搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正常色散高非线性石英光纤优化设计及平坦光频率梳产生研究

王佳强 吴志芳 冯素春

引用本文:
Citation:

正常色散高非线性石英光纤优化设计及平坦光频率梳产生研究

王佳强, 吴志芳, 冯素春

Design of Normal Dispersion High Nonlinear Silica Fiber and application for Flat Optical Frequency Comb Generation

Wang Jiaqiang, Wu Zhifang, Feng Suchun
PDF
导出引用
  • 本文对一种纤芯折射率分布呈三角形的四包层结构正常色散平坦高非线性石英光纤进行了优化设计,用于平坦光频率梳产生。研究了光纤各包层宽度和折射率大小对光纤色散特性、截止波长的影响。经过优化设计的光纤在波长1400~1700nm范围内可实现较为平坦的近零正常色散,色散范围为-3~0ps/(km·nm)。光纤有效模场面积约为11μm2,非线性系数可达12.8W-1·km-1。基于电光调制脉冲泵浦正常色散平坦高非线性石英光纤,进行平坦光频率梳产生仿真。研究了光纤长度,二阶色散,三阶色散,脉冲峰值功率,脉冲宽度,脉冲初始啁啾,脉冲形状等参数对光频率梳产生的影响。仿真结果有利于促进正常色散高非线性石英光纤的国产化及其在平坦光频率梳的应用。
    The optical frequency comb generation schemes mainly include mode-locked laser, electro-optic modulation comb, nonlinear Kerr micro-resonator comb and nonlinear supercontinuum comb. For the nonlinear supercontinuum comb scheme, the silica-based high nonlinear fiber with near-zero flattened normal dispersion is required. However the fiber dispersion has variation along the fiber owing to the fabrication inaccuracy. Furthermore, nonlinear supercontinuum comb generation based on the nonlinear fiber has not been systematically studied. In this paper, an optimal design of four-clad flat normal dispersion high nonlinear silica fiber with a triangular core refractive index distribution for the flat optical frequency comb generation is carried out. The effects of the fiber cladding width and refractive index on the fiber dispersion characteristics and cut-off wavelength were studied through using the finite element method mode solver. The optimally designed fiber can obtain relatively flat near-zero normal dispersion in the wavelength range of 1400~1700 nm, the dispersion range is -3~0ps/(km·nm), and the dispersion slope is close to 0 near 1550 nm. The effective mode field area of the nonlinear silica fiber is about 11μm2, and the nonlinear coefficient can reach 12.8W-1·km-1.Based on the electro-optic modulation pulse pumping the flat normal dispersion high nonlinear silica fiber, the flat optical frequency comb generation is systematically simulated with the generalized nonlinear Schrödinger equation. The time-frequency evolutions of a hyperbolic secant pulse, a Gaussian pulse and a super Gaussian pulse are simulated using the X-Frog technology. The time-frequency spectrograms connect the time and frequency domains of the pulse, which clearly shows the change of pulse chirp during the propagation. The effect of various parameters on the optical frequency comb are studied, such as the fiber length, second-order dispersion, third-order dispersion, pulse peak power, pulse half width, pulse initial chirp, and pulse shape. An optical frequency comb with 3dB flatness and bandwidth of about 40nm can be achieved based on hyperbolic secant pulse or Gaussian pulse pumping. Comparing with the hyperbolic secant pulse and Gaussian pulse, the super Gaussian pulse can produce a flatter optical frequency comb. An optical frequency comb with 2dB flatness and bandwidth of about 92nm can be achieved based on the super Gaussian pulse pumping. Therefore, based on the proposed normal dispersion high nonlinear fiber, it is possible to realize an optical frequency comb with repetition rate above 10GHz, power flatness within 3dB, and spectral bandwidth of about 40~90 nm. The simulation results are beneficial to promote the localization of normal dispersion high nonlinear silica fiber and its application in flat optical frequency comb.
  • [1]

    Diddams S A, Vahala K, Udem T Optical frequency combs:Coherently uniting the electromagnetic spectrum 2020Science 369(6501) eaay3676

    [2]

    Gaeta A L, Lipson M, Kippenberg T J Photonic-chip-based frequency combs 2019Nature Photonics, 13 158-169

    [3]

    Hu H, Oxenløwe L K Chip-based optical frequency combs for high-capacity optical communications 2021Nanophotonics 10(5)1367-1385

    [4]

    Company V T, Weiner A M Optical frequency comb technology for ultra-broadband radio-frequency photonics 2014Laser Photonics Rev. 8(3)368-393

    [5]

    Wu R, Company V T, Leaird D E, Weiner A M Supercontinuum-based 10-GHz flat-topped optical frequency comb generation 2013Opt. Express 21(5)6045-6052

    [6]

    Ataie V, Myslivets E, Kuo B P-P, Alic N, Radic S Spectrally equalized frequency comb generation in multistage parametric mixer with nonlinear pulse shaping 2014 J. Lightwave Technol. 32(4)840-846

    [7]

    Yang T, Dong J J, Liao S S, Huang D X, Zhang X L Comparison analysis of optical frequency comb generation with nonlinear effects in highly nonlinear fibers 2013Opt. Express 21 8508-8520

    [8]

    Yu S, Bao F, Hu H. Broadband optical frequency comb generation with flexible frequency spacing and center wavelength 2018IEEE Photonics J. 10(2)1-7

    [9]

    Han J Y, Huang Y L, Wu J L, Li Z R, Yang Y D, Xiao J L, Zhang D M, Qin G S, Huang Y Z 10-GHz broadband optical frequency comb generation at 1550/1310 nm 2020Opto-Electron Adv 3 190033

    [10]

    Cerqueira S Jr A, Chavez Boggio J M, Rieznik A A, Hernandez-Figueroa H E, Fragnito H L, Knight J C. Highly efficient generation of broadband cascaded four-wave mixing products 2008Opt. Express 16 2816-2828

    [11]

    Li Q, Huang Y, Jia Z, Yao C, Qin G, Ohishi Y, Qin W Design of Fluorotellurite Microstructured Fibers With Near-Zero-Flattened Dispersion Profiles for Optical-Frequency Comb Generation 2018J. Lightwave Technol. 36 2211-2215

    [12]

    Poletti F, Feng X, Ponzo G M, Petrovich M N, Loh W H, Richardson D J All-solid highly nonlinear singlemode fibers with a tailored dispersion profile 2011Opt. Express 1966-80

    [13]

    Kuo B P-P, Fini J M, Grüner-Nielsen L, Radic S Dispersion-stabilized highly-nonlinear fiber for wideband parametric mixer synthesis 2012Opt. Express 20 18611-18619

    [14]

    Yang X, Richardson D J, Petropoulos P Nonlinear Generation of Ultra-Flat Broadened Spectrum Based on Adaptive Pulse Shaping 2012J. Lightwave Technol. 30(12)1971-1977

  • [1] 邵晓东, 韩海年, 魏志义. 基于光学频率梳的超低噪声微波频率产生. 物理学报, doi: 10.7498/aps.70.20201925
    [2] 夏文泽, 刘洋, 赫明钊, 曹士英, 杨伟雷, 张福民, 缪东晶, 李建双. 双光梳非线性异步光学采样测距中关键参数的数值分析. 物理学报, doi: 10.7498/aps.70.20210565
    [3] 盛泉, 王盟, 史朝督, 田浩, 张钧翔, 刘俊杰, 史伟, 姚建铨. 基于锯齿波脉冲抑制自相位调制的高功率窄线宽单频脉冲光纤激光放大器. 物理学报, doi: 10.7498/aps.70.20210496
    [4] 郑立, 刘寒, 汪会波, 王阁阳, 蒋建旺, 韩海年, 朱江峰, 魏志义. 极紫外飞秒光学频率梳的产生与研究进展. 物理学报, doi: 10.7498/aps.69.20200851
    [5] 赵显宇, 曲兴华, 陈嘉伟, 郑继辉, 王金栋, 张福民. 一种基于电光调制光频梳光谱干涉的绝对测距方法. 物理学报, doi: 10.7498/aps.69.20200081
    [6] 粟荣涛, 肖虎, 周朴, 王小林, 马阎星, 段磊, 吕品, 许晓军. 窄线宽脉冲光纤激光的自相位调制预补偿研究. 物理学报, doi: 10.7498/aps.67.20180486
    [7] 江俊峰, 黄灿, 刘琨, 张永宁, 王双, 张学智, 马喆, 陈文杰, 于哲, 刘铁根. 用于CARS激发源的全光纤飞秒脉冲谱压缩. 物理学报, doi: 10.7498/aps.66.204207
    [8] 吴翰钟, 曹士英, 张福民, 曲兴华. 光学频率梳基于光谱干涉实现绝对距离测量. 物理学报, doi: 10.7498/aps.64.020601
    [9] 石俊凯, 柴路, 赵晓薇, 李江, 刘博文, 胡明列, 栗岩锋, 王清月. 光子晶体光纤飞秒激光非线性放大系统的耦合动力学过程研究. 物理学报, doi: 10.7498/aps.64.094203
    [10] 贾楠, 李唐军, 孙剑, 钟康平, 王目光. 双向使用高非线性光纤实现同时解复用出两路10 Gbit/s信号. 物理学报, doi: 10.7498/aps.63.024201
    [11] 贾楠, 李唐军, 孙剑, 钟康平, 王目光. 高非线性光纤正常色散区利用皮秒脉冲产生超连续谱的相干特性. 物理学报, doi: 10.7498/aps.63.084203
    [12] 李述标, 武保剑, 文峰, 韩瑞. 高非线性光纤中四波混频的磁控机理研究. 物理学报, doi: 10.7498/aps.62.024213
    [13] 李曙光, 朱星平, 薛建荣. 全波段正常色散光子晶体光纤中超连续谱的产生. 物理学报, doi: 10.7498/aps.62.204206
    [14] 王楠, 韩海年, 李德华, 魏志义. 光学频率梳空间光谱分辨精度研究. 物理学报, doi: 10.7498/aps.61.184201
    [15] 王文睿, 于晋龙, 韩丙辰, 郭精忠, 罗俊, 王菊, 刘毅, 杨恩泽. 基于高非线性光纤中非线性偏振旋转效应的全光逻辑门研究. 物理学报, doi: 10.7498/aps.61.084214
    [16] 马文文, 李曙光, 尹国冰, 冯荣普, 付博. 反常色散锥形微结构光纤中高效率脉冲压缩研究. 物理学报, doi: 10.7498/aps.59.4720
    [17] 陈泳竹, 李玉忠, 徐文成. 色散平坦渐减光纤产生平坦超宽超连续谱的特性研究. 物理学报, doi: 10.7498/aps.57.7693
    [18] 韩海年, 张 炜, 王 鹏, 李德华, 魏志义, 沈乃澂, 聂玉昕, 高玉平, 张首刚, 李师群. 飞秒钛宝石光学频率梳的精密锁定. 物理学报, doi: 10.7498/aps.56.2760
    [19] 夏 舸, 黄德修, 元秀华. 正常色散平坦光纤中皮秒抽运脉冲超连续谱的形成研究. 物理学报, doi: 10.7498/aps.56.2212
    [20] 吴国华, 郭 弘, 刘明伟, 邓冬梅, 刘时雄. 尾波场与相对论效应对激光脉冲自相位调制及频移影响的比较研究. 物理学报, doi: 10.7498/aps.54.3213
计量
  • 文章访问数:  147
  • PDF下载量:  4
  • 被引次数: 0
出版历程

正常色散高非线性石英光纤优化设计及平坦光频率梳产生研究

  • 北京交通大学光波技术研究所, 全光网络与现代通信网教育部重点实验室, 北京 100044

摘要: 本文对一种纤芯折射率分布呈三角形的四包层结构正常色散平坦高非线性石英光纤进行了优化设计,用于平坦光频率梳产生。研究了光纤各包层宽度和折射率大小对光纤色散特性、截止波长的影响。经过优化设计的光纤在波长1400~1700nm范围内可实现较为平坦的近零正常色散,色散范围为-3~0ps/(km·nm)。光纤有效模场面积约为11μm2,非线性系数可达12.8W-1·km-1。基于电光调制脉冲泵浦正常色散平坦高非线性石英光纤,进行平坦光频率梳产生仿真。研究了光纤长度,二阶色散,三阶色散,脉冲峰值功率,脉冲宽度,脉冲初始啁啾,脉冲形状等参数对光频率梳产生的影响。仿真结果有利于促进正常色散高非线性石英光纤的国产化及其在平坦光频率梳的应用。

English Abstract

目录

    /

    返回文章
    返回