对ZnO基阻变存储器性能的影响. 物理学报, 2018, 67(6): 063101. doi: 10.7498/aps.67.20172459
    [10] 代月花, 潘志勇, 陈真, 王菲菲, 李宁, 金波, 李晓风. 基于HfO2的阻变存储器中Ag导电细丝方向和浓度的第一性原理研究. 物理学报, 2016, 65(7): 073101. doi: 10.7498/aps.65.073101
    [11] 蒋然, 杜翔浩, 韩祖银, 孙维登. Ti/HfO2/Pt阻变存储单元中的氧空位聚簇分布. 物理学报, 2015, 64(20): 207302. doi: 10.7498/aps.64.207302
    [12] 陈然, 周立伟, 王建云, 陈长军, 邵兴隆, 蒋浩, 张楷亮, 吕联荣, 赵金石. 基于Cu/SiOx/Al结构的阻变存储器多值特性及机理的研究. 物理学报, 2014, 63(6): 067202. doi: 10.7498/aps.63.067202
    [13] 杨金, 周茂秀, 徐太龙, 代月花, 汪家余, 罗京, 许会芳, 蒋先伟, 陈军宁. 阻变存储器复合材料界面及电极性质研究. 物理学报, 2013, 62(24): 248501. doi: 10.7498/aps.62.248501
    [14] 毕科, 艾迁伟, 杨路, 吴玮, 王寅岗. Ni/Pb(Zr,Ti)O3/TbFe2层状复合材料的谐振磁电特性研究. 物理学报, 2011, 60(5): 057503. doi: 10.7498/aps.60.057503
    [15] 张祖发, 张 胤, 冯 洁, 蔡燕飞, 林殷茵, 蔡炳初, 汤庭鳌, Bomy Chen. 基于Si掺杂Sb2Te3薄膜的相变存储器研究. 物理学报, 2007, 56(7): 4224-4228. doi: 10.7498/aps.56.4224
    [16] 赖云锋, 冯 洁, 乔保卫, 凌 云, 林殷茵, 汤庭鳌, 蔡炳初, 陈邦明. 氮掺杂Ge2Sb2Te5相变存储器的多态存储功能. 物理学报, 2006, 55(8): 4347-4352. doi: 10.7498/aps.55.4347
    [17] 郑分刚, 陈建平, 李新碗. (111)择优取向的Pb(Zr0.52Ti0.48)O3铁电薄膜的制备及研究. 物理学报, 2006, 55(6): 3067-3072. doi: 10.7498/aps.55.3067
    [18] 李建康, 姚 熹. 不同衬底上Pb(Zr0.52Ti0.48)O3择优取向铁电薄膜的制备和研究. 物理学报, 2005, 54(6): 2938-2944. doi: 10.7498/aps.54.2938
    [19] 高兴森, 陈晓原, 殷 江, 刘俊明, 刘治国. 铁电磁体Pb(Fe1/2Nb1/2)O3相变特征. 物理学报, 1999, 48(5): 942-947. doi: 10.7498/aps.48.942
    [20] 陈小兵, 严 峰, 李春华, 朱劲松, 沈惠敏, 王业宁. Pb(Zr0.52Ti0.48)O3陶瓷畴界粘滞运动的介电损耗模拟. 物理学报, 1999, 48(8): 1529-1534. doi: 10.7498/aps.48.1529
计量
  • 文章访问数:  4260
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-09
  • 修回日期:  2022-06-08
  • 上网日期:  2022-10-07
  • 刊出日期:  2022-10-20

/

返回文章
返回