搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正常色散高非线性石英光纤优化设计及平坦光频率梳产生

王佳强 吴志芳 冯素春

引用本文:
Citation:

正常色散高非线性石英光纤优化设计及平坦光频率梳产生

王佳强, 吴志芳, 冯素春

Design of normal dispersion high nonlinear silica fiber and generation of flat optical frequency comb

Wang Jia-Qiang, Wu Zhi-Fang, Feng Su-Chun
PDF
HTML
导出引用
  • 本文对一种纤芯折射率分布呈三角形的四包层结构正常色散平坦高非线性石英光纤进行优化设计, 用于平坦光频率梳产生. 研究了光纤各包层宽度和折射率大小对光纤色散特性、截止波长的影响. 经过优化设计的光纤在波长$ 1400—1700\;{\rm{n}}{\rm{m}} $范围内可实现较为平坦的近零正常色散, 色散范围为$ -3—0\;{\rm{p}}{\rm{s}}/(\rm{k}\rm{m}\cdot {\rm{n}}{\rm{m}}) $. 光纤有效模场面积约为$ 11\;{\text{μm}}^{2} $, 非线性系数可达$12.8\;{\rm{W}}^{-1}{\cdot} {\rm{k}\rm{m}}^{-1}$. 基于电光调制脉冲泵浦正常色散平坦高非线性石英光纤, 进行平坦光频率梳产生仿真. 研究了光纤长度、二阶色散、三阶色散、脉冲峰值功率、脉冲宽度、脉冲初始啁啾、脉冲形状等参数对光频率梳产生的影响. 仿真结果有利于促进正常色散高非线性石英光纤的国产化及其在平坦光频率梳的应用.
    The scheme of generating optical frequency comb mainly includes mode-locked laser, electro-optic modulation comb, nonlinear Kerr micro-resonator comb, and nonlinear supercontinuum comb. For the nonlinear supercontinuum comb scheme, the silica-based high nonlinear fiber with near-zero flattened normal dispersion is required. However the fiber dispersion varies along the fiber due to the fabrication inaccuracy. Furthermore, nonlinear supercontinuum comb generation based on the nonlinear fiber has not been systematically studied. In this paper, an optimal design of four-clad flat normal dispersion high nonlinear silica fiber with a triangular core refractive index distribution for the flat optical frequency comb generation is carried out. The effects of the fiber cladding width and refractive index on the fiber dispersion characteristics and cut-off wavelength are studied through using the finite element method mode solver. The optimally designed fiber can obtain relatively flat near-zero normal dispersion in a wavelength range of 1400–1700 nm, the dispersion range is –3–0 $ \rm{p}\rm{s}/(\rm{k}\rm{m}\cdot \rm{n}\rm{m}) $, and the dispersion slope is close to 0 at nearly 1550 nm. The effective mode field area of the nonlinear silica fiber is about 11$ {\text{μm}}^{2} $, and the nonlinear coefficient can reach 12.8$ {\rm{W}}^{-1}{\cdot \rm{k}\rm{m}}^{-1} $.Based on the electro-optic modulation pulse pumping the flat normal dispersion high nonlinear silica fiber, the flat optical frequency comb generation is systematically simulated with the generalized nonlinear Schrödinger equation. The time-frequency evolutions of a hyperbolic secant pulse, a Gaussian pulse and a super Gaussian pulse are simulated by using the X-Frog technology. The time-frequency spectrograms connect the time domain and the frequency domain of the pulse, clearly showing the change of pulse chirp during the propagation. The effects of various parameters on the optical frequency comb are studied, such as the fiber length, second-order dispersion, third-order dispersion, pulse peak power, pulse half width, pulse initial chirp, and pulse shape. An optical frequency comb with 3-dB flatness and about 40-nm bandwidth can be achieved based on hyperbolic secant pulse or Gaussian pulse pumping. Compared with the hyperbolic secant pulse and Gaussian pulse, the super Gaussian pulse can produce a flatter optical frequency comb. An optical frequency comb with 2-dB flatness and about 92-nm bandwidth can be achieved based on the super Gaussian pulse pumping. Therefore, based on the proposed high nonlinear fiber with normal dispersion , it is possible to realize an optical frequency comb with a repetition rate above 10 GHz, power flatness within 3 dB, and spectral bandwidth of about 40–90 nm. The simulation results are beneficial to promoting the localization of normal dispersion high nonlinear silica fiber and its application in flat optical frequency comb.
      通信作者: 冯素春, schfeng@bjtu.edu.cn
    • 基金项目: 中央高校基本科研业务费专项资金(批准号: 2021JBM002)和国家自然科学基金(批准号: 61827818, 62275012)资助的课题.
      Corresponding author: Feng Su-Chun, schfeng@bjtu.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for Central Universities of China (Grant No. 2021JBM002) and the National Natural Science Foundation of China (Grant Nos. 61827818, 62275012).
    [1]

    Diddams S A, Vahala K, Udem T 2020 Science 369 eaay3676Google Scholar

    [2]

    Gaeta A L, Lipson M, Kippenberg T J 2019 Nat. Photonics 13 158Google Scholar

    [3]

    Hu H, Oxenløwe L K 2021 Nanophotonics 10 1367Google Scholar

    [4]

    Company V T, Weiner A M 2014 Laser Photonics Rev. 8 368Google Scholar

    [5]

    Wu R, Company V T, Leaird D E, Weiner A M 2013 Opt. Express 21 6045Google Scholar

    [6]

    Ataie V, Myslivets E, Kuo B P P, Alic N, Radic S 2014 J. Lightwave Technol. 32 840Google Scholar

    [7]

    Yang T, Dong J J, Liao S S, Huang D X, Zhang X L 2013 Opt. Express 21 8508Google Scholar

    [8]

    Yu S, Bao F, Hu H 2018 IEEE Photonics J. 10 2Google Scholar

    [9]

    Han J Y, Huang Y L, Wu J L, Li Z R, Yang Y D, Xiao J L, Zhang D M, Qin G S, Huang Y Z 2020 Opto-Electron Adv. 3 190033Google Scholar

    [10]

    张馨, 张江华, 李仪茗, 殷科, 郑鑫, 江天 2021 中国激光 48 0116002Google Scholar

    Zhang X, Zhang J H, Li Y M, Yin K, Zheng X, Jiang T 2021 Chin. J. Lasers 48 0116002Google Scholar

    [11]

    Cerqueira S Jr A, Chavez Boggio J M, Rieznik A A, Hernandez-Figueroa H E, Fragnito H L, Knight J C 2008 Opt. Express 16 2816Google Scholar

    [12]

    Li Q, Huang Y, Jia Z, Yao C, Qin G, Ohishi Y, Qin W 2018 J. Lightwave Technol. 36 2211Google Scholar

    [13]

    Poletti F, Feng X, Ponzo G M, Petrovich M N, Loh W H, Richardson D J 2011 Opt. Express 19 66Google Scholar

    [14]

    Kuo B P P, Fini J M, Grüner-Nielsen L, Radic S 2012 Opt. Express 20 18611Google Scholar

    [15]

    吴志芳2019 硕士学位论文 (北京: 北京交通大学)

    Wu Z F 2019 M. S. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese)

    [16]

    骆飞 2020 硕士学位论文 (北京: 北京交通大学)

    Luo F 2020 M. S. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese)

    [17]

    王智 2000 博士学位论文 (北京: 北京交通大学)

    Wang Z 2000 Ph. D. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese)

    [18]

    孙剑, 李唐军, 王目光, 贾楠, 石彦超, 王春灿, 冯素春 2019 物理学报 68 114210Google Scholar

    Sun J, Li T J, Wang M G, Jia N, Shi Y C, Wang C C, Feng S C 2019 Acta Phys. Sin. 68 114210Google Scholar

    [19]

    Yang X, Richardson D J, Petropoulos P 2012 J. Lightwave Technol. 30 1971Google Scholar

  • 图 1  正常色散平坦高非线性光纤 (a) 光纤结构; (b) 折射率分布

    Fig. 1.  Flat normal dispersion high nonlinear fiber: (a) Structure; (b) refractive index distribution.

    图 2  各包层相对折射率变化对光纤色散特性的影响 (a) 改变△n1; (b) 改变△n2; (c) 改变△n3; (d) 改变△n4

    Fig. 2.  Effect of relative refractive index change of each cladding on fiber dispersion characteristics: (a) Changing △n1; (b) changing △n2; (c) changing △n3; (d) changing △n4.

    图 3  各包层相对宽度变化对光纤色散特性的影响 (a) 改变∆r1; (b) 改变∆r2; (c) 改变∆r3; (d) 改变∆r4

    Fig. 3.  Effect of relative width variation of each cladding on fiber dispersion characteristics: (a) Changing ∆r1; (b) changing ∆r2; (c) changing ∆r3; (d) changing ∆r4.

    图 4  光纤中激发出的高阶模场 (a)$ \Delta {n}_{3} $取值过大; (b)$ \Delta {n}_{4} $的绝对值过小; (c)$ \Delta {r}_{3} $取值过大; (d)$ \Delta {r}_{4} $取值过小

    Fig. 4.  High-order mode field excited in the fiber: (a) When $ \Delta {n}_{3} $ is too large; (b) when the absolute value of $ \Delta {n}_{4} $ is too small; (c) when$ \Delta {r}_{3} $ is too large; (d) when $ \Delta {r}_{4} $ is too small.

    图 5  最终优化设计的正常色散平坦高非线性光纤 (a) 色散变化曲线; (b)$ {A}_{\rm{e}\rm{f}\rm{f}} $$ \gamma $变化曲线

    Fig. 5.  The final designed normal dispersion high nonlinear fiber: (a) The dispersion curve; (b) the curve of $ {A}_{\rm{e}\rm{f}\rm{f}} $ and $ \gamma $.

    图 6  无啁啾双曲正割光脉冲经过正常色散平坦高非线性光纤产生光频梳 (a),(b) 传输不同光纤长度情况下时域和频域包络演化; (c),(d) 传输到400 m时光频率梳时域和频域包络

    Fig. 6.  The generated optical frequency comb with a non-chirped hyperbolic secant pulse propagating in flat normal dispersion high nonlinear fiber: (a),(b) Time and frequency domain envelope evolution with different propagation length; (c),(d) time and frequency domain envelope of the optical frequency comb after the pulse propagation of 400 m.

    图 7  无啁啾双曲正割光脉冲传输不同光纤长度产生光频率梳的时谱图 (a) 0 m; (b) 100 m; (c) 200 m; (d) 400 m

    Fig. 7.  Spectrograms of non-chirped hyperbolic secant optical pulses at various propagation fiber lengths: (a) 0 m; (b) 100 m; (c) 200 m; (d) 400 m.

    图 8  改变一个参数而其他参数不变, 脉冲在传输400 m光纤后展宽的光频率梳频谱包络及时域波形 (a)只改变$ P $; (b)只改变$ {T}_{0} $; (c)只改变$ C $; (d)只改变$ {\beta }_{2} $; (e)只改变$ {\beta }_{3} $; (f)只改变输入脉冲波形

    Fig. 8.  The broadening optical frequency comb spectra and pulse envelope after the pulse propagates through 400 m fiber when one parameter is changed while the other parameters remain unchanged: (a) Only changeing $ P $; (b) only changeing $ {T}_{0} $; (c) only changeing $ C $; (d) only changeing $ {\beta }_{2} $; (e) only changeing $ {\beta }_{3} $; (f) only changeing the input pulse waveform.

    图 9  无啁啾高斯光脉冲(m = 1)传输不同光纤长度产生光频率梳的时谱图 (a) 0 m; (b) 100 m; (c) 200 m; (d) 400 m

    Fig. 9.  Spectrograms of the non-chirped Gaussian pulse (m = 1) at various propagation fiber lengths: (a) 0 m; (b) 100 m; (c) 200 m; (d) 400 m.

    图 10  无啁啾超高斯光脉冲(m = 5)传输不同光纤长度产生光频率梳的时谱图 (a) 0 m; (b) 100 m; (c) 200 m; (d) 400 m

    Fig. 10.  Spectrograms of the non-chirped super Gaussian pulse (m = 5) at various propagation fiber lengths: (a) 0 m; (b) 100 m; (c) 200 m; (d) 400 m.

    表 1  仿真所采用的参数

    Table 1.  The parameters used in the simulation.

    Parameterβ2/
    (ps2·km–1)
    β3/
    (ps3·km–1)
    β4/
    (ps4·km–1)
    γ/
    (W–1·m–1)
    P/
    W
    T0/
    ps
    α/
    (dB·km–1)
    Value0.66–0.006200.01283010.8
    下载: 导出CSV
  • [1]

    Diddams S A, Vahala K, Udem T 2020 Science 369 eaay3676Google Scholar

    [2]

    Gaeta A L, Lipson M, Kippenberg T J 2019 Nat. Photonics 13 158Google Scholar

    [3]

    Hu H, Oxenløwe L K 2021 Nanophotonics 10 1367Google Scholar

    [4]

    Company V T, Weiner A M 2014 Laser Photonics Rev. 8 368Google Scholar

    [5]

    Wu R, Company V T, Leaird D E, Weiner A M 2013 Opt. Express 21 6045Google Scholar

    [6]

    Ataie V, Myslivets E, Kuo B P P, Alic N, Radic S 2014 J. Lightwave Technol. 32 840Google Scholar

    [7]

    Yang T, Dong J J, Liao S S, Huang D X, Zhang X L 2013 Opt. Express 21 8508Google Scholar

    [8]

    Yu S, Bao F, Hu H 2018 IEEE Photonics J. 10 2Google Scholar

    [9]

    Han J Y, Huang Y L, Wu J L, Li Z R, Yang Y D, Xiao J L, Zhang D M, Qin G S, Huang Y Z 2020 Opto-Electron Adv. 3 190033Google Scholar

    [10]

    张馨, 张江华, 李仪茗, 殷科, 郑鑫, 江天 2021 中国激光 48 0116002Google Scholar

    Zhang X, Zhang J H, Li Y M, Yin K, Zheng X, Jiang T 2021 Chin. J. Lasers 48 0116002Google Scholar

    [11]

    Cerqueira S Jr A, Chavez Boggio J M, Rieznik A A, Hernandez-Figueroa H E, Fragnito H L, Knight J C 2008 Opt. Express 16 2816Google Scholar

    [12]

    Li Q, Huang Y, Jia Z, Yao C, Qin G, Ohishi Y, Qin W 2018 J. Lightwave Technol. 36 2211Google Scholar

    [13]

    Poletti F, Feng X, Ponzo G M, Petrovich M N, Loh W H, Richardson D J 2011 Opt. Express 19 66Google Scholar

    [14]

    Kuo B P P, Fini J M, Grüner-Nielsen L, Radic S 2012 Opt. Express 20 18611Google Scholar

    [15]

    吴志芳2019 硕士学位论文 (北京: 北京交通大学)

    Wu Z F 2019 M. S. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese)

    [16]

    骆飞 2020 硕士学位论文 (北京: 北京交通大学)

    Luo F 2020 M. S. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese)

    [17]

    王智 2000 博士学位论文 (北京: 北京交通大学)

    Wang Z 2000 Ph. D. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese)

    [18]

    孙剑, 李唐军, 王目光, 贾楠, 石彦超, 王春灿, 冯素春 2019 物理学报 68 114210Google Scholar

    Sun J, Li T J, Wang M G, Jia N, Shi Y C, Wang C C, Feng S C 2019 Acta Phys. Sin. 68 114210Google Scholar

    [19]

    Yang X, Richardson D J, Petropoulos P 2012 J. Lightwave Technol. 30 1971Google Scholar

  • [1] 李聘滨, 滕浩, 田文龙, 黄振文, 朱江峰, 钟诗阳, 运晨霞, 刘文军, 魏志义. 基于平凹多通腔的非线性脉冲压缩技术. 物理学报, 2024, 73(12): 124206. doi: 10.7498/aps.73.20240110
    [2] 高荣, 杨亚楠, 湛晨翌, 张宗祯, 邓宜, 王子潇, 梁坤, 冯素春. 基于双频泵浦正常色散碳化硅微环谐振腔的光频率梳设计. 物理学报, 2024, 73(3): 034203. doi: 10.7498/aps.73.20231442
    [3] 张竣珲, 樊利, 吴正茂, 苟宸豪, 骆阳, 夏光琼. 基于光注入下脉冲电流调制1550 nm 垂直腔面发射激光器获取宽带可调谐光学频率梳. 物理学报, 2023, 72(1): 014207. doi: 10.7498/aps.72.20221709
    [4] 王井上, 王栋梁, 常国庆. 基于色散管理的自相位调制光谱展宽滤波技术. 物理学报, 2023, 72(9): 094205. doi: 10.7498/aps.72.20230088
    [5] 邵晓东, 韩海年, 魏志义. 基于光学频率梳的超低噪声微波频率产生. 物理学报, 2021, 70(13): 134204. doi: 10.7498/aps.70.20201925
    [6] 夏文泽, 刘洋, 赫明钊, 曹士英, 杨伟雷, 张福民, 缪东晶, 李建双. 双光梳非线性异步光学采样测距中关键参数的数值分析. 物理学报, 2021, 70(18): 180601. doi: 10.7498/aps.70.20210565
    [7] 盛泉, 王盟, 史朝督, 田浩, 张钧翔, 刘俊杰, 史伟, 姚建铨. 基于锯齿波脉冲抑制自相位调制的高功率窄线宽单频脉冲光纤激光放大器. 物理学报, 2021, 70(21): 214202. doi: 10.7498/aps.70.20210496
    [8] 郑立, 刘寒, 汪会波, 王阁阳, 蒋建旺, 韩海年, 朱江峰, 魏志义. 极紫外飞秒光学频率梳的产生与研究进展. 物理学报, 2020, 69(22): 224203. doi: 10.7498/aps.69.20200851
    [9] 赵显宇, 曲兴华, 陈嘉伟, 郑继辉, 王金栋, 张福民. 一种基于电光调制光频梳光谱干涉的绝对测距方法. 物理学报, 2020, 69(9): 090601. doi: 10.7498/aps.69.20200081
    [10] 粟荣涛, 肖虎, 周朴, 王小林, 马阎星, 段磊, 吕品, 许晓军. 窄线宽脉冲光纤激光的自相位调制预补偿研究. 物理学报, 2018, 67(16): 164201. doi: 10.7498/aps.67.20180486
    [11] 石俊凯, 柴路, 赵晓薇, 李江, 刘博文, 胡明列, 栗岩锋, 王清月. 光子晶体光纤飞秒激光非线性放大系统的耦合动力学过程研究. 物理学报, 2015, 64(9): 094203. doi: 10.7498/aps.64.094203
    [12] 贾楠, 李唐军, 孙剑, 钟康平, 王目光. 双向使用高非线性光纤实现同时解复用出两路10 Gbit/s信号. 物理学报, 2014, 63(2): 024201. doi: 10.7498/aps.63.024201
    [13] 贾楠, 李唐军, 孙剑, 钟康平, 王目光. 高非线性光纤正常色散区利用皮秒脉冲产生超连续谱的相干特性. 物理学报, 2014, 63(8): 084203. doi: 10.7498/aps.63.084203
    [14] 李述标, 武保剑, 文峰, 韩瑞. 高非线性光纤中四波混频的磁控机理研究. 物理学报, 2013, 62(2): 024213. doi: 10.7498/aps.62.024213
    [15] 李曙光, 朱星平, 薛建荣. 全波段正常色散光子晶体光纤中超连续谱的产生. 物理学报, 2013, 62(20): 204206. doi: 10.7498/aps.62.204206
    [16] 王楠, 韩海年, 李德华, 魏志义. 光学频率梳空间光谱分辨精度研究. 物理学报, 2012, 61(18): 184201. doi: 10.7498/aps.61.184201
    [17] 王文睿, 于晋龙, 韩丙辰, 郭精忠, 罗俊, 王菊, 刘毅, 杨恩泽. 基于高非线性光纤中非线性偏振旋转效应的全光逻辑门研究. 物理学报, 2012, 61(8): 084214. doi: 10.7498/aps.61.084214
    [18] 马文文, 李曙光, 尹国冰, 冯荣普, 付博. 反常色散锥形微结构光纤中高效率脉冲压缩研究. 物理学报, 2010, 59(7): 4720-4725. doi: 10.7498/aps.59.4720
    [19] 陈泳竹, 李玉忠, 徐文成. 色散平坦渐减光纤产生平坦超宽超连续谱的特性研究. 物理学报, 2008, 57(12): 7693-7698. doi: 10.7498/aps.57.7693
    [20] 夏 舸, 黄德修, 元秀华. 正常色散平坦光纤中皮秒抽运脉冲超连续谱的形成研究. 物理学报, 2007, 56(4): 2212-2217. doi: 10.7498/aps.56.2212
计量
  • 文章访问数:  4928
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-05
  • 修回日期:  2022-07-13
  • 上网日期:  2022-11-28
  • 刊出日期:  2022-12-05

/

返回文章
返回