搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光辐射压激励的低频机械振子品质因数测量

王义建 高翔宇 孙恒信 刘奎 郜江瑞

引用本文:
Citation:

基于光辐射压激励的低频机械振子品质因数测量

王义建, 高翔宇, 孙恒信, 刘奎, 郜江瑞

Quality Factor Measurement of Low-Frequency Mechanical Oscillators Driven by Optical Radiation Pressure

Wang Yi-Jian, Gao Xiang-Yu, Sun Heng-Xin, Liu Kui, Gao Jiang-Rui
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 高品质因数(Q值)的机械振子具有较低的机械损耗,是光力学实验中研究光场和机械振子量子特性以及产生其他如量子压缩和纠缠光场时的重要条件。在室温下低频段,受环境和其他机械器件的影响,机械振子的共振模式识别困难,并且与其他器件的振动模式交叠,影响了Q值的测量精度。代替传统的机械接触式激励(例如压电陶瓷激励),本文采用了光辐射压对机械振子进行非机械接触式的激励。基于声光调制器开关产生的光辐射压激励具有更快的响应速度和更宽的工作频段,特别是在声频甚至更低频段,能够避免环境和实验装置等因素带来的难以处理的低频噪声。实验结果表明,相比压电陶瓷激励,光激励在低频段(2kHz以内)的Q值测量准确性更高,测量误差在5%以内。
    High-quality-factor (Q-factor) mechanical resonators are indispensable components in quantum optomechanical experiments such as optomechanical cooling, quantum sensing, precision metrology and entanglement/squeezing generation. While the Q-factor measurement has been performed for high-frequency resonators with low Q-factor, the Q-factor measurement for a low-frequency resonator with high Q-factor is still challenging. It is difficult to identify the mechanical modes from the other noise source in the environment, such as audio noises of air fans and mechanical modes of clamps. Furthermore, the traditional piezoceramic transducer for driving the mechanical resonator has limited response speed. In this article, we employs the optical radiation pressure to directly drive the mechanical oscillator. The Q-factor is measured by the ring-down technique. With the help of precise controllable electrical current, the radiation pressure can be precisely controlled, thus providing faster response and broader operational bandwidth, especially in the acoustic and sub-acoustic frequency ranges. What’s more, this approach mitigates the low-frequency noise induced by environmental vibrations and experimental apparatus, which are difficult to isolate. In the experiment, we measure the Q-factors of a mechanical resonator array which includes tens of single mechanical resonators of different size and different structure. A single resonator consists of a single-crystal GaAs cantilever integrated with a micromirror. A laser beam, modulated by an acousto-optic modulator (AOM) acting as a fast optical switch, serves as the radiation pressure driving source. Another probe beam is reflected by the high-reflectivity micromirror of the resonator and detected by a quadrant photodetector (QPD) to obtain the ring-down signal from which the Q-factor is obtained. The results are compared with those obtained using traditional piezoceramic drive. The results show that in the low-frequency region (below ~2 kHz), where environmental noise coupling is pronounced, the optical drive method effectively suppresses low-frequency noises. The relative error of Q-factor measurements using optical drive is approximately 5%, lower than that obtained with piezoelectric drive. This optical radiation-pressure drive technique provides a robust and fast-response approach for measuring the Q-factors of massive low-frequency mechanical resonators.
  • [1]

    Yu H,McCuller L,Tse M, Kijbunchoo N, Barsotti L, Mavalvala N 2020 Nature 583 43-47

    [2]

    Michimura Y, Komori K 2020 The European Physical Journal D 74 126

    [3]

    Barzanjeh S,Xuereb A,Gröblacher S,Paternostro M,Regal C A, Weig E M 2022 Nature Physics 18 15-24

    [4]

    陈华俊,米贤武 2012 Chinese Journal of Quantum Electronics 29 153-164

    [5]

    Cupertino A, Shin D, Guo L, Steeneken P G, Bessa M A, Norte R A 2024 Nature Communications 15 4255

    [6]

    Huang G, Beccari A, Engelsen N J, Kippenberg T J 2024 Nature 626 512-516

    [7]

    Dania L,Bykov D S,Goschin F,Teller M, Kassid A, Northup T E 2024 Physical Review Letters 132 133602

    [8]

    陈雪,刘晓威,张可烨,袁春华,张卫平 2015物理学报 64 164211

    [9]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys 86 1391

    [10]

    Engelsen N J, Beccari A, Kippenberg T J 2024 Nature Nanotechnology 19 725-737

    [11]

    Tsuchida M, Morita T 2024 Precision Engineering 91 390-395

    [12]

    Wang D,Pan Y,Wu S, Zhao H,Qu T,Tang J Proceedings of the 2016 Joint International Information Technology, Mechanical and Electronic Engineering Xi'an,2016,17-23

    [13]

    Ciers A,Jung A,Ciers J,Nindito L R, Pfeifer H, Dadgar A, Wieczorek W 2024 Advanced Materials 36 2403155

    [14]

    Dalziel J W 2012 Cavity Optomechanics with High-Stress Silicon Nitride Films Ph.D. Dissertation(Pasadena:California Institute of Technology)

    [15]

    何德方,徐荣泽,杨浩 2020光电技术应用 35 60-65

    [16]

    Lokasani R,Arai G,Kondo Y,Hara H, Dinh T H,Ejima T,Limpouch J 2016 Applied Physics Letters 109 19

    [17]

    崔鼎,马社,李才阳,叶长春 2014强激光与粒子束 26 12-15

    [18]

    武列列,任益充,薛飞 物理学报 2025 74 030701

    [19]

    Corbitt T,Wipf C,Bodiya T,Ottaway D,Sigg D,Smith N,Mavalvala N 2007 Physical Review Letters 99 160801

    [20]

    Trowbridge A C,Wright E M,Dholakia K 2025 arXiv:2504.18789 [physics.optics]

    [21]

    Cole G D 2012 Proceedings of the Society of Photo - Optical Instrumentation Engineers San Diego, 2012,28-38

    [22]

    Sharifi S,Banadaki Y M,Cullen T,Veronis G,Dowling J P,Corbitt T 2020 Review of Scientific Instruments 91 054504

  • [1] 徐振, 罗曼, 梁博涵, 李吉宁, 张嘉昕, 王坦, 陈锴, 徐德刚. 微带线在太赫兹低频段的色散特性分析与实验验证. 物理学报, doi: 10.7498/aps.74.20250690
    [2] 郑旭骞, 巩思豫, 耿红尚, 郭宇锋. Ga2O3纳米机电谐振器机械能量耗散途径研究. 物理学报, doi: 10.7498/aps.74.20241706
    [3] 李雨晴, 王洪广, 翟永贵, 杨文晋, 王玥, 李韵, 李永东. 品质因数对TM02模相对论返波管工作模式影响. 物理学报, doi: 10.7498/aps.73.20231577
    [4] 黄知秋, 张猛, 彭志敏, 王振, 杨乾锁. 注入光有限相干性对衰荡腔测试方法的影响及求解衰荡时间的强度积分法. 物理学报, doi: 10.7498/aps.72.20230448
    [5] 熊枫, 彭志敏, 王振, 丁艳军, 吕俊复, 杜艳君. CO2/CO干扰下基于腔衰荡吸收光谱的痕量H2S浓度测量. 物理学报, doi: 10.7498/aps.72.20221851
    [6] 饶冰洁, 张攀, 李铭坤, 杨西光, 闫露露, 陈鑫, 张首刚, 张颜艳, 姜海峰. 用于光腔衰荡光谱测量的多支路掺铒光纤飞秒光梳系统. 物理学报, doi: 10.7498/aps.71.20212162
    [7] 范思晨, 杨帆, 阮军. 蓝宝石谐振体内的回音壁模电磁场分布. 物理学报, doi: 10.7498/aps.71.20221156
    [8] 蒋黎英, 易颖婷, 易早, 杨华, 李治友, 苏炬, 周自刚, 陈喜芳, 易有根. 基于单层二硫化钼的高品质因子、高品质因数的四波段完美吸收器. 物理学报, doi: 10.7498/aps.70.20202163
    [9] 蔡成欣, 陈韶赓, 王学梅, 梁俊燕, 王兆宏. 各向异性三维非对称双锥五模超材料的能带结构及品质因数. 物理学报, doi: 10.7498/aps.69.20200364
    [10] 王金舵, 余锦, 貊泽强, 何建国, 代守军, 孟晶晶, 王晓东, 刘洋. 连续波腔衰荡光谱技术中模式筛选的数值方法. 物理学报, doi: 10.7498/aps.68.20190844
    [11] 王振, 杜艳君, 丁艳军, 彭志敏. 基于傅里叶变换的波长扫描腔衰荡光谱. 物理学报, doi: 10.7498/aps.68.20191062
    [12] 谷红明, 黄永清, 王欢欢, 武刚, 段晓峰, 刘凯, 任晓敏. 一种新型光学微腔的理论分析. 物理学报, doi: 10.7498/aps.67.20180067
    [13] 薛佳, 秦际良, 张玉驰, 李刚, 张鹏飞, 张天才, 彭堃墀. 低频标准真空涨落的测量. 物理学报, doi: 10.7498/aps.65.044211
    [14] 刘向远, 钱仙妹, 张穗萌, 崔朝龙. 宏-微脉冲激光激发钠信标回波光子数的数值计算与探讨. 物理学报, doi: 10.7498/aps.64.094206
    [15] 焦新泉, 陈家斌, 王晓丽, 薛晨阳, 任勇峰. 基于新型三环谐振器的诱导透明效应分析. 物理学报, doi: 10.7498/aps.64.144202
    [16] 胡仁志, 王丹, 谢品华, 凌六一, 秦敏, 李传新, 刘建国. 二极管激光腔衰荡光谱测量大气NO3自由基. 物理学报, doi: 10.7498/aps.63.110707
    [17] 张添乐, 黄曦, 郑凯, 张欣梧, 王宇杰, 武丽明, 张晓青, 郑洁, 朱彪. 极化电压对聚丙烯压电驻极体膜压电性能的影响. 物理学报, doi: 10.7498/aps.63.157703
    [18] 宋顾周, 马继明, 王奎禄, 周鸣. 厚针孔射线成像品质因数的研究. 物理学报, doi: 10.7498/aps.61.102902
    [19] 丁燕红, 李明吉, 杨保和, 马叙. Fe15.38Co61.52Cu0.6Nb2.5Si11B9纳米晶软磁合金的交流磁性. 物理学报, doi: 10.7498/aps.60.097502
    [20] 曹 琳, 王春梅, 陈扬骎, 杨晓华. 光外差腔衰荡光谱理论研究. 物理学报, doi: 10.7498/aps.55.6354
计量
  • 文章访问数:  57
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-23

/

返回文章
返回