搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种具有动态磁负刚度薄膜声学超材料的低频隔声特性

胥强荣 朱洋 林康 沈承 卢天健

引用本文:
Citation:

一种具有动态磁负刚度薄膜声学超材料的低频隔声特性

胥强荣, 朱洋, 林康, 沈承, 卢天健

Low-frequency sound insulation performance of novel membrane acoustic metamaterial with dynamic negative stiffness

Xu Qiang-Rong, Zhu Yang, Lin Kang, Shen Cheng, Lu Tian-Jian
PDF
HTML
导出引用
  • 为提升薄膜/板状结构的低频隔声特性, 本文提出一种具有动态磁负刚度的新型准零刚度薄膜声学超材料. 首先, 应用等效磁荷理论推导了动态磁负刚度; 然后, 基于伽辽金法建立了有限尺寸下薄膜/板结构的隔声理论模型. 通过理论分析、数值仿真及实验测试相结合的方法, 从结构模态、振动模式、平均速度、相位曲线、等效质量密度和等效弹簧-质量动力学模型等多个角度对其低频(1—1000 Hz)隔声机理开展了研究. 结果表明: 在初始薄膜张力一定时, 减小磁间隙或增大剩余磁通密度均可增大动态磁负刚度, 进而减小隔声峰值频率, 增加隔声带宽, 实现了较宽频段下的有效低频隔声; 进一步, 当磁间隙大于第二临界磁间隙小于第一临界磁间隙时, 结构的一阶模态共振消失, 对应隔声谷值大幅提升, 显示出超宽频段的隔声效果. 这种利用动态磁负刚度改善模态共振导致的低频隔声谷值的方法对薄膜/板型低频隔声超材料的设计具有重要的理论指导价值.
    For improving the low-frequency sound insulation properties of membrane/plate structures, a new quasi-zero stiffness membrane acoustic metamaterial with dynamic magnetic negative stiffness is proposed. When the equivalent magnetic charge theory is used to investigate the dynamic magnetic negative stiffness, a theoretical model of proposed metamaterial with finite dimension is established based on the Galerkin method. Through a combination of theoretical analysis, numerical simulation and experimental measurement, the low-frequency (1–1000 Hz) sound insulation performance of the metamaterial is investigated from several perspectives, including structural modality, vibration mode, average velocity, phase curve, equivalent mass density, and equivalent spring-mass dynamics model. The results show that at a certain initial membrane tension, the decreasing of the magnetic gap or the increasing of the residual flux density can increase the dynamic magnetic negative stiffness. This in turn leads the peak frequency to decrease and the bandwidth of sound insulation to increase, thus achieving effective low-frequency sound insulation over a wide frequency band. Further, when the magnetic gap is larger than the second critical magnetic gap and smaller than the first critical magnetic gap, the first-order modal resonance of the metamaterial disappears, and the corresponding value of sound insulation valley increases significantly, thus demonstrating superior sound insulation effect in a wide frequency band. The proposed method of using dynamic magnetic negative stiffness to improve low-frequency sound insulation valleys due to modal resonance provides useful theoretical guidance for designing membrane/plate type low-frequency sound insulation metamaterials.
      通信作者: 沈承, cshen@nuaa.edu.cn ; 卢天健, tjlu@nuaa.edu.cn
    • 基金项目: 南京航空航天大学研究生科研与实践创新基金(批准号: xcxjh20210106)、国家自然科学基金(批准号: 11502110, 11972185)和机械结构强度与振动国家重点实验室开放基金(批准号: SV2018-KF-01)资助的课题.
      Corresponding author: Shen Cheng, cshen@nuaa.edu.cn ; Lu Tian-Jian, tjlu@nuaa.edu.cn
    • Funds: Project supported by the Postgraduate Research and Practice Innovation Fund of Nanjing University of Aeronautics and Astronautics, China (Grant No. xcxjh20210106), the National Natural Science Foundation of China (Grant Nos. 11502110, 11972185), and the Open Fund of the State Key Laboratory for Strength and Vibration of Mechanical Structures, China (Grant No. SV2018-KF-01).
    [1]

    Gao N S, Wu J G, Lu K, Zhong H B 2021 Mech. Syst. Sig. Process. 154 107504Google Scholar

    [2]

    Kang Z X, Song R X, Zhang H J, Liu Q 2021 Appl. Acoust. 174 107785Google Scholar

    [3]

    Ma G C, Sheng P 2016 Sci. Adv. 2 e1501595Google Scholar

    [4]

    Mei J, Ma G C, Yang M, Yang Z Y, Wen W J, Sheng P 2012 Nat. Commun. 3 756Google Scholar

    [5]

    Deng K, Ding Y Q, He Z J, Zhao H P, Shi J, Liu Z Y 2009 J. Appl. Phys. 105 124909Google Scholar

    [6]

    Peng S S, He Z J, Jia H, Zhang A Q, Qiu C Y, Ke M Z, Liu Z Y 2010 Appl. Phys. Lett. 96 263502Google Scholar

    [7]

    Zhu X F, Liang B, Kan W W, Zou X Y, Cheng J C 2011 Phys. Rev. Lett. 106 014301Google Scholar

    [8]

    Liu Z Y, Zhang X, Mao Y, Zhu Y Y, Yang Z, Chan C T, Sheng P 2000 Science 289 1734Google Scholar

    [9]

    Kushwaha M S, Halevi P, Dobrzynski L, Djafari-Rouhani B 1993 Phys. Rev. Lett. 71 2022Google Scholar

    [10]

    Gao N, Qu S C, Li J, Wang J, Chen W Q 2021 Int. J. Mech. Sci. 208 106695Google Scholar

    [11]

    Nguyen H, Wu Q, Xu X C, Chen H, Tracy S, Huang G L 2020 Appl. Phys. Lett. 117 134103Google Scholar

    [12]

    Demelofilho N G R, Claeys C, Deckers E, Desmet W 2020 Mech. Syst. Sig. Process. 139 106624Google Scholar

    [13]

    Xiao Y, Wen J H, Wen X S 2012 J. Sound Vib. 331 5408Google Scholar

    [14]

    Yang J, Lee J S, Lee H R, Kang Y J 2018 Appl. Phys. Lett. 112 091901Google Scholar

    [15]

    Zhao X Z, Liu G Q, Zhang C, Xia D, Lu Z M 2018 Appl. Phys. Lett. 113 074101Google Scholar

    [16]

    Wang X N, Zhou Y D, Sang J Q, Zhu W Y 2020 Appl. Acoust. 158 107045Google Scholar

    [17]

    Lin Q H, Lin Q L, Wang Y H, Di G Q 2021 Compos. Struct. 273 114312Google Scholar

    [18]

    Wang X L, Zhao H, Luo X D, Huang Z Y 2016 Appl. Phys. Lett. 108 041905Google Scholar

    [19]

    Langfeldt F, Riecken J, Gleine W, von Estorff O 2016 J. Sound Vib. 373 1Google Scholar

    [20]

    Langfeldt F, Kemsies H, Gleine W, von Estorff O 2017 Phys. Lett. A 381 1457Google Scholar

    [21]

    Li Y L, Zhang Y L, Xie S C 2020 Appl. Acoust. 168 107427Google Scholar

    [22]

    Xu Q S, Qiao J, Sun J Y, Zhang G Y, Li L Q 2021 J. Sound Vib. 493 115823Google Scholar

    [23]

    Yang Z Y, Mei J, Yang M, Chan N H, Sheng P 2008 Phys. Rev. Lett. 101 204301Google Scholar

    [24]

    Lu Z B, Yu X, Lau S K, Khoo B C, Cui F S 2020 Appl. Acoust. 157 107003Google Scholar

    [25]

    Li X Y, Zhao J J, Wang W J, Xing T, Zhu L Y, Liu Y N, Li X H 2022 Appl. Acoust. 187 108514Google Scholar

    [26]

    贺子厚, 赵静波, 姚宏, 陈鑫 2019 物理学报 68 214302Google Scholar

    He Z H, Zhao J B, Yao H, Chen X 2019 Acta Phys. Sin. 68 214302Google Scholar

    [27]

    Naify C J, Chang C M, McKnight G, Nutt S 2011 J. Appl. Phys. 110 124903Google Scholar

    [28]

    Tan X J, Wang B, Wang L C, Zhu S W, Chen S, Yao K L 2022 Compos. Struct. 286 115308Google Scholar

    [29]

    Wang K, Zhou J X, Cai C Q, Xu D L, Ouyang H J 2019 Appl. Math. Modell. 73 581Google Scholar

    [30]

    Yuan S J, Sun Y, Zhao J L, Meng K, Wang M, Pu H Y, Peng Y, Luo J, Xie S R 2020 J. Sound Vib. 482 115449Google Scholar

    [31]

    胥强荣, 沈承, 韩峰, 卢天健 2021 物理学报 70 244302Google Scholar

    Xu Q R, Shen C, Han F, Lu T J 2021 Acta Phys. Sin. 70 244302Google Scholar

    [32]

    Allag H, Yonnet J P 2009 Ieee. Trans. Magn. 45 3969Google Scholar

    [33]

    Oyelade A O, Chen Y, Zhang R J, Hu G K 2018 Int. J. Appl. Mech. 10 1850054Google Scholar

    [34]

    Wu J S, Luo S S 1997 J. Sound Vib. 200 179Google Scholar

    [35]

    张光玉 2014 博士学位论文 (长沙: 国防科技大学)

    Zhang G Y 2014 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [36]

    Meirovitch L 2001 Fundamentals of Vibrations (New York: McGraw-Hill Higher Education) pp529–530

    [37]

    Lee J H, Kim J 2002 J. Sound Vib. 251 349Google Scholar

  • 图 1  准零刚度薄膜声学超材料结构 (a) 单胞模型; (b) xoy中面图; (c) yoz中面图; (d) 简化模型

    Fig. 1.  Unit cell of quasi-zero stiffness membrane acoustic metamaterial (QZSMAMM): (a) Schematic of unit cell; (b) xoy mid-plane view; (c) yoz mid-plane view; (d) simplified model.

    图 2  矩形磁铁的磁荷模型示意图

    Fig. 2.  Schematic of the magnetic charge model for a cuboidal magnet.

    图 3  (a) 磁间隙保持不变(H = 4.0 mm), 磁力负刚度随剩余磁通密度的变化; (b) 剩余磁通密度保持不变(Br = 1.0 T), 磁力负刚度随磁间隙的变化

    Fig. 3.  (a) Variation of negative magnetic stiffness with residual flux density at H = 4.0 mm; (b) variation of negative magnetic stiffness with magnetic gap at Br = 1.0 T.

    图 4  1000 Hz垂直入射声激励下, QZSMAMM的TL收敛性验证

    Fig. 4.  Convergence check of theoretically predicted transmission loss (TL) of QZSMAMM under the excitation of a normally incident sound wave at 1000 Hz.

    图 5  QZSMAMM的有限元模型

    Fig. 5.  Finite element simulation model of QZSMAMM.

    图 6  三组对照结构的理论和数值模拟传输损失对比

    Fig. 6.  Comparison between theoretical model predictions and numerical simulation results of transmission loss for three different structures.

    图 7  共振模态 (a) 无动态磁负刚度; (b) Br = 1.0 T, H = 4.0 mm; (c) Br = 1.0 T, H = 3.5 mm

    Fig. 7.  Resonance mode: (a) Non-NS; (b) Br = 1.0 T, H = 4.0 mm; (c) Br = 1.0 T, H = 3.5 mm.

    图 8  隔声峰/谷的振动模式 (a) 无动态磁负刚度; (b) Br = 1.0 T, H = 4.0 mm; (c) Br = 1.0 T, H = 3.5 mm

    Fig. 8.  Vibration mode diagrams at sound insulation peak/valley: (a) Non-NS; (b) Br = 1.0 T, H = 4.0 mm; (c) Br = 1.0 T, H = 3.5 mm.

    图 9  (a) 三组对照结构的传输损失和平均速度; (b) 三组对照结构的传输损失和相位变化

    Fig. 9.  Curves of (a) transmission loss and average velocity and (b) transmission loss and phase change for three different structures.

    图 11  隔声峰/谷的声压云图(单位: Pa) (a) 无动态磁负刚度; (b) Br = 1.0 T, H = 4.0 mm; (c) Br = 1.0 T, H = 3.5 mm

    Fig. 11.  Sound pressure cloud diagram at sound insulation peak/valley (unit: Pa): (a) Non-NS; (b) Br = 1.0 T, H = 4.0 mm; (c) Br = 1.0 T, H = 3.5 mm.

    图 10  三组对照结构的传输损失和等效质量面密度曲线

    Fig. 10.  Transmission loss and equivalent mass surface density curves of three different structures.

    图 12  QZSMAMM的弹簧-质量等效模型

    Fig. 12.  Spring-mass equivalent model of QZSMAMM.

    图 13  剩余磁通密度保持不变(Br = 1.0 T), 传输损失随磁间隙的变化

    Fig. 13.  Variation of transmission loss with magnetic gap fixed at Br = 1.0 T.

    图 14  (a) 方位角$\varphi = {0^ \circ }$, 传输损失随入射角$\theta $的变化; (b) 入射角$\theta = {30^ \circ }$, 传输损失随入射角$\varphi $的变化

    Fig. 14.  (a) Variation of transmission loss with incidence angle at $\varphi = {0^ \circ }$; (b) variation of transmission loss with azimuth at $\theta = {30^ \circ }$.

    图 15  (a) 三种工况的传输损失对比(I: MAMM, II: QZSMAMM); (b) 三种工况的等效质量面密度对比(I: MAMM, II: QZSMAMM)

    Fig. 15.  (a) Comparison of transmission loss curves among three working conditions (I: MAMM, II: QZSMAMM); (b) comparison of equivalent mass surface density curves among three working conditions (I: MAMM, II: QZSMAMM).

    图 16  QZSMAMM单元的制备过程 (a) 施加薄膜张力; (b) 将中心贴敷有磁铁的张力薄膜粘接于支撑框架; (c) 添加外围磁铁; (d) 将样件置于阻抗管

    Fig. 16.  Schematic of the preparation process of QZSMAMM unit: (a) Applying membrane tension; (b) tension membrane with a magnet applied to the center is bonded to the support frame; (c) adding peripheral magnets; (d) test sample positioned in impedance tube.

    图 17  实验和有限元反演张力的传输损失对比

    Fig. 17.  Comparison between experimentally measured and numerically predicted transmission loss versus frequency curves.

    图 18  传输损失实验装置

    Fig. 18.  Schematic of transmission loss experimental setup.

    图 19  传输损失的实验测量与数值模拟对比

    Fig. 19.  Comparison between experimentally measured and numerically predicted transmission loss versus frequency curves.

    表 1  QZSMAMM单元几何参数和材料参数

    Table 1.  Geometric and material parameters of QZSMAMM unit.

    Lx
    /mm
    Ly
    /mm
    lx
    /mm
    ly
    /mm
    t/mmt1/mmBr
    /T
    T
    /(N·m–1)
    ${\rho _{{\text{mem}}}}$
    /(kg·m–2)
    ${\rho _{{\text{mag}}}}$/(kg·m–2)
    40405.325.320.22.01.05000.2415.6
    下载: 导出CSV

    表 2  理论和数值模拟的峰/谷频率

    Table 2.  Theoretical and numerical results for peak/valley frequencies.

    Peak/valley frequency/Hz
    Non-NSBr = 1.0 T, H = 4.0 mmBr = 1.0 T, H = 3.5 mm
    Theory435/297336/143281/86
    FEM432/295325/130270/95
    下载: 导出CSV

    表 3  三种不同工况的结构参数和目标频率

    Table 3.  Structural parameters and target frequencies for three different operating conditions.

    ConfigurationT/(N·m–1)Kmag/(N·m–1)f/Hz
    AI4000386
    II500–670386
    BI2000274
    II400–1300274
    CI500138
    II200–970138
    下载: 导出CSV

    表 4  实验样件的相关材料参数

    Table 4.  Material parameters of experimental samples.

    Density/
    (kg·m–3)
    Young’s
    modulus/GPa
    Poisson ratio
    Membrane12001.80.38
    Magnets75942000.29
    Epoxy resin11504.350.38
    下载: 导出CSV

    表 5  实验和数值模拟的峰/谷频率

    Table 5.  Experimentally measured and numerically predicted peak/valley frequencies.

    Peak/valley frequency/Hz
    T = 210 N/m T = 210 N/m T = 210 N/m T = 210 N/m
    d1 = 4.0 mm d2 = 3.8 mm d3 = 3.5 mm
    Experiment 286/208 268/140 262/118 259/104
    FEM 286/211 264/178 259/167 251/158
    下载: 导出CSV
  • [1]

    Gao N S, Wu J G, Lu K, Zhong H B 2021 Mech. Syst. Sig. Process. 154 107504Google Scholar

    [2]

    Kang Z X, Song R X, Zhang H J, Liu Q 2021 Appl. Acoust. 174 107785Google Scholar

    [3]

    Ma G C, Sheng P 2016 Sci. Adv. 2 e1501595Google Scholar

    [4]

    Mei J, Ma G C, Yang M, Yang Z Y, Wen W J, Sheng P 2012 Nat. Commun. 3 756Google Scholar

    [5]

    Deng K, Ding Y Q, He Z J, Zhao H P, Shi J, Liu Z Y 2009 J. Appl. Phys. 105 124909Google Scholar

    [6]

    Peng S S, He Z J, Jia H, Zhang A Q, Qiu C Y, Ke M Z, Liu Z Y 2010 Appl. Phys. Lett. 96 263502Google Scholar

    [7]

    Zhu X F, Liang B, Kan W W, Zou X Y, Cheng J C 2011 Phys. Rev. Lett. 106 014301Google Scholar

    [8]

    Liu Z Y, Zhang X, Mao Y, Zhu Y Y, Yang Z, Chan C T, Sheng P 2000 Science 289 1734Google Scholar

    [9]

    Kushwaha M S, Halevi P, Dobrzynski L, Djafari-Rouhani B 1993 Phys. Rev. Lett. 71 2022Google Scholar

    [10]

    Gao N, Qu S C, Li J, Wang J, Chen W Q 2021 Int. J. Mech. Sci. 208 106695Google Scholar

    [11]

    Nguyen H, Wu Q, Xu X C, Chen H, Tracy S, Huang G L 2020 Appl. Phys. Lett. 117 134103Google Scholar

    [12]

    Demelofilho N G R, Claeys C, Deckers E, Desmet W 2020 Mech. Syst. Sig. Process. 139 106624Google Scholar

    [13]

    Xiao Y, Wen J H, Wen X S 2012 J. Sound Vib. 331 5408Google Scholar

    [14]

    Yang J, Lee J S, Lee H R, Kang Y J 2018 Appl. Phys. Lett. 112 091901Google Scholar

    [15]

    Zhao X Z, Liu G Q, Zhang C, Xia D, Lu Z M 2018 Appl. Phys. Lett. 113 074101Google Scholar

    [16]

    Wang X N, Zhou Y D, Sang J Q, Zhu W Y 2020 Appl. Acoust. 158 107045Google Scholar

    [17]

    Lin Q H, Lin Q L, Wang Y H, Di G Q 2021 Compos. Struct. 273 114312Google Scholar

    [18]

    Wang X L, Zhao H, Luo X D, Huang Z Y 2016 Appl. Phys. Lett. 108 041905Google Scholar

    [19]

    Langfeldt F, Riecken J, Gleine W, von Estorff O 2016 J. Sound Vib. 373 1Google Scholar

    [20]

    Langfeldt F, Kemsies H, Gleine W, von Estorff O 2017 Phys. Lett. A 381 1457Google Scholar

    [21]

    Li Y L, Zhang Y L, Xie S C 2020 Appl. Acoust. 168 107427Google Scholar

    [22]

    Xu Q S, Qiao J, Sun J Y, Zhang G Y, Li L Q 2021 J. Sound Vib. 493 115823Google Scholar

    [23]

    Yang Z Y, Mei J, Yang M, Chan N H, Sheng P 2008 Phys. Rev. Lett. 101 204301Google Scholar

    [24]

    Lu Z B, Yu X, Lau S K, Khoo B C, Cui F S 2020 Appl. Acoust. 157 107003Google Scholar

    [25]

    Li X Y, Zhao J J, Wang W J, Xing T, Zhu L Y, Liu Y N, Li X H 2022 Appl. Acoust. 187 108514Google Scholar

    [26]

    贺子厚, 赵静波, 姚宏, 陈鑫 2019 物理学报 68 214302Google Scholar

    He Z H, Zhao J B, Yao H, Chen X 2019 Acta Phys. Sin. 68 214302Google Scholar

    [27]

    Naify C J, Chang C M, McKnight G, Nutt S 2011 J. Appl. Phys. 110 124903Google Scholar

    [28]

    Tan X J, Wang B, Wang L C, Zhu S W, Chen S, Yao K L 2022 Compos. Struct. 286 115308Google Scholar

    [29]

    Wang K, Zhou J X, Cai C Q, Xu D L, Ouyang H J 2019 Appl. Math. Modell. 73 581Google Scholar

    [30]

    Yuan S J, Sun Y, Zhao J L, Meng K, Wang M, Pu H Y, Peng Y, Luo J, Xie S R 2020 J. Sound Vib. 482 115449Google Scholar

    [31]

    胥强荣, 沈承, 韩峰, 卢天健 2021 物理学报 70 244302Google Scholar

    Xu Q R, Shen C, Han F, Lu T J 2021 Acta Phys. Sin. 70 244302Google Scholar

    [32]

    Allag H, Yonnet J P 2009 Ieee. Trans. Magn. 45 3969Google Scholar

    [33]

    Oyelade A O, Chen Y, Zhang R J, Hu G K 2018 Int. J. Appl. Mech. 10 1850054Google Scholar

    [34]

    Wu J S, Luo S S 1997 J. Sound Vib. 200 179Google Scholar

    [35]

    张光玉 2014 博士学位论文 (长沙: 国防科技大学)

    Zhang G Y 2014 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [36]

    Meirovitch L 2001 Fundamentals of Vibrations (New York: McGraw-Hill Higher Education) pp529–530

    [37]

    Lee J H, Kim J 2002 J. Sound Vib. 251 349Google Scholar

  • [1] 魏巍, 管峰, 方鑫. 基于带隙阻波隔振的超材料梁吸隔振一体化设计方法. 物理学报, 2024, 73(22): 224602. doi: 10.7498/aps.73.20241135
    [2] 李婷, 吴丰民, 张同涛, 王军军, 杨彬, 章东. 基于嵌入式粗糙颈亥姆霍兹共振器的低频宽带通风消声器. 物理学报, 2023, 72(22): 224301. doi: 10.7498/aps.72.20231047
    [3] 韩东海, 张广军, 赵静波, 姚宏. 新型Helmholtz型声子晶体的低频带隙及隔声特性. 物理学报, 2022, 71(11): 114301. doi: 10.7498/aps.71.20211932
    [4] 胥强荣, 沈承, 韩峰, 卢天健. 一种准零刚度声学超材料板的低频宽频带隔声行为. 物理学报, 2021, 70(24): 244302. doi: 10.7498/aps.70.20211203
    [5] 沈惠杰, 郁殿龙, 汤智胤, 苏永生, 李雁飞, 刘江伟. 暗声学超材料型充液管道的低频消声特性. 物理学报, 2019, 68(14): 144301. doi: 10.7498/aps.68.20190311
    [6] 翟世龙, 王元博, 赵晓鹏. 基于声学超材料的低频可调吸收器. 物理学报, 2019, 68(3): 034301. doi: 10.7498/aps.68.20181908
    [7] 贺子厚, 赵静波, 姚宏, 蒋娟娜, 陈鑫. 基于压电材料的薄膜声学超材料隔声性能研究. 物理学报, 2019, 68(13): 134302. doi: 10.7498/aps.68.20190245
    [8] 贺子厚, 赵静波, 姚宏, 陈鑫. 薄膜底面Helmholtz腔声学超材料的隔声性能. 物理学报, 2019, 68(21): 214302. doi: 10.7498/aps.68.20191131
    [9] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计. 物理学报, 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [10] 刘松, 罗春荣, 翟世龙, 陈怀军, 赵晓鹏. 负质量密度声学超材料的反常多普勒效应. 物理学报, 2017, 66(2): 024301. doi: 10.7498/aps.66.024301
    [11] 高东宝, 刘选俊, 田章福, 周泽民, 曾新吾, 韩开锋. 一种基于二维Helmholtz腔阵列的低频宽带隔声结构实验研究. 物理学报, 2017, 66(1): 014307. doi: 10.7498/aps.66.014307
    [12] 张永燕, 吴九汇, 钟宏民. 新型负模量声学超结构的低频宽带机理研究. 物理学报, 2017, 66(9): 094301. doi: 10.7498/aps.66.094301
    [13] 司黎明, 侯吉旋, 刘埇, 吕昕. 基于集总元件和负微分元件的有源可调谐超材料传输线. 物理学报, 2014, 63(2): 027802. doi: 10.7498/aps.63.027802
    [14] 马玺越, 陈克安, 丁少虎, 张冰瑞. 用于三层有源隔声结构误差传感的压电传感薄膜阵列及其优化设计. 物理学报, 2013, 62(12): 124301. doi: 10.7498/aps.62.124301
    [15] 徐阳秋, 张辉彬, 周佩珩, 陆海鹏, 梁迪飞, 谢建良. 基于金属线阵列嵌入的低频宽带电路模拟吸波体设计. 物理学报, 2013, 62(5): 058103. doi: 10.7498/aps.62.058103
    [16] 王莹, 程用志, 聂彦, 龚荣洲. 基于集总元件的低频宽带超材料吸波体设计与实验研究. 物理学报, 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [17] 沈惠杰, 温激鸿, 郁殿龙, 蔡力, 温熙森. 基于主动声学超材料的圆柱声隐身斗篷设计研究. 物理学报, 2012, 61(13): 134303. doi: 10.7498/aps.61.134303
    [18] 程用志, 王莹, 聂彦, 郑栋浩, 龚荣洲, 熊炫, 王鲜. 基于电阻型频率选择表面的低频宽带超材料吸波体的设计. 物理学报, 2012, 61(13): 134102. doi: 10.7498/aps.61.134102
    [19] 丁昌林, 赵晓鹏. 可听声频段的声学超材料. 物理学报, 2009, 58(9): 6351-6355. doi: 10.7498/aps.58.6351
    [20] 王连胜, 罗春荣, 黄 勇, 赵晓鹏. 基于电流变液的可调谐负磁导率材料. 物理学报, 2008, 57(6): 3571-3577. doi: 10.7498/aps.57.3571
计量
  • 文章访问数:  4692
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-27
  • 修回日期:  2022-07-01
  • 上网日期:  2022-11-02
  • 刊出日期:  2022-11-05

/

返回文章
返回