-
钙钛矿/有机集成太阳电池具有宽带隙的钙钛矿活性层吸收高能量的光子, 较低能量的光子可以透过钙钛矿层并被窄带隙的有机活性层吸收. 即通过引入可见光区的钙钛矿材料和近红外(near-infrared, NIR)有机半导体材料组成的体异质结(bulk heterojunction, BHJ), 在保持钙钛矿型器件高开路电压的同时, 也可以获得有机电池增强的短路电流密度. 将窄带隙有机活性层PC20BDTDPP:PC71BM直接沉积在CH3NH3PbI3上制备成钙钛矿/有机集成太阳电池. CH3NH3PbI3/PC20BDTDPP:PC71BM集成太阳电池可以扩宽钙钛矿的吸收光谱, 提高近红外光的吸收利用. 结果表明, 集成太阳电池的短路电流密度提升到23.90 mA/cm2, 光响应扩宽到920 nm, 外量子效率在可见光区达到85%, 在近红外区域(800—900 nm)亦接近55%, 器件能量转换效率高达20.30%, 最佳器件的积分电流密度和近红外区的外量子效率以及能源转换效率均是目前报导的钙钛矿/有机集成太阳电池中的最高值. 在室温25 ℃和湿度30%的环境下, 器件的效率经过350 h以后, 下降到初始效率的95%, 表现出极佳的器件稳定性. 研究结果表明: 通过材料组合和器件结构优化来提高钙钛矿太阳电池对于近红外光的吸收, 以及提升钙钛矿/有机集成太阳电池性能的策略是一种有效的方法. 为将来开发高效率和高稳定性的钙钛矿/有机集成电池提供了理论指导和实验基础.
-
关键词:
- 钙钛矿/有机集成太阳电池 /
- 近红外吸收 /
- 外量子效率 /
- 迟滞效应
Perovskite/organic integrated solar cell possesses the perovskite active layer with wide band gap that can absorb high energy photons, while the lower energy photons can pass through the perovskite layer and be absorbed by the organic active layer with narrow band gap. By introducing a Bulk heterojunction (BHJ) consisting of perovskite materials and near-infrared (NIR) organic semiconductor materials in the visible light region, the enhanced short-circuit current density of organic cells can be obtained while maintaining the high open-circuit voltage of perovskite-type devices. We prepare perovskite/organic integrated solar cells by directly deposing the narrow band gap organic active layer PC20BDTDPP:PC71BM on CH3NH3PbI3. The CH3NH3PbI3/PC20BDTDPP:PC71BM integrated solar cell can widen the perovskite absorption spectra, thereby increasing the near-infrared light absorption. The results show that the short-circuit current density of the integrated solar cell increases to 23.90 mA/cm2, the optical response is widened to 920 nm, the external quantum efficiency reaches 85% in the visible region, and is close to 55% in the near infrared region (800–900 nm), and the energy conversion efficiency of the device increases up to 20.30%. The integrated current density, quantum efficiency, and energy conversion efficiency of the best device are the highest values ever reported in perovskite/organic integrated solar cells. At room temperature of 25 ℃ and humidity of 30%, the efficiency of the device decreases to 95% of the original efficiency after 350 h, showing excellent device stability. The results show that it is an effective method to improve the near-infrared absorption of perovskite solar cells and improve the performance of perovskite/organic integrated solar cells through material combination and device structure optimization. The present research provides theoretical guidance and experimental basis for the development of perovskite/ organic integrated cells with high efficiency and stability in the future.-
Keywords:
- perovskite/organic integrated solar cell /
- near infrared absorption /
- external quantum efficiency /
- hysteresis effect
[1] Jeong J K, Kim M J, Seo J D, Lu H Z, Kim J Y, Grätzel M, Kim D S 2021 Nature 592 381Google Scholar
[2] Zhao Y, Ma F, Qu A H, You J B 2022 Science 377 531Google Scholar
[3] Liu Q S, Jiang Y F, Jin K, Qin J Q, Xu J G, Li W T, Xiong J, Liu J F, Xiao Z, Zhang X T, Ding L M 2020 Sci. Bull. 65 272Google Scholar
[4] Cai Y H, Li Y, Wang R, Wu H B, Sun Y M 2021 Adv. Mater. 33 2101733Google Scholar
[5] Bi P Q, Zhang S Q, Chen Z H, Hou J H 2021 Joule 5 1Google Scholar
[6] Gao K, Zhu Z L, Xu B, Jen A K Y 2018 Adv. Mater. 29 1703980Google Scholar
[7] Guo Q, Liu H, Shi Z Z, Wang F Z, Tan Z A 2018 Nanoscale 10 3245Google Scholar
[8] Wang C Y, Bai Y M, Guo Q, Tan Z A 2019 Nanoscale 11 4035
[9] Liu Y, Chen Y 2020 Adv. Mater. 32 1805843Google Scholar
[10] Chen S, Yao H, Huang J, Ma W, Yan H 2018 Adv. Ener. Mater. 8 1800529Google Scholar
[11] Bai Y, Lang K, Zhao C, Alsaedi A, Tan Z A 2020 Solar RRL. 4 1900280Google Scholar
[12] Chen W, Sun H, Hu Q, Guo X, He Z 2019 ACS Energy Lett. 4 2535Google Scholar
[13] Gu S L, Lin R, Han Q, Gao Y, Zhu J 2020 Adv. Mater. 32 1907392Google Scholar
[14] Oklem G, Song X, Toppare L, Baran D, Gunbas G 2018 J. Mater. Chem. C 6 2957Google Scholar
[15] Meng L, Zhang Y, Wan X, Yi H L, Cao Y, Chen Y 2018 Science 361 1094Google Scholar
[16] Zhang L X, Pan X Y, Liu L, Ding L M 2022 J. Semicond. 43 030203Google Scholar
[17] Yuan J, Zhang Y, Peng H, Johnson PA, Leclerc M, Cao Y, 2019 Joule 3 1140Google Scholar
[18] Cui Y, Yao H F, Zhang J Q, Xian K H, Zhang T, Hong L, Wang Y M, Xu Y, Ma K Q, An C B, He C, Wei Z X, Gao F, Hou J H 2020 Adv. Mater. 32 1908205Google Scholar
[19] Daboczi M, McLachlan M A, Lee K, Durrant J R, Kim J S 2020 Adv. Funct. Mater. 30 2001482Google Scholar
-
表 1 钙钛矿/有机集成太阳电池和相应的单结电池光伏性能参数
Table 1. Photovoltaic performance parameters of perovskite/organic integrated solar cells and corresponding single-junction cells.
Voc/V Jsc/(mA·cm–2) FF/% PCE/% PC20BDTDPP:PC71BM 0.91 15.02 66 9.21 CH3NH3PbI3 1.07 20.01 68 14.56 CH3NH3PbI3/PC20BDTDPP:PC71BM(正扫) 1.18 23.90 72 20.30 CH3NH3PbI3/PC20BDTDPP:PC71BM(反扫) 1.17 23.21 71 19.28 -
[1] Jeong J K, Kim M J, Seo J D, Lu H Z, Kim J Y, Grätzel M, Kim D S 2021 Nature 592 381Google Scholar
[2] Zhao Y, Ma F, Qu A H, You J B 2022 Science 377 531Google Scholar
[3] Liu Q S, Jiang Y F, Jin K, Qin J Q, Xu J G, Li W T, Xiong J, Liu J F, Xiao Z, Zhang X T, Ding L M 2020 Sci. Bull. 65 272Google Scholar
[4] Cai Y H, Li Y, Wang R, Wu H B, Sun Y M 2021 Adv. Mater. 33 2101733Google Scholar
[5] Bi P Q, Zhang S Q, Chen Z H, Hou J H 2021 Joule 5 1Google Scholar
[6] Gao K, Zhu Z L, Xu B, Jen A K Y 2018 Adv. Mater. 29 1703980Google Scholar
[7] Guo Q, Liu H, Shi Z Z, Wang F Z, Tan Z A 2018 Nanoscale 10 3245Google Scholar
[8] Wang C Y, Bai Y M, Guo Q, Tan Z A 2019 Nanoscale 11 4035
[9] Liu Y, Chen Y 2020 Adv. Mater. 32 1805843Google Scholar
[10] Chen S, Yao H, Huang J, Ma W, Yan H 2018 Adv. Ener. Mater. 8 1800529Google Scholar
[11] Bai Y, Lang K, Zhao C, Alsaedi A, Tan Z A 2020 Solar RRL. 4 1900280Google Scholar
[12] Chen W, Sun H, Hu Q, Guo X, He Z 2019 ACS Energy Lett. 4 2535Google Scholar
[13] Gu S L, Lin R, Han Q, Gao Y, Zhu J 2020 Adv. Mater. 32 1907392Google Scholar
[14] Oklem G, Song X, Toppare L, Baran D, Gunbas G 2018 J. Mater. Chem. C 6 2957Google Scholar
[15] Meng L, Zhang Y, Wan X, Yi H L, Cao Y, Chen Y 2018 Science 361 1094Google Scholar
[16] Zhang L X, Pan X Y, Liu L, Ding L M 2022 J. Semicond. 43 030203Google Scholar
[17] Yuan J, Zhang Y, Peng H, Johnson PA, Leclerc M, Cao Y, 2019 Joule 3 1140Google Scholar
[18] Cui Y, Yao H F, Zhang J Q, Xian K H, Zhang T, Hong L, Wang Y M, Xu Y, Ma K Q, An C B, He C, Wei Z X, Gao F, Hou J H 2020 Adv. Mater. 32 1908205Google Scholar
[19] Daboczi M, McLachlan M A, Lee K, Durrant J R, Kim J S 2020 Adv. Funct. Mater. 30 2001482Google Scholar
计量
- 文章访问数: 4729
- PDF下载量: 130
- 被引次数: 0