搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三椭圆谐振腔耦合波导中可调谐双重等离子体诱导透明效应的理论分析

谷馨 张惠芳 李明雨 陈俊雅 何英

引用本文:
Citation:

三椭圆谐振腔耦合波导中可调谐双重等离子体诱导透明效应的理论分析

谷馨, 张惠芳, 李明雨, 陈俊雅, 何英

Theoretical analysis of tunable double plasmon induced transparency in three-ellipse-shaped resonator coupled waveguide

Gu Xin, Zhang Hui-Fang, Li Ming-Yu, Chen Jun-Ya, He Ying
PDF
HTML
导出引用
  • 研究了三椭圆谐振腔耦合波导中可调谐双重等离子体诱导透明效应. 三椭圆谐振腔耦合波导结构由1个亮模和2个暗模或1个暗模和2个亮模组成, 类比于原子系统的四能级结构. 为了获得较理想的双重等离子体诱导透明窗口, 利用有限元法数值分析了多种三椭圆谐振腔耦合波导结构的光学透射特性. 针对较佳的三椭圆谐振腔波导结构, 分别讨论波导结构参数(如椭圆腔长轴半径、底部椭圆腔与主波导间耦合距离、椭圆腔间耦合距离、对称破缺度, 以及椭圆腔填充材料有效折射率)对双重等离子体诱导透明效应的影响. 多重透明窗口的数值模拟结果为等离子体诱导透明在等离子体开关及传感器方面的潜在应用提供理论基础.
    The tunable double plasmon-induced transparency (PIT) effects are investigated in a waveguide coupled by the three ellipse-shaped resonators. By the finite element method, we study the influences of coupling modes of the three ellipse-shaped resonators, waveguide structure parameters and the refractive indices of dielectric in three ellipse-shaped resonators on double PIT effects. The waveguide structure consists of three ellipse-shaped resonators, and is similar to a four-level structure of the atomic system. The bottom ellipse-shaped resonator can be named a bright mode, the middle and top ellipse-shaped resonators each can be seen as a dark mode. In order to obtain an ideal double PIT transparency window, we also numerically analyze the optical transmission characteristics of structures of several three-ellipse-shaped resonator coupled waveguides. Furthermore, we mainly discuss the transmission spectra in the better three-ellipse-shaped resonator coupled waveguide structure as a function of the radii of the long axis in ellipse-shaped resonators, the coupling distance between the bottom ellipse-shaped resonator and the bus waveguide, the coupling distance between ellipse-shaped resonators, and the symmetry broken degree. In addition, we also consider the effect of the refractive indices of dielectric in three ellipse-shaped resonators on double PIT spectra. It is found that the transmission spectra in the three-ellipse-shaped resonator coupled waveguide have obvious red shift when the refractive indices of dielectric in the three ellipse-shaped resonators increase. All the simulation results may provide the theoretical basis for the potential application of multiple PIT in plasma switches and sensors.
      通信作者: 张惠芳, hfzhang1967@shu.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 11804219)资助的课题
      Corresponding author: Zhang Hui-Fang, hfzhang1967@shu.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11804219).
    [1]

    Ritchie R H 1957 Phys. Rev. 106 874Google Scholar

    [2]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [3]

    Dionne J A, Sweatlock L A, Atwater H A, Polman A 2006 Phys. Rev. B 73 035407Google Scholar

    [4]

    Galvez F, del Valle J, Gomez A, Osorio M R, Granados D, Perez de Lara D, Garcia M A, Vicent J L 2016 Opt. Materials Express 6 3086Google Scholar

    [5]

    Yang X Y, Hua E, Su H, Guo J, Yan S B 2020 Sensors 20 4125Google Scholar

    [6]

    陈颖, 谢进朝, 周鑫德, 张灿, 杨惠, 李少华 2019 物理学报 68 237301Google Scholar

    Chen Y, Xie J C, Zhou X D, Zhang C, Yang H, Li S H 2019 Acta Phys. Sin. 68 237301Google Scholar

    [7]

    Han X, Wang T, Li X, Zhu Y 2016 Plasmonics 11 729Google Scholar

    [8]

    杨韵茹, 关建飞 2016 物理学报 65 057301Google Scholar

    Yang Y R, Guan J F 2016 Acta Phys. Sin. 65 057301Google Scholar

    [9]

    Liu X, Li J N, Chen J F, Rohimah S, Tian H, Wang J F 2021 Opt. Express 29 20829Google Scholar

    [10]

    祁云平, 张雪伟, 周培阳, 胡兵兵, 王向贤 2018 物理学报 67 197301Google Scholar

    Qi Y P, Zhang X W, Zhou P Y, Hu B B, Wang X Y 2018 Acta Phys. Sin. 67 197301Google Scholar

    [11]

    Hao X X, Huo Y P, He Q, Guo Y Y, Niu Q Q, Cui P F, Wang Y Y, Song M N 2021 Phys. Scripta 96 075505Google Scholar

    [12]

    Amrani M, Khattou S, Rezzouk Y, Mouadili A, Noual A, El Boudouti E H, Djafari-Rouhani B 2022 J. Phys. D: Appl. Phys. 55 075106Google Scholar

    [13]

    Zhang Z, Yang J, He X, Han Y, Zhang J, Huang J, Chen D 2018 Appl. Sci. 8 462Google Scholar

    [14]

    Harris S E, Field J E, Imamoğlu A 1990 Phys. Rev. Lett. 64 1107Google Scholar

    [15]

    褚培新, 张玉斌, 陈俊学 2020 物理学报 69 134205Google Scholar

    Chu P X, Zhang Y B, Chen J X 2020 Acta Phys. Sin. 69 134205Google Scholar

    [16]

    Chen M M, Xiao Z Y, Lu X J 2020 Carbon 159 273Google Scholar

    [17]

    Li M W, Liang C P, Zhang Y B, Yi Z, Chen X F, Zhou Z G, Yang H, Tang Y J, Yi Y G 2019 Results Phys. 15 102603Google Scholar

    [18]

    Wang X J, Meng H Y, Deng S Y, Lao C D, Wei Z C, Wang F H, Tan C G, Huang X 2019 Nanomaterials 9 385Google Scholar

    [19]

    Liu L, Xia S X, Luo X, Zhai X, Yu Y B, Wang L L 2018 Opt. Commun. 418 27Google Scholar

    [20]

    Waks E, Vuckovic J 2006 Phys. Rev. Lett. 96 153601Google Scholar

    [21]

    Marco P, Dario G, Liam O F, Claudio A L 2018 Opt. Express 26 8470Google Scholar

    [22]

    Li J J, Tian J P, Yang R C 2019 Eur. Phys. J. D 73 230Google Scholar

    [23]

    Han X, Wang T, Li X M, Liu B, He Y, Tang J 2015 J. Phys. D: Appl. Phys. 48 235102Google Scholar

    [24]

    Niu Y Y, Wang J C, Liu D D, Hu Z D, Sang T, Gao S M 2017 Optik 140 1038Google Scholar

    [25]

    Wang G X, Lu H, Liu X M 2012 Opt. Express 20 020902Google Scholar

    [26]

    Wen K H, Yan L S, Pan W, Luo B, Guo Z, Guo Y H, Luo X G 2014 J. Light. Technol. 32 1701Google Scholar

    [27]

    Cao G T, Li H J, Zhan S P, Xu H Q, Liu Z M, He Z H, Wang Y 2013 Opt. Express 21 9198Google Scholar

    [28]

    Wang Y Q, He Z H, Cui W, Ren X C, Li C J, Xue W W, Cao D M, Li G, Lei W L 2020 Results Phys. 16 102981Google Scholar

    [29]

    李继军, 吴耀德, 宋明玉 2007 长江大学学报(自科版)理工卷 4 1673Google Scholar

    Li J J, Wu Y D, Song M Y 2007 J. Yangtze University (Nat. Sci. Edit) Sci. Eng. V. 4 1673Google Scholar

    [30]

    Li Z F, Wen K H, Fang Y H, Guo Z C 2020 IEEE J. Quantum Electron. 56 2982249Google Scholar

    [31]

    Qiong Z, Wang Z 2019 Opt. Express 27 303Google Scholar

    [32]

    Yin X G, Feng T H, Yip S, Liang Z X, Hui A, Ho J C, Li J S 2013 Appl. Phys. Lett. 103 021115Google Scholar

    [33]

    Xu H, Lu Y, Lee Y, Ham B S 2010 Opt. Express 18 17736Google Scholar

    [34]

    Zhu Y, Hu X Y, Yang H, Gong Q H 2014 Sci. Rep. UK 4 3752Google Scholar

    [35]

    闫西成 2018 硕士学位论文(武汉:华中科技大学) (Wuhan: Huazhong University of Science & Technology)

    Yan X C 2018 M. S. Thesis (Wuhan: Huazhong University of Science & Technology

    [36]

    Ye C G, Zhang L 2008 Opt. Lett. 33 1911Google Scholar

  • 图 1  (a) 三椭圆谐振腔耦合波导结构(三椭圆腔左右放置且s1 = s2); (b) 双椭圆(黑色虚线)和三椭圆(红色实线)波导结构透射谱;(c)−(g) 三椭圆腔波导结构中波长分别为849, 855, 860, 866, 883 nm时的电场分布

    Fig. 1.  (a) Schematic diagram of three ellipse-shaped resonators coupled waveguide structure (three ellipse-shaped resonators are placed left and right and s1 = s2); (b) transmission spectra of the two (black dash) and three (red solid) ellipse-shaped resonators waveguide structure; (c)−(g) electric field distribution of three ellipse-shaped resonators waveguide structure at wavelength of 849, 855, 860, 866, 883 nm, respectively.

    图 2  (a) 三椭圆谐振腔耦合波导结构(三椭圆腔左右放置且s1 = 0); (b) 双椭圆(黑色虚线)和三椭圆(红色实线)波导结构透射谱;(c)−(g) 三椭圆腔波导结构中波长分别为844, 851, 867, 877, 888 nm时的电场分布

    Fig. 2.  (a) Schematic diagram of three ellipse-shaped resonators coupled waveguide structure (three ellipse-shaped resonators are placed left and right and s1 = 0); (b) transmission spectra of two (black dash) and three (red solid) ellipse-shaped resonators waveguide structure; (c)−(g) electric field distribution of three ellipse-shaped resonators waveguide structure at wavelength of 844, 851, 867, 877, 888 nm, respectively.

    图 3  (a) 三椭圆谐振腔耦合波导结构(三椭圆腔左右放置且s2 = 0); (b) 双椭圆(黑色虚线)和三椭圆(红色实线)波导结构透射谱;(c)−(g) 三椭圆腔波导结构中波长分别为846, 858, 866, 883, 897 nm时的电场分布

    Fig. 3.  (a) Schematic diagram of three ellipse-shaped resonators coupled waveguide structure (three ellipse-shaped resonators are placed left and right and s2 = 0); (b) transmission spectra of two (black dash) and three (red solid) ellipse-shaped resonators waveguide structure; (c)−(g) electric field distribution of three ellipse-shaped resonators waveguide structure at wavelength of 846, 858, 866, 883, 897 nm, respectively.

    图 4  (a) 三椭圆谐振腔耦合波导结构(三椭圆腔在一条直线上竖直放置); (b) 双椭圆(黑色虚线)和三椭圆(红色实线)波导结构透射谱; (c)−(g) 三椭圆腔波导结构中波长分别为845, 851, 867, 878, 889 nm时的电场分布

    Fig. 4.  (a) Schematic diagram of three ellipse-shaped resonators coupled waveguide structure (three ellipse-shaped resonators are placed vertically in a straight line); (b) transmission spectra of two (black dash) and three (red solid) ellipse-shaped resonators waveguide structure; (c)−(g) electric field distribution of three ellipse-shaped resonators waveguide structure at wavelength of 845, 851, 867, 878, 889 nm, respectively.

    图 5  (a) 轴对称三椭圆谐振腔耦合波导结构(三椭圆腔倒等腰三角形放置且O3O1 = O3O2); (b) 非轴对称(黑色虚线)和轴对称(红色实线)三椭圆腔波导结构透射谱; (c)−(e) 轴对称波导结构中波长分别为865, 876, 883 nm时的电场分布

    Fig. 5.  (a) Schematic diagram of the axisymmetric three ellipse-shaped resonators coupled waveguide structure (three ellipse-shaped resonators are placed in an inverted isosceles triangle and O3O1 = O3O2); (b) transmission spectra of the non-axisymmetric (black dash) and the axisymmetric (red solid) three ellipse-shaped resonators waveguide structure; (c)−(e) electric field distribution of the axisymmetric three ellipse-shaped resonators waveguide structure at wavelength of 865, 876, 883 nm, respectively.

    图 6  (a) 轴对称三椭圆谐振腔耦合波导结构(三椭圆腔正等腰三角形放置且O2O1 = O2O3); (b) 非轴对称(黑色虚线)和轴对称(红色实线)三椭圆腔波导结构透射谱; (c)−(e) 轴对称波导结构中波长分别为853, 879, 895 nm时的电场分布

    Fig. 6.  (a) Schematic diagram of the axisymmetric three ellipse-shaped resonators coupled waveguide structure (three ellipse-shaped resonators are placed in a positive isosceles triangle and O2O1 = O2O3); (b) transmission spectra of the non-axisymmetric (black dash) and the axisymmetric (red solid) three ellipse-shaped resonators waveguide structure; (c)−(e) electric field distribution of the axisymmetric three ellipse-shaped resonators waveguide structure at wavelength of 853, 879, 895 nm, respectively.

    图 7  三椭圆腔耦合波导结构双PIT效应实验设计示意简图

    Fig. 7.  Schematic diagram of experimental design of double PIT effects for the three ellipse-shaped resonators coupled waveguide structure.

    图 8  当改变椭圆腔长轴半径时, 三椭圆谐振腔波导结构的透射谱 (a)−(c) 改变顶部椭圆腔长轴半径r1; (d)−(f) 改变中部椭圆腔长轴半径r2; (g)−(i) 改变底部椭圆腔长轴半径r3; (j)—(l) 改变r1r3

    Fig. 8.  Transmission spectra in the three ellipse-shaped resonators coupled waveguide structure when changing the long-axis radius of the elliptical cavity: (a)−(c) Change radius of the long axis r1 in the top ellipse-shaped resonator; (d)−(f) change r2 in the middle ellipse-shaped resonator; (g)−(i) change r3 in the bottom ellipse-shaped resonator; (j)−(l) change r1 and r3.

    图 9  三椭圆谐振腔波导结构透射谱随结构参数的变化 (a) 当x1 = x2 = 0, h = c = 10 nm时, 透射谱随H的变化; (b) 当x1 = x2 = 0, H = c = 10 nm时, 透射谱随h的变化; (c) 当x1 = x2 = 0, H = h = 10 nm时, 透射谱随c的变化; (d), (e) 当H = h = c = 10 nm时, 透射谱随x1x2的变化; (f) 当x1 = x2 = 0, H = h = 10 nm时, 透射谱随n的变化

    Fig. 9.  Transmission spectra in the three ellipse-shaped resonators coupled waveguide structure with different parameters: (a) With H when x1 = x2 = 0, h = c = 10 nm; (b) with h when x1 = x2 = 0, H = c =10 nm; (c) with c when x1 = x2 = 0, H = h = 10 nm; (d), (e) with x1 and x2 when H = h = c = 10 nm; (f) with n when x1 = x2 = 0, H = h = 10 nm.

  • [1]

    Ritchie R H 1957 Phys. Rev. 106 874Google Scholar

    [2]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [3]

    Dionne J A, Sweatlock L A, Atwater H A, Polman A 2006 Phys. Rev. B 73 035407Google Scholar

    [4]

    Galvez F, del Valle J, Gomez A, Osorio M R, Granados D, Perez de Lara D, Garcia M A, Vicent J L 2016 Opt. Materials Express 6 3086Google Scholar

    [5]

    Yang X Y, Hua E, Su H, Guo J, Yan S B 2020 Sensors 20 4125Google Scholar

    [6]

    陈颖, 谢进朝, 周鑫德, 张灿, 杨惠, 李少华 2019 物理学报 68 237301Google Scholar

    Chen Y, Xie J C, Zhou X D, Zhang C, Yang H, Li S H 2019 Acta Phys. Sin. 68 237301Google Scholar

    [7]

    Han X, Wang T, Li X, Zhu Y 2016 Plasmonics 11 729Google Scholar

    [8]

    杨韵茹, 关建飞 2016 物理学报 65 057301Google Scholar

    Yang Y R, Guan J F 2016 Acta Phys. Sin. 65 057301Google Scholar

    [9]

    Liu X, Li J N, Chen J F, Rohimah S, Tian H, Wang J F 2021 Opt. Express 29 20829Google Scholar

    [10]

    祁云平, 张雪伟, 周培阳, 胡兵兵, 王向贤 2018 物理学报 67 197301Google Scholar

    Qi Y P, Zhang X W, Zhou P Y, Hu B B, Wang X Y 2018 Acta Phys. Sin. 67 197301Google Scholar

    [11]

    Hao X X, Huo Y P, He Q, Guo Y Y, Niu Q Q, Cui P F, Wang Y Y, Song M N 2021 Phys. Scripta 96 075505Google Scholar

    [12]

    Amrani M, Khattou S, Rezzouk Y, Mouadili A, Noual A, El Boudouti E H, Djafari-Rouhani B 2022 J. Phys. D: Appl. Phys. 55 075106Google Scholar

    [13]

    Zhang Z, Yang J, He X, Han Y, Zhang J, Huang J, Chen D 2018 Appl. Sci. 8 462Google Scholar

    [14]

    Harris S E, Field J E, Imamoğlu A 1990 Phys. Rev. Lett. 64 1107Google Scholar

    [15]

    褚培新, 张玉斌, 陈俊学 2020 物理学报 69 134205Google Scholar

    Chu P X, Zhang Y B, Chen J X 2020 Acta Phys. Sin. 69 134205Google Scholar

    [16]

    Chen M M, Xiao Z Y, Lu X J 2020 Carbon 159 273Google Scholar

    [17]

    Li M W, Liang C P, Zhang Y B, Yi Z, Chen X F, Zhou Z G, Yang H, Tang Y J, Yi Y G 2019 Results Phys. 15 102603Google Scholar

    [18]

    Wang X J, Meng H Y, Deng S Y, Lao C D, Wei Z C, Wang F H, Tan C G, Huang X 2019 Nanomaterials 9 385Google Scholar

    [19]

    Liu L, Xia S X, Luo X, Zhai X, Yu Y B, Wang L L 2018 Opt. Commun. 418 27Google Scholar

    [20]

    Waks E, Vuckovic J 2006 Phys. Rev. Lett. 96 153601Google Scholar

    [21]

    Marco P, Dario G, Liam O F, Claudio A L 2018 Opt. Express 26 8470Google Scholar

    [22]

    Li J J, Tian J P, Yang R C 2019 Eur. Phys. J. D 73 230Google Scholar

    [23]

    Han X, Wang T, Li X M, Liu B, He Y, Tang J 2015 J. Phys. D: Appl. Phys. 48 235102Google Scholar

    [24]

    Niu Y Y, Wang J C, Liu D D, Hu Z D, Sang T, Gao S M 2017 Optik 140 1038Google Scholar

    [25]

    Wang G X, Lu H, Liu X M 2012 Opt. Express 20 020902Google Scholar

    [26]

    Wen K H, Yan L S, Pan W, Luo B, Guo Z, Guo Y H, Luo X G 2014 J. Light. Technol. 32 1701Google Scholar

    [27]

    Cao G T, Li H J, Zhan S P, Xu H Q, Liu Z M, He Z H, Wang Y 2013 Opt. Express 21 9198Google Scholar

    [28]

    Wang Y Q, He Z H, Cui W, Ren X C, Li C J, Xue W W, Cao D M, Li G, Lei W L 2020 Results Phys. 16 102981Google Scholar

    [29]

    李继军, 吴耀德, 宋明玉 2007 长江大学学报(自科版)理工卷 4 1673Google Scholar

    Li J J, Wu Y D, Song M Y 2007 J. Yangtze University (Nat. Sci. Edit) Sci. Eng. V. 4 1673Google Scholar

    [30]

    Li Z F, Wen K H, Fang Y H, Guo Z C 2020 IEEE J. Quantum Electron. 56 2982249Google Scholar

    [31]

    Qiong Z, Wang Z 2019 Opt. Express 27 303Google Scholar

    [32]

    Yin X G, Feng T H, Yip S, Liang Z X, Hui A, Ho J C, Li J S 2013 Appl. Phys. Lett. 103 021115Google Scholar

    [33]

    Xu H, Lu Y, Lee Y, Ham B S 2010 Opt. Express 18 17736Google Scholar

    [34]

    Zhu Y, Hu X Y, Yang H, Gong Q H 2014 Sci. Rep. UK 4 3752Google Scholar

    [35]

    闫西成 2018 硕士学位论文(武汉:华中科技大学) (Wuhan: Huazhong University of Science & Technology)

    Yan X C 2018 M. S. Thesis (Wuhan: Huazhong University of Science & Technology

    [36]

    Ye C G, Zhang L 2008 Opt. Lett. 33 1911Google Scholar

  • [1] 陈召, 马昕新, 李童, 王艺霖. 耦合谐振系统中基于Fano共振的光学压力传感器. 物理学报, 2024, 73(8): 084205. doi: 10.7498/aps.73.20232025
    [2] 农洁, 张伊祎, 韦雪玲, 姜鑫鹏, 李宁, 王冬迎, 肖思洋, 陈泓廷, 张振荣, 杨俊波. 电介质/金属/电介质膜系实现可见光波段高透兼容激光隐身研究. 物理学报, 2023, 72(17): 177802. doi: 10.7498/aps.72.20230855
    [3] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应. 物理学报, 2022, 71(2): 024201. doi: 10.7498/aps.71.20211397
    [4] 朱子豪, 高有康, 曾严, 程政, 马洪华, 易煦农. 基于四盘形谐振腔耦合波导的三波段等离子体诱导透明效应. 物理学报, 2022, 71(24): 244201. doi: 10.7498/aps.71.20221397
    [5] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211397
    [6] 胡宝晶, 黄铭, 黎鹏, 杨晶晶. 基于纳米金属-石墨烯耦合的多频段等离激元诱导透明. 物理学报, 2020, 69(17): 174201. doi: 10.7498/aps.69.20200200
    [7] 管福鑫, 董少华, 何琼, 肖诗逸, 孙树林, 周磊. 表面等离极化激元的散射及波前调控. 物理学报, 2020, 69(15): 157804. doi: 10.7498/aps.69.20200614
    [8] 王帅, 邓子岚, 王发强, 王晓雷, 李向平. 光子角动量在环形金属纳米孔异常透射过程中的作用. 物理学报, 2019, 68(7): 077801. doi: 10.7498/aps.68.20182017
    [9] 陈颖, 谢进朝, 周鑫德, 张灿, 杨惠, 李少华. 基于表面等离子体诱导透明的半封闭T形波导侧耦合圆盘腔的波导滤波器. 物理学报, 2019, 68(23): 237301. doi: 10.7498/aps.68.20191068
    [10] 祁云平, 周培阳, 张雪伟, 严春满, 王向贤. 基于塔姆激元-表面等离极化激元混合模式的单缝加凹槽纳米结构的增强透射. 物理学报, 2018, 67(10): 107104. doi: 10.7498/aps.67.20180117
    [11] 祁云平, 张雪伟, 周培阳, 胡兵兵, 王向贤. 基于十字连通形环形谐振腔金属-介质-金属波导的折射率传感器和滤波器. 物理学报, 2018, 67(19): 197301. doi: 10.7498/aps.67.20180758
    [12] 王维, 高社生, 孟阳. 型谐振腔结构的光学透射特性. 物理学报, 2017, 66(1): 017301. doi: 10.7498/aps.66.017301
    [13] 杨韵茹, 关建飞. 基于金属-电介质-金属波导结构的等离子体滤波器的数值研究. 物理学报, 2016, 65(5): 057301. doi: 10.7498/aps.65.057301
    [14] 张永元, 罗李娜, 张中月. 十字结构银纳米线的表面等离极化激元分束特性. 物理学报, 2015, 64(9): 097303. doi: 10.7498/aps.64.097303
    [15] 罗松, 付统, 张中月. 内嵌银纳米棒圆形银缝隙结构中的法诺共振现象. 物理学报, 2013, 62(14): 147303. doi: 10.7498/aps.62.147303
    [16] 秦艳, 曹威, 张中月. 内嵌矩形腔楔形金属狭缝的增强透射. 物理学报, 2013, 62(12): 127302. doi: 10.7498/aps.62.127302
    [17] 张志东, 赵亚男, 卢东, 熊祖洪, 张中月. 基于圆弧谐振腔的金属-介质-金属波导滤波器的数值研究. 物理学报, 2012, 61(18): 187301. doi: 10.7498/aps.61.187301
    [18] 陈园园, 邹仁华, 宋钢, 张恺, 于丽, 赵玉芳, 肖井华. 纳米银线波导中表面等离极化波激发和辐射的偏振特性研究. 物理学报, 2012, 61(24): 247301. doi: 10.7498/aps.61.247301
    [19] 刘炳灿, 逯志欣, 于丽. 金属和Kerr非线性介质界面上表面等离子体激元的色散关系. 物理学报, 2010, 59(2): 1180-1184. doi: 10.7498/aps.59.1180
    [20] 缪江平, 吴宗汉, 孙承休, 孙岳明. 表面等离极化激元对电荷输运影响的自洽场理论研究. 物理学报, 2004, 53(8): 2728-2733. doi: 10.7498/aps.53.2728
计量
  • 文章访问数:  3989
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-09
  • 修回日期:  2022-09-05
  • 上网日期:  2022-12-12
  • 刊出日期:  2022-12-24

/

返回文章
返回