搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BCl3同位素分离中二聚体的浓度

李业军 郭静 马俊平 唐显 李鑫 闫冰

引用本文:
Citation:

BCl3同位素分离中二聚体的浓度

李业军, 郭静, 马俊平, 唐显, 李鑫, 闫冰

Concentration of dimers for BCl3 and rare gas atoms in BCl3 isotope separation

Li Ye-Jun, Guo Jing, Ma Jun-Ping, Tang Xian, Li Xin, Yan Bing
PDF
HTML
导出引用
  • 在激光辅助凝聚抑制同位素分离的过冷超饱和超声速气流中, 同位素分子BCl3与载气原子(稀有气体原子RG: He, Ne, Ar, Kr, Xe)间的接触碰撞形成二聚体BCl3:RG, 二聚体浓度与温度等参数的关系对同位素分离中参数调控与选择具有重要意义. 本文基于分子间相互作用解析势函数, 考虑二体、三体碰撞诱导的二聚体缔合与解离, 给出了BCl3:RG二聚体浓度随绝对温度变化的关系. 结果表明: 二体碰撞在BCl3:RG形成中占据主导, 在BCl3初始摩尔分数为0.01—0.10内, BCl3:RG二聚体浓度随BCl3初始摩尔分数变化大致呈线性关系, 初始摩尔分数不仅决定理论上二聚体浓度的极限值, 还主导了低温区二聚体浓度; 在超声速流气室温度为20 K左右时, 采用较重的惰性气体Kr形成二聚体的浓度最大, 同时给出了不同温度区间各种载气对应的二聚体浓度大小; 进一步, 通过二聚体中有效解离能和伸缩振动频率等参数的变化, 在分子尺度上利用简单模型解释了激光辅助凝聚抑制的内在微观机制.
    In the low temperature environment generated by supersonic flow in the process of laser assisted retardation of condensation of isotope separation for BCl3, the molecular isotopes BCl3 and carrier gas (rare gas (RG): He, Ne, Ar, Kr, Xe) can form BCl3:RG dimer via contact collision process. The mechanism and relationship between dimer concentration and absolute temperature of dimer involving BCl3 molecules are of great significance for regulating and selecting the isotope separation parameters. In this work, based on the analytic description of the anharmonic interaction potential function of BCl3:RG, and considering the two-body and three-body collision induced association and dissociation of dimers, the concentration of BCl3:RG dimers is obtained at the absolute temperature in a range of 20–40 K. The obtained results are as follows. The two-body collision is dominant in the formation of dimer in the low temperature range. When the initial molar fraction of BCl3 is in a range of 0.01–0.10, the BCl3:RG dimer concentration changes approximately linearly with the initial molar fraction of BCl3, indicating that the initial molar fraction not only determines the theoretical upper limit of the dimer concentration, but also dominates the dimer concentration in a low temperature range. When the temperature of the supersonic flow chamber is about 20 K, the concentration of BCl3:Kr dimers is largest, and the concentrations of other dimers are also presented. Furthermore, we explain the mechanism of laser assisted retardation of condensation in separation of isotopes by using a simple model on a molecular scale by adjusting the parameters of dissociation energy and stretching vibration frequency of the dimer.
      通信作者: 李业军, iamliyejun@163.com ; 闫冰, yanbing@jlu.edu.cn
    • 基金项目: 稳定支持基础科研计划(批准号: BJ19001810)资助的课题.
      Corresponding author: Li Ye-Jun, iamliyejun@163.com ; Yan Bing, yanbing@jlu.edu.cn
    • Funds: Project supported by the Continuous Support Basic Scientific Research Project of China (Grant No. BJ19001810).
    [1]

    Apatin V M, Lokhman V N, Makarov G N, Ogurok N D D, Ryabov E A 2018 Quantum Electron. 48 157Google Scholar

    [2]

    Makarov G N, Ogurok N D D, Petin A N 2018 Quantum Electron. 48 667Google Scholar

    [3]

    Lokhman V N, Makarov G N, Malinovskii A L, Petin A N, Poydashev D G, Ryabov E A 2018 Laser Phys. 28 105703Google Scholar

    [4]

    Lyakhov K A, Lee H J, Pechen A N 2017 Sep. Purif. Technol. 176 402Google Scholar

    [5]

    Silex Systems-SILEX Laser Enrichment Technology https://wp.silex.com.au/[2022-07-25]

    [6]

    Snyder R 2016 Sci. Glob. Secur. 24 68

    [7]

    Baldwin A 2016 M. S. Thesis (Cambridge: Massachusetts Institute of Technology)

    [8]

    Eerkens J W 2005 Laser Part. Beams 23 225Google Scholar

    [9]

    Lyakhov K A 2022 J. Phys. Conf. Ser. 2147 012009Google Scholar

    [10]

    Lyakhov K A, Lee H J 2013 Ann. Nucl. Energy 54 274Google Scholar

    [11]

    Lowry J T, Snider R F 1974 J. Chem. Phys. 61 2320Google Scholar

    [12]

    Eerkens J W 2001 Chem. Phys. 269 189Google Scholar

    [13]

    Eerkens J W 2006 Chem. Phys. Lett. 430 271Google Scholar

    [14]

    Eerkens J W 2005 Nucl. Sci. Eng. 150 1Google Scholar

    [15]

    Lyakhov K A, Pechen A N 2021 Proc. Steklov Inst. Math. 313 131Google Scholar

    [16]

    Borner A, Li Z, Levin D A 2013 J. Chem. Phys. 138 064302Google Scholar

    [17]

    Lyakhov K A, Pechen A N 2020 Lobachevskii J. Math. 41 2345Google Scholar

    [18]

    Lyakhov K, Lee H J 2015 J. Nanosci. Nanotechnol. 15 8502Google Scholar

    [19]

    Lyakhov K, Lee H J, Pechen A 2016 IEEE J. Quantum Electron. 52 1400208Google Scholar

    [20]

    Guo J, Li Y J, Ma J P, Tang X, Liu X S 2021 Chem. Phys. Lett. 773 138572Google Scholar

    [21]

    Li Y J, Guo J, Ma J P, Tang X, Liu X S 2021 Chem. Phys. Lett. 781 138948Google Scholar

  • 图 1  二体、三体碰撞机制对BCl3:Ar二聚体浓度的贡献

    Fig. 1.  Contributions of two-body and three-body collision mechanisms to the dimer concentration of BCl3:Ar.

    图 2  BCl3:RG二聚体的浓度与温度T关系

    Fig. 2.  Relationships of concentration for BCl3:RG dimer and absolute temperature T

    图 3  BCl3不同初始摩尔分数下BCl3:Kr浓度与温度的关系

    Fig. 3.  Relationships of concentration for BCl3:Kr dimer and absolute temperature with the different initial mole fractions of BCl3.

    图 4  不同解离能DLJ下BCl3:Ar浓度与温度的关系

    Fig. 4.  Relationships of concentration for BCl3:Ar dimer and absolute temperature with the different dissociation energies DLJ.

    图 5  不同等效振动频率下BCl3:Ar浓度与温度关系

    Fig. 5.  Relationships of concentration for BCl3:Ar dimer and absolute temperature at different effective vibrational frequency

    表 1  不同温度(20—40 K)下二聚体浓度(初始摩尔分数比0.02∶0.98)

    Table 1.  Concentration of BCl3:RG at different absolute temperature (20—40 K). Initial mole fractions ration is 0.02∶0.98.

    温度T/KBCl3:He/10–4BCl3:Ne/10–4BCl3:Ar/10–4BCl3:Kr/10–4BCl3:Xe/10–4
    20.021.720.134.5n/a66.2
    20.520.018.029.191.055.3
    21.018.516.124.679.946.1
    21.517.214.520.969.738.3
    22.016.013.117.860.531.8
    22.514.911.915.352.426.4
    23.013.910.813.145.322.0
    23.513.09.8212511.339.218.4
    24.012.28.975699.8333533.915.5
    24.511.48.226188.5657629.313.0
    25.010.77.559777.4933325.411.0
    25.510.16.965486.5823822.19.37370
    26.09.546826.433985.8054719.38.00714
    26.59.025085.957285.1402216.86.87095
    27.08.545035.528574.5683114.75.92244
    27.58.102505.141994.0747313.05.12731
    28.07.693814.792513.6471211.44.45793
    28.57.315704.475793.2752910.13.89202
    29.06.965274.188082.950808.976883.41159
    29.56.639953.926102.666627.990783.00205
    30.06.337463.687042.416927.134532.65152
    30.56.055763.468412.196786.388912.35034
    31.05.793033.268062.002105.737742.09055
    31.55.547623.084091.829415.167421.86565
    32.05.318082.914841.675784.666481.67025
    32.55.103082.758841.538714.225241.49989
    33.04.901442.614801.416093.835511.35086
    33.54.712092.481561.306103.490351.22007
    34.04.534062.358121.207203.183841.10494
    34.54.366482.243571.118052.910961.00327
    35.04.208542.137101.037502.667390.913239
    35.54.059522.037990.9645482.449470.833287
    36.03.918781.945600.8983422.254030.762093
    36.53.785711.859360.8381292.078340.698532
    37.03.659761.778740.7832531.920050.641643
    37.53.540441.703290.7331441.777130.590602
    38.03.427281.632570.6873011.647810.544699
    38.53.319881.566210.6452831.530560.503325
    39.03.217841.503880.6067021.424050.465950
    39.53.120811.445240.5712171.327090.432116
    40.03.028481.390040.5385261.238680.401426
    注: n/a = not available, 表示该点的数值计算未收敛.
    下载: 导出CSV
  • [1]

    Apatin V M, Lokhman V N, Makarov G N, Ogurok N D D, Ryabov E A 2018 Quantum Electron. 48 157Google Scholar

    [2]

    Makarov G N, Ogurok N D D, Petin A N 2018 Quantum Electron. 48 667Google Scholar

    [3]

    Lokhman V N, Makarov G N, Malinovskii A L, Petin A N, Poydashev D G, Ryabov E A 2018 Laser Phys. 28 105703Google Scholar

    [4]

    Lyakhov K A, Lee H J, Pechen A N 2017 Sep. Purif. Technol. 176 402Google Scholar

    [5]

    Silex Systems-SILEX Laser Enrichment Technology https://wp.silex.com.au/[2022-07-25]

    [6]

    Snyder R 2016 Sci. Glob. Secur. 24 68

    [7]

    Baldwin A 2016 M. S. Thesis (Cambridge: Massachusetts Institute of Technology)

    [8]

    Eerkens J W 2005 Laser Part. Beams 23 225Google Scholar

    [9]

    Lyakhov K A 2022 J. Phys. Conf. Ser. 2147 012009Google Scholar

    [10]

    Lyakhov K A, Lee H J 2013 Ann. Nucl. Energy 54 274Google Scholar

    [11]

    Lowry J T, Snider R F 1974 J. Chem. Phys. 61 2320Google Scholar

    [12]

    Eerkens J W 2001 Chem. Phys. 269 189Google Scholar

    [13]

    Eerkens J W 2006 Chem. Phys. Lett. 430 271Google Scholar

    [14]

    Eerkens J W 2005 Nucl. Sci. Eng. 150 1Google Scholar

    [15]

    Lyakhov K A, Pechen A N 2021 Proc. Steklov Inst. Math. 313 131Google Scholar

    [16]

    Borner A, Li Z, Levin D A 2013 J. Chem. Phys. 138 064302Google Scholar

    [17]

    Lyakhov K A, Pechen A N 2020 Lobachevskii J. Math. 41 2345Google Scholar

    [18]

    Lyakhov K, Lee H J 2015 J. Nanosci. Nanotechnol. 15 8502Google Scholar

    [19]

    Lyakhov K, Lee H J, Pechen A 2016 IEEE J. Quantum Electron. 52 1400208Google Scholar

    [20]

    Guo J, Li Y J, Ma J P, Tang X, Liu X S 2021 Chem. Phys. Lett. 773 138572Google Scholar

    [21]

    Li Y J, Guo J, Ma J P, Tang X, Liu X S 2021 Chem. Phys. Lett. 781 138948Google Scholar

  • [1] 曾平, 宋盼, 王小伟, 赵晶, 张栋文, 袁建民, 赵增秀. 强飞秒激光场下二氧化碳二聚体四价离子的多体解离动力学. 物理学报, 2023, 72(18): 187901. doi: 10.7498/aps.72.20230699
    [2] 洪昕, 王晓强, 李冬雪, 商云晶. 不依赖激发光偏振方向的芯帽异构二聚体. 物理学报, 2022, 71(3): 037801. doi: 10.7498/aps.71.20211381
    [3] 杨其利, 张兴坊, 刘凤收, 闫昕, 梁兰菊. 劈裂环-盘二聚体结构的多重Fano共振. 物理学报, 2022, 71(2): 027802. doi: 10.7498/aps.71.20210855
    [4] 洪昕, 王晓强, 李冬雪, 商云晶. 不依赖激发光偏振方向的芯帽异构二聚体. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211381
    [5] 殷澄, 陆成杰, 笪婧, 张瑞耕, 阚雪芬, 韩庆邦, 许田. 金属纳米颗粒二聚体阵列的消光截面. 物理学报, 2021, 70(2): 024201. doi: 10.7498/aps.70.20200964
    [6] 杨其利, 张兴坊. 劈裂环-盘二聚体结构的多重Fano共振研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210855
    [7] 王晓璐, 徐梅, 令狐荣锋, 孙克斌, 杨向东. 氦同位素与氢分子碰撞的振转激发分波截面研究. 物理学报, 2010, 59(3): 1689-1694. doi: 10.7498/aps.59.1689
    [8] 沈光先, 汪荣凯, 令狐荣锋, 杨向东. He同位素与H2分子碰撞第二振动激发分波截面的理论研究. 物理学报, 2009, 58(6): 3827-3832. doi: 10.7498/aps.58.3827
    [9] 柏于杰, 付石友, 邓开明, 唐春梅, 陈 宣, 谭伟石, 刘玉真, 黄德财. 密度泛函理论计算内掺氢分子富勒烯H2@C60及其二聚体的几何结构和电子结构. 物理学报, 2008, 57(6): 3684-3689. doi: 10.7498/aps.57.3684
    [10] 蒋岩玲, 付石友, 邓开明, 唐春梅, 谭伟石, 黄德财, 刘玉真, 吴海平. C60富勒烯-巴比妥酸及其二聚体几何结构和电子结构的密度泛函计算研究. 物理学报, 2008, 57(6): 3690-3697. doi: 10.7498/aps.57.3690
    [11] 沈光先, 汪荣凯, 令狐荣锋, 杨向东. 3He(4He)与H2分子碰撞的同位素效应研究. 物理学报, 2008, 57(6): 3452-3457. doi: 10.7498/aps.57.3452
    [12] 陈正林, 张杰, 滕浩, 张军, 董全力. 飞秒激光分离同位素的模拟实验研究. 物理学报, 2002, 51(5): 1081-1086. doi: 10.7498/aps.51.1081
    [13] 彭景翠. 吡嗪桥接混合价二聚体中的光吸收. 物理学报, 1991, 40(6): 862-869. doi: 10.7498/aps.40.862
    [14] 徐积仁, 黄南堂, 蒋义枫, 傅广生, 吴振球. 强红外场作用下BCl3振动态传能动力学研究. 物理学报, 1983, 32(7): 854-866. doi: 10.7498/aps.32.854
    [15] 蒋义枫, 黄南堂, 徐积仁, 林光海. 强红外激光引起BCl3分子可见荧光的脉冲光-声-光效应. 物理学报, 1981, 30(11): 1464-1478. doi: 10.7498/aps.30.1464
    [16] 徐积仁, 黄南堂, 蒋义枫, 傅广生, 吴振球. BCl3振动激发弛豫的红外吸收研究. 物理学报, 1981, 30(11): 1456-1463. doi: 10.7498/aps.30.1456
    [17] 徐积仁, 蒋义枫, 黄南堂, 林光海. 强红外激光引起BCl3可见荧光的动力学研究. 物理学报, 1980, 29(6): 732-742. doi: 10.7498/aps.29.732
    [18] 马兴孝. 激光分离同位素的动力学. 物理学报, 1979, 28(1): 1-14. doi: 10.7498/aps.28.1
    [19] 马兴孝, 胡照林. 红外聚焦脉冲激光场中同位素浓缩过程的动力学处理. 物理学报, 1978, 27(6): 645-650. doi: 10.7498/aps.27.645
    [20] 叶铭汉, 李整武. 带电重粒子激发的γ射线在测定同位素丰度上的应用. 物理学报, 1958, 14(1): 64-70. doi: 10.7498/aps.14.64
计量
  • 文章访问数:  2264
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-26
  • 修回日期:  2022-09-12
  • 上网日期:  2022-12-12
  • 刊出日期:  2022-12-24

/

返回文章
返回