搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蓝宝石谐振体内的回音壁模电磁场分布

范思晨 杨帆 阮军

引用本文:
Citation:

蓝宝石谐振体内的回音壁模电磁场分布

范思晨, 杨帆, 阮军

Eelectromagnetic field distribution of whispering gallery mode in a sapphire resonator

Fan Si-Chen, Yang Fan, Ruan Jun
PDF
HTML
导出引用
  • 蓝宝石谐振体内的电磁场为回音壁模式时具有极低的介质损耗. 本文采用径向-轴向模式匹配法, 理论分析了蓝宝石谐振体内的场模式分布, 分析了谐振频率与谐振体几何尺寸的关系; 其次, 基于有限元分析仿真了蓝宝石圆柱体内场分布情况; 研制了三维转动位移台, 采用磁环/探针耦合的方式激发蓝宝石谐振体内的回音壁电磁场, 测量了谐振体表面的S参数, 由此确定了谐振体内的回音壁模式参数, 得到谐振器的无载Q值为94000. 利用该谐振体可制成低相位噪声的微波振荡器.
    When the electromagnetic field in the sapphire resonator corresponds to the whispering gallery mode, it exhibits an extremely low dielectric loss. As result, sapphire oscillator has the characteristics of ultra-low phase noise and high short-term frequency stability. The distribution of electromagnetic field in the sapphire resonator is very important for realizing high-level oscillator. In this work, the radial-axial mode matching method is used to theoretically analyze the distribution of the field mode in the sapphire resonator, and the resonant frequency of the WGHm,0,0 mode is calculated. The field distribution of the sapphire resonator is simulated by the finite element analysis method. The gallery mode number of the sapphire resonator is studied and the electromagnetic field intensity distribution of the WGH15,0,0 mode in the azimuthal, axial and radial direction are obtained. Finally, a home-made gallery mode analyzer is used to measure the microwave field on the surface of sapphire resonator, which is composed of a three-dimensional rotating stage , the magnetic ring/probe coupling and a vector network analyzer. With the above theoretical analysis, the finite element analysis method and the experimental measurement, the working mode of the sapphire resonator and the resonant frequency of the WGHm,0,0 mode are determined. When the sapphire resonator works in WGH15,0,0 mode, the resonant frequency is 9.891 GHz, and the parameters of the whispering gallery mode in the resonator are obtained, and the unloaded Q value of the resonator is 94000. When the temperature is 292 K, the frequency-temperature sensitivity of the sapphire resonator working in the WGHm,0,0 whispering gallery mode is about $71.64 \times 10^{-6}$. The microwave oscillator consisting of the high Q sapphire resonator can be used to make an oscillator with ultra-low phase noise and high frequency stability.
      通信作者: 阮军, ruanjun@ntsc.ac.cn
    • 基金项目: 中国科学院西部青年学者项目(批准号: XAB2018 A06)和中国科学院重大科技基础设施维修改造项目(批准号: DSS-WXGZ-2020-0005)资助的课题.
      Corresponding author: Ruan Jun, ruanjun@ntsc.ac.cn
    • Funds: Project supported by the Foundation for Western Young Scholars, Chinese Academy of Sciences (Grant No. XAB2018A06) and the Large Research Infrastructures Improvement Funds of Chinese Academy of Sciences (Grant No. DSS-WXGZ-2020-0005)
    [1]

    Tobar M E, Krupka J, Ivanov E N, Woode R A 1997 J. Phys. D: Appl. Phys. 30 2770Google Scholar

    [2]

    Hartnett J G, Nand N R, Lu C 2012 Appl. Phys. Lett. 100 183501Google Scholar

    [3]

    Calosso C E, Vernotte F, Giordano V, Fluhr C, Dubois B, Rubiola E 2019 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66 616Google Scholar

    [4]

    Santarelli G, Laurent Ph, Lemonde P, Clairon A, Mann A G, Chang S, Luiten A N, Salomon C 1999 Phys. Rev. Lett. 82 4619Google Scholar

    [5]

    Takamizawa A, Yanagimachi S, Hagimoto K 2022 Metrologia 59 035004Google Scholar

    [6]

    王倩, 魏荣, 王育竹 2018 物理学报 67 163202Google Scholar

    Wang Q, Wei R, Wang Y Z 2018 Acta Phys. Sin. 67 163202Google Scholar

    [7]

    Guena J, Abgrall M, Clairon A, Bize S 2014 Metro. 51 108Google Scholar

    [8]

    Thomson C A, McAllister B T, Goryachev M, Goryachev M, Ivanov E N, Tobar M E 2021 Phys. Rev. Lett. 126 081803Google Scholar

    [9]

    Campbell W M, McAllister B T, Goryachev M, Ivanov E N, Tobar M E 2021 Phys. Rev. Lett. 126 071301Google Scholar

    [10]

    Ball H, Oliver W D, Biercuk M J 2016 npj Quantum Inf. 2 1Google Scholar

    [11]

    Sepiol M A, Hughes A C, Tarlton J E, Nadlinger D P, Balance T G, Balance C J, Harty T P, Steane A M, Goodwin J F, Lucas D M 2019 Phys. Rev. Lett. 123 110503Google Scholar

    [12]

    Nand N R, Hartnett J G, Ivanov E N, Santarelli G 2011 IEEE Trans. Microwave Theory Tech. 59 2978Google Scholar

    [13]

    Doeleman S, Mai T, Rogers A E E, Hartnett J G, Tobar M E, Nand N 2011 PASP 123 582Google Scholar

    [14]

    Giordano V, Grop S, Dubois B, Bourgeois P Y, Kersalé Y, Haye G, Dolgovskiy V, Bucalovic N, Domenico G D, Schilt S, Chauvin J, Valat D, Rubiola E 2012 Rev. Sci. Instrum. 83 085113Google Scholar

    [15]

    Grop S, Giordano V, Bourgeois P Y, Bazin N, Kersale Y, Oxborrow M, Marra G, Langham C, Rubiola E, DeVincente J 2009 IEEE International Frequency Control Symp. Joint with the 22 nd European Frequency and Time Forum 376Google Scholar

    [16]

    Le Floch J M, Fan Y, Humbert G, Shan Q X, Férachou D, Bara-Maillet R, Aubourg M, Hartnett J G, Madrangeas V, Cros D, Blondy J M, Krupka, Tobar M E 2014 Rev. Sci. Instrum. 85 031301Google Scholar

    [17]

    Le Floch J M, Murphy C, Hartnett J G, Madrangeas V, Krupka J, Cros D, Tobar M E 2017 J. Appl. Phys. 121 014102Google Scholar

    [18]

    Krupka J, Derzakowski K, Abramowicz A, Tobar M E 1999 IEEE Trans. Microwave Theory Tech. 47 752Google Scholar

    [19]

    Tobar M E, Mann A G 1991 IEEE Trans. Microwave Theory Tech. 39 2077Google Scholar

    [20]

    Di Monaco O 1997 Ph. D. Dissertation (Besançon: Université de Franche Comté)

    [21]

    Liang X P, Zaki K A 1993 IEEE Trans. Microwave Theory Tech. 41 2174Google Scholar

    [22]

    Rayleigh L 1910 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 20 1001Google Scholar

    [23]

    Kobayashi Y, Tanaka S 1980 IEEE Trans. Microwave Theory Tech. 28 1077Google Scholar

    [24]

    Zaki K A, Atia A E 1983 IEEE Trans. Microwave Theory Tech. 31 1039Google Scholar

    [25]

    Peng H, Blair D G 1994 Proceedings of IEEE 48th Annual Symposium on Frequency Control 459

    [26]

    Aubourg M, Guillon P 1991 JEWA 5 371Google Scholar

    [27]

    Strang G, Fix G J, Griffin D S 1974 J. Appl. Mech. 41 62Google Scholar

    [28]

    Jin J M 2002 The Finite Element Method in Electromagnetics (2nd Ed. ) (NewYork: Wiley-IEEE Press)

    [29]

    Tobar M E, Krupka J, Ivanov E N, Woode R A 1996 IEEE International Frequency Control Symp. 799

    [30]

    Shelby R, Fontanella J, Andeen C 1980 J. Phys. Chem. Solids 41 69Google Scholar

    [31]

    White G K 1993 Thermochim. Acta 218 83Google Scholar

  • 图 1  WGH15,0,0模式仿真 (a) 有限元模型网格填充剖面图; (b)电场方位角向分布; (c) 磁场径向分布

    Fig. 1.  WGH15,0,0: (a) Mesh filling section of finite element model; (b) azimuth distribution of electric field; (c) radial distribution of the magnetic field.

    图 2  测量WGH模式共振频率装置示意图

    Fig. 2.  Schematic diagram of measuring WGH mode resonance frequency device.

    图 3  WGH15,0,0模式电磁场强度 (a) 磁场强度方位角向分布; (b) 磁场强度轴向分布; (c)电场强度径向分布

    Fig. 3.  Electromagnetic field intensity of WGH15,0,0: (a) Cross-section distribution of magnetic field intensity; (b) axial cross-section distribution of magnetic field intensity; (c) cross-section distribution of electric field intensity diameter.

    图 4  WGHm, 0, 0模式理论频率和测量频率的比较

    Fig. 4.  Comparison of theoretical and measured frequencies of WGHm, 0, 0 models.

    图 5  室温下WGH15,0,0模式磁环不同位置的S21参数

    Fig. 5.  S21 at different positions of WGH15,0,0 mode magnetic rings in samples at room temperature.

    图 6  室温下样品的WGH15,0,0模式S参数

    Fig. 6.  WGH15,0,0 mode S parameters of samples at room temperature.

    图 7  WGH15,0,0谐振频率与样品尺寸关系 (a) 谐振频率与直径变化的关系; (b) 谐振频率与高度变化的关系

    Fig. 7.  Relationship between resonant frequency and sample size: (a) Relation between resonant frequency and diameter change; (b) relation between resonant frequency and height variation.

    图 8  WGH15,0,0谐振频率与相对介电常数的关系 (a) 谐振频率与${\varepsilon }_{\perp } $的关系; (b) 谐振频率与${\varepsilon }_{// }$的关系

    Fig. 8.  Relation between resonant frequency and relative permittivity: (a) Relation between resonant frequency and $ {\varepsilon }_{\perp } $; (b) relation between resonant frequency and ${\varepsilon }_{//}$.

    图 9  温度对相对介电常数的影响 (a)$ {\varepsilon }_{\perp } $与温度的关系; (b)${\varepsilon }_{// }$与温度的关系

    Fig. 9.  Influence of temperature and relative permittivity: (a) Relationship between ${\varepsilon }_{\perp } $ and temperature; (b) relationship between ${\varepsilon }_{// }$ and temperature.

    图 10  温度对热膨胀系数的影响 (a)$ {\alpha }_{D} $与温度的关系; (b)$ {\alpha }_{L} $与温度的关系

    Fig. 10.  Influence of temperature and thermal coefficient of expansion: (a) Relationship between $ {\alpha }_{D} $ and temperature; (b) relationship between $ {\alpha }_{L} $ and temperature.

    表 1  m = 10—19的谐振频率

    Table 1.  Resonant frequency of m = 10–19.

    回音壁模式f/GHz${\Delta f}_{\rm{有}\rm{限}\rm{元}\text-\rm{理}\rm{论} }/{f}_{\rm{理}\rm{论} }$${\Delta f}_{\rm{测}\rm{量}\text-\rm{理}\rm{论} }/{f}_{\rm{理}\rm{论} }$
    理论计算有限元法实验测量
    WGH10, 0,07.066867.070637.071810.053%0.070%
    WGH11,0,07.635217.637847.639250.035%0.053%
    WGH12,0,08.201608.203558.204430.024%0.035%
    WGH13,0,08.766138.767458.767610.015%0.017%
    WGH14,0,09.329059.330309.329830.013%0.008%
    WGH15,0,09.890519.890119.89062–0.004%0.001%
    WGH16,0,010.4505410.4539010.450080.032%–0.004%
    WGH17,0,011.0093311.0155011.008630.056%–0.006%
    WGH18,0,011.5669411.5694011.565930.022%–0.009%
    WGH19,0,012.1234512.1210012.12218–0.020%–0.010%
    下载: 导出CSV
  • [1]

    Tobar M E, Krupka J, Ivanov E N, Woode R A 1997 J. Phys. D: Appl. Phys. 30 2770Google Scholar

    [2]

    Hartnett J G, Nand N R, Lu C 2012 Appl. Phys. Lett. 100 183501Google Scholar

    [3]

    Calosso C E, Vernotte F, Giordano V, Fluhr C, Dubois B, Rubiola E 2019 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66 616Google Scholar

    [4]

    Santarelli G, Laurent Ph, Lemonde P, Clairon A, Mann A G, Chang S, Luiten A N, Salomon C 1999 Phys. Rev. Lett. 82 4619Google Scholar

    [5]

    Takamizawa A, Yanagimachi S, Hagimoto K 2022 Metrologia 59 035004Google Scholar

    [6]

    王倩, 魏荣, 王育竹 2018 物理学报 67 163202Google Scholar

    Wang Q, Wei R, Wang Y Z 2018 Acta Phys. Sin. 67 163202Google Scholar

    [7]

    Guena J, Abgrall M, Clairon A, Bize S 2014 Metro. 51 108Google Scholar

    [8]

    Thomson C A, McAllister B T, Goryachev M, Goryachev M, Ivanov E N, Tobar M E 2021 Phys. Rev. Lett. 126 081803Google Scholar

    [9]

    Campbell W M, McAllister B T, Goryachev M, Ivanov E N, Tobar M E 2021 Phys. Rev. Lett. 126 071301Google Scholar

    [10]

    Ball H, Oliver W D, Biercuk M J 2016 npj Quantum Inf. 2 1Google Scholar

    [11]

    Sepiol M A, Hughes A C, Tarlton J E, Nadlinger D P, Balance T G, Balance C J, Harty T P, Steane A M, Goodwin J F, Lucas D M 2019 Phys. Rev. Lett. 123 110503Google Scholar

    [12]

    Nand N R, Hartnett J G, Ivanov E N, Santarelli G 2011 IEEE Trans. Microwave Theory Tech. 59 2978Google Scholar

    [13]

    Doeleman S, Mai T, Rogers A E E, Hartnett J G, Tobar M E, Nand N 2011 PASP 123 582Google Scholar

    [14]

    Giordano V, Grop S, Dubois B, Bourgeois P Y, Kersalé Y, Haye G, Dolgovskiy V, Bucalovic N, Domenico G D, Schilt S, Chauvin J, Valat D, Rubiola E 2012 Rev. Sci. Instrum. 83 085113Google Scholar

    [15]

    Grop S, Giordano V, Bourgeois P Y, Bazin N, Kersale Y, Oxborrow M, Marra G, Langham C, Rubiola E, DeVincente J 2009 IEEE International Frequency Control Symp. Joint with the 22 nd European Frequency and Time Forum 376Google Scholar

    [16]

    Le Floch J M, Fan Y, Humbert G, Shan Q X, Férachou D, Bara-Maillet R, Aubourg M, Hartnett J G, Madrangeas V, Cros D, Blondy J M, Krupka, Tobar M E 2014 Rev. Sci. Instrum. 85 031301Google Scholar

    [17]

    Le Floch J M, Murphy C, Hartnett J G, Madrangeas V, Krupka J, Cros D, Tobar M E 2017 J. Appl. Phys. 121 014102Google Scholar

    [18]

    Krupka J, Derzakowski K, Abramowicz A, Tobar M E 1999 IEEE Trans. Microwave Theory Tech. 47 752Google Scholar

    [19]

    Tobar M E, Mann A G 1991 IEEE Trans. Microwave Theory Tech. 39 2077Google Scholar

    [20]

    Di Monaco O 1997 Ph. D. Dissertation (Besançon: Université de Franche Comté)

    [21]

    Liang X P, Zaki K A 1993 IEEE Trans. Microwave Theory Tech. 41 2174Google Scholar

    [22]

    Rayleigh L 1910 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 20 1001Google Scholar

    [23]

    Kobayashi Y, Tanaka S 1980 IEEE Trans. Microwave Theory Tech. 28 1077Google Scholar

    [24]

    Zaki K A, Atia A E 1983 IEEE Trans. Microwave Theory Tech. 31 1039Google Scholar

    [25]

    Peng H, Blair D G 1994 Proceedings of IEEE 48th Annual Symposium on Frequency Control 459

    [26]

    Aubourg M, Guillon P 1991 JEWA 5 371Google Scholar

    [27]

    Strang G, Fix G J, Griffin D S 1974 J. Appl. Mech. 41 62Google Scholar

    [28]

    Jin J M 2002 The Finite Element Method in Electromagnetics (2nd Ed. ) (NewYork: Wiley-IEEE Press)

    [29]

    Tobar M E, Krupka J, Ivanov E N, Woode R A 1996 IEEE International Frequency Control Symp. 799

    [30]

    Shelby R, Fontanella J, Andeen C 1980 J. Phys. Chem. Solids 41 69Google Scholar

    [31]

    White G K 1993 Thermochim. Acta 218 83Google Scholar

  • [1] 覃俭. 光源相位噪声对高斯玻色采样的影响. 物理学报, 2023, 72(5): 050302. doi: 10.7498/aps.72.20221766
    [2] 邵晓东, 韩海年, 魏志义. 基于光学频率梳的超低噪声微波频率产生. 物理学报, 2021, 70(13): 134204. doi: 10.7498/aps.70.20201925
    [3] 于长秋, 马世昌, 陈志远, 项晨晨, 李海, 周铁军. 结构改进的厘米尺寸谐振腔的磁场传感特性. 物理学报, 2021, 70(16): 160701. doi: 10.7498/aps.70.20210247
    [4] 蔡成欣, 陈韶赓, 王学梅, 梁俊燕, 王兆宏. 各向异性三维非对称双锥五模超材料的能带结构及品质因数. 物理学报, 2020, 69(13): 134302. doi: 10.7498/aps.69.20200364
    [5] 王梦宇, 孟令俊, 杨煜, 钟汇凯, 吴涛, 刘彬, 张磊, 伏燕军, 王克逸. 扁长型微瓶腔中的回音壁模式选择及Fano谐振. 物理学报, 2020, 69(23): 234203. doi: 10.7498/aps.69.20200817
    [6] 谷红明, 黄永清, 王欢欢, 武刚, 段晓峰, 刘凯, 任晓敏. 一种新型光学微腔的理论分析. 物理学报, 2018, 67(14): 144201. doi: 10.7498/aps.67.20180067
    [7] 项晓, 王少锋, 侯飞雁, 权润爱, 翟艺伟, 王盟盟, 周聪华, 许冠军, 董瑞芳, 刘涛, 张首刚. 利用共振无源腔分析和抑制飞秒脉冲激光噪声的理论和实验研究. 物理学报, 2016, 65(13): 134203. doi: 10.7498/aps.65.134203
    [8] 刘向远, 钱仙妹, 张穗萌, 崔朝龙. 宏-微脉冲激光激发钠信标回波光子数的数值计算与探讨. 物理学报, 2015, 64(9): 094206. doi: 10.7498/aps.64.094206
    [9] 王亚东, 甘雪涛, 俱沛, 庞燕, 袁林光, 赵建林. 利用非传统螺旋相位调控高阶涡旋光束的拓扑结构. 物理学报, 2015, 64(3): 034204. doi: 10.7498/aps.64.034204
    [10] 焦新泉, 陈家斌, 王晓丽, 薛晨阳, 任勇峰. 基于新型三环谐振器的诱导透明效应分析. 物理学报, 2015, 64(14): 144202. doi: 10.7498/aps.64.144202
    [11] 张添乐, 黄曦, 郑凯, 张欣梧, 王宇杰, 武丽明, 张晓青, 郑洁, 朱彪. 极化电压对聚丙烯压电驻极体膜压电性能的影响. 物理学报, 2014, 63(15): 157703. doi: 10.7498/aps.63.157703
    [12] 丁学利, 李玉叶. 相位噪声诱发神经放电的单次或两次相干共振. 物理学报, 2014, 63(24): 248701. doi: 10.7498/aps.63.248701
    [13] 陈伟, 孟洲, 周会娟, 罗洪. 远程干涉型光纤传感系统的非线性相位噪声分析. 物理学报, 2012, 61(18): 184210. doi: 10.7498/aps.61.184210
    [14] 宋顾周, 马继明, 王奎禄, 周鸣. 厚针孔射线成像品质因数的研究. 物理学报, 2012, 61(10): 102902. doi: 10.7498/aps.61.102902
    [15] 丁燕红, 李明吉, 杨保和, 马叙. Fe15.38Co61.52Cu0.6Nb2.5Si11B9纳米晶软磁合金的交流磁性. 物理学报, 2011, 60(9): 097502. doi: 10.7498/aps.60.097502
    [16] 祝昆, 周丽, 尤洪海, 江楠, 普小云. 光纤回音壁模式激光产生长度的实验与理论研究. 物理学报, 2011, 60(5): 054205. doi: 10.7498/aps.60.054205
    [17] 张远宪, 冯永利, 周丽, 普小云. 偏斜光线抽运下的回音壁模式光纤激光辐射特性. 物理学报, 2010, 59(3): 1802-1808. doi: 10.7498/aps.59.1802
    [18] 张远宪, 普小云, 祝昆, 韩德昱, 江楠. 回音壁模式光纤激光器的阈值特性研究. 物理学报, 2009, 58(5): 3179-3184. doi: 10.7498/aps.58.3179
    [19] 普小云, 白然, 向文丽, 杜飞, 江楠. 消逝波激励的双波段光纤回音壁模式激光辐射. 物理学报, 2009, 58(6): 3923-3928. doi: 10.7498/aps.58.3923
    [20] 杨 睿, 於文华, 鲍 洋, 张远宪, 普小云. 消逝场耦合圆柱形微腔中回音壁模式结构的实验研究. 物理学报, 2008, 57(10): 6412-6418. doi: 10.7498/aps.57.6412
计量
  • 文章访问数:  3836
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-10
  • 修回日期:  2022-07-19
  • 上网日期:  2022-11-26
  • 刊出日期:  2022-12-05

/

返回文章
返回