搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水声射线传播的黎曼几何建模·应用 —深海远程声传播会聚区黎曼几何模型

马树青 郭肖晋 张理论 蓝强 黄创霞

引用本文:
Citation:

水声射线传播的黎曼几何建模·应用 —深海远程声传播会聚区黎曼几何模型

马树青, 郭肖晋, 张理论, 蓝强, 黄创霞

Riemannian geometric modeling of underwater acoustic ray propagation ·application——Riemannian geometric model of convergence zone in deep ocean remote sound propagation

Ma Shu-Qing, Guo Xiao-Jin, Zhang Li-Lun, Lan Qiang, Huang Chuang-Xia
PDF
HTML
导出引用
  • 会聚区是深海水声传播重要的物理现象, 对其准确建模和计算是深海远程水声探测与通信的基础. 但深海会聚区缺乏明确的数学描述, 特别是对于地球曲率所导致的系统误差, 目前主要采用近似计算与曲率修正相结合的方法, 尚无精确会聚区数学模型. 本文基于水声射线黎曼几何建模基础理论研究, 在弯曲球体流形上开展深海会聚区建模, 在分析总结会聚区物理特征的基础上, 给出深海会聚区黎曼几何描述, 得到深海会聚区位置、距离的分析形式和基于黎曼几何概念的计算方法, 为深海会聚区—这一重要的深海声学现象探索赋予黎曼几何学意义. 以Munk声速剖面为例, 对比分析深海会聚区在曲率修正和采用黎曼几何方法在球体流形上建模两种情形的时空分布, 验证了本文提出的深海会聚区黎曼几何模型的有效性, 结果显示近海面处的会聚区宽度随声传播呈现先变大后变小的规律, 最大约20 km, 最小约4 km.
    Convergence-zone (CZ) sound propagation is one of the most important hydro-acoustic phenomena in the deep ocean, which allows the acoustic signals with high intensity and low distortion to realize the long-range transmission. Accurate prediction and identification of CZ is of great significance in implementing remote detection or communication, but there is still no standard definition in the sense of mathematical physics for convergence zone. Especially for the issue of systematic error of computation introduced by the earth curvature, there is no exact propagation model. The curvature-correction methods always lead to the imprecision of the ray phase. In previous research work, we realized that the Riemannian geometric meaning of the caustics phenomena caused by ray convergence is that the caustic points are equivalent to the conjugate points, which form on geodesics with positive section curvature. In this work, we present a spherical layered acoustic ray propagation model for CZ based on the Riemannian geometric theory. With direct computation in the curved manifolds of the earth , a Riemannian geometric description of CZ is provided for the first time, on the basis of comprehensive analysis about its characteristics. And it shows that the mathematical expression of section curvature adds an additional item ${{\hat c(l){{\hat c}^\prime }(l)}}/{l}$ after considering the earth curvature, which reflects the influence of the earth curvature on the ray topology and CZ. By means of Jacobi field theory of Riemannian geometry, computational rule and method of the location and distance of CZ in deep water are proposed. Taking the typical Munk sound velocity profile for example, the new Riemannian geometric model of CZ is compared with the normal mode and curvature-correction method. Simulation and analysis show that the Riemannian geometric model of CZ given in this paper is a mathematical form naturally considering the earth curvature with theoretical accuracy, which lays more solid scientific foundations for the study of convergence zone. Moreover, we find that the location of CZ moves towards sound source when the earth curvature is considered, and the width of CZ near the sea surface first increases and then decreases with sound propagation proceeding. The maximum width is about 20 km and the minimum is about 4 km.
      通信作者: 张理论, zhanglilun@nudt.edu.cn
    • 基金项目: 国防基础科学研究计划(批准号: JCKY2020550C011)和水声对抗技术国防科技重点实验室基金(批准号: 6412214200403)资助的课题.
      Corresponding author: Zhang Li-Lun, zhanglilun@nudt.edu.cn
    • Funds: Project supported by the National Defense Basic Scientific Research Program of China (Grant No. JCKY2020550C011), and the National Defense Science and Technology Key Laboratory Foundation for Underwater Acoustic Countermeasure Technology, China (Grant No. 6412214200403).
    [1]

    Jensen F B, Kuperman W A, Porter M B 2011 Schmidt H Computational Ocean Acoustics ( NewYork: Springer-Verlag) p125

    [2]

    Hale F E 1961 J. Acoust. Soc. Am. 33 456Google Scholar

    [3]

    Urick R J 1965 J. Acoust. Soc. Am. 38 348

    [4]

    朴胜春, 栗子洋, 王笑寒, 张明辉 2021 物理学报 70 024301Google Scholar

    Piao S C, Li Z Y, Wang X H, Zhang M H 2021 Acta Phys. Sin. 70 024301Google Scholar

    [5]

    李文, 李整林 2016 中国科学: 物理学 力学 天文学 46 094303Google Scholar

    Li W, Li Z L 2016 Sci. Sin. Phys. Mech. Astron. 46 094303Google Scholar

    [6]

    张仁和 1982 声学学报 7 75Google Scholar

    Zhang R H 1982 Acta Acust 7 75Google Scholar

    [7]

    张仁和 1980 声学学报 1 28

    Zhang R H 1980 Acta Acust 1 28

    [8]

    Bongiovanni K P, Siegmann W L, Ko D S 1996 J. Acoust. Soc. Am. 100 3033Google Scholar

    [9]

    Tolstoy I, Clay C S 1987 Ocean Acoustics: Theory and Experiment in Underwater Sound (New York: American Institute of Physics) p20

    [10]

    Wu S L, Li Z L, Qin J X, Wang M Y, Li W 2022 J. Mar. Sci. Eng. 10 424Google Scholar

    [11]

    庄益夫, 张旭, 刘艳 2013 海洋通报 32 45Google Scholar

    Zhuang Y F, Zhang X, Liu Y 2013 Mar. Sci. Bull. 32 45Google Scholar

    [12]

    张晶晶, 罗博 2017 声学与电子工程 2017 8

    Zhang J J, Luo B 2017 Acoust. Electron. Eng. 2017 8

    [13]

    Yang Y, Guo L H, Gong Z X 2020 Global Oceans 2020: Singapore–U. S. Gulf Coast Electr Network, October 5–30, 2021 p2021-10-08

    [14]

    龚敏, 肖金泉, 王孟新, 吴寅庚, 黄德华 1987 声学学报 12 417Google Scholar

    Gong M, Xiao J Q, Wang M X, Wu Y G, Huang D H 1987 Acta Acust. 12 417Google Scholar

    [15]

    Vadov R A 2005 Acoust. Phys. 51 265Google Scholar

    [16]

    徐传秀, 朴胜春, 张红星, 杨士莪, 张海刚, 周建波 2015 声学技术 34 79

    Xu C X, Piao S C, Zhang H X, Yang S E, Zhang H G, Zhou J B 2015 Tech. Acoust. 34 79

    [17]

    毕思昭, 彭朝晖 2021 物理学报 70 114303Google Scholar

    Bi S Z, Peng Z H 2021 Acta Phys. Sin. 70 114303Google Scholar

    [18]

    Munk W H, O'Reilly W C, Reid J L 1988 J. Phys. Oceanogr. 18 1876Google Scholar

    [19]

    Yan J, Kang K Y 1995 Appl. Acoust. 45 9Google Scholar

    [20]

    Yan J 1999 Appl. Acoust. 57 163Google Scholar

    [21]

    郭肖晋, 马树青, 张理论, 蓝强, 黄创霞 2022 物理学报 72 044302Google Scholar

    [22]

    陈维恒, 李兴校 2002 黎曼几何引论 (北京: 北京大学出版社 第267页

    Chen W H, Li X X 2002 Introduction to Riemannian Geometry (Beijing: Peking University Press) p267 (in Chinese)

    [23]

    刘伯胜, 雷家煜 2010 水声学原理 (哈尔滨: 哈尔滨工程大学出版社) 第77页

    Liu B S, Lei J Y 2010 Principles of Underwater Acoustics (Harbin: Harbin Engineering University Press) p77 (in Chinese)

    [24]

    Cheeger J, Ebin D G 2008 Comparison Theorems in Riemannian Geometry (Providence, Rhode Island: American Mathematical Society) p35

  • 图 1  考虑地球曲率后的声传播 (a) 对称截面; (b) $ (l, \theta ) $平面上的雅可比场几何示意图

    Fig. 1.  Sound propagation considering the earth curvature: (a) Symmetrical section; (b) geometric structure of Jacobi field.

    图 2  考虑地球曲率前后所选声线的截面曲率 (a) 660 s内50根声线的截面曲率; (b) 入射角${\alpha _0}{\text{ = }}{0^\circ }$的声线形成第一个焦散点前的截面曲率

    Fig. 2.  Section curvature before and after considering the earth curvature: (a) Section curvature of 50 sound lines in 660 s; (b) section curvature of sound line with elevation angle ${\alpha _0}{\text{ = }}{0^\circ }$ before forming the first caustic.

    图 3  660 s内所选50根声线的雅可比场$ {Y_1}(t) $

    Fig. 3.  Jacobi field $ {Y_1}(t) $ of 50 sound lines in 660 s.

    图 4  弯曲声道中的声线、会聚区和焦散点 (a) 全图; (b) 细节图

    Fig. 4.  Ray, convergence zone and caustics in curved sound channel: (a) Full picture; (b) details picture.

    图 5  考虑地球曲率前后的声线和焦散线 (a) 全图; (b) 上反转点焦散线; (c) 下反转点焦散线

    Fig. 5.  Rays and caustics before and after considering the earth curvature: (a) Full picture; (b) upper turning point caustics; (c) lower turning point caustics.

    图 6  考虑地球曲率前后的声线和会聚区

    Fig. 6.  Rays and convergence zones before and after considering the earth curvature.

    图 7  考虑地球曲率后会聚区偏移的距离

    Fig. 7.  Movement of the convergence zone after considering the earth curvature.

    图 8  不同接收深度处考虑地球曲率和不考虑地球曲率的会聚区宽度 (a) 200 m; (b) 4000 m

    Fig. 8.  The width of convergence zone considering and not considering earth curvature at the two different receiver depths: (a) 200 m; (b) 4000 m.

    图 9  不同几何扩展损失阈值下的会聚区 (a) $ \beta = 25 $ dB; (b) $ \beta = 15 $ dB

    Fig. 9.  Convergence zones at two different geometric spread loss thresholds $ \beta $: (a) $ \beta = 25 $ dB; (b) $ \beta = 15 $ dB.

    图 10  不同声源深度的焦散点与会聚区 (a) 150 m; (b) 300 m

    Fig. 10.  Convergence zones at two different source depths: (a) 150 m; (b) 300 m.

    图 11  黎曼几何与简正波法计算的会聚区对比图 (a) 黎曼几何理论计算的会聚区 (b) 简正波法(Kraken软件)计算的会聚区

    Fig. 11.  The convergence zones by Riemann-Geometry and Normal-Mode theory: (a) Based on Riemann-Geometry Theory ; (b) based on Normal-Modes (Kraken).

    表 1  考虑地球曲率前后Munk声速剖面下截面曲率对比

    Table 1.  Comparison of sectional curvature of Munk sound speed profile.

    $ K \gt 0 $$ K = 0 $$ K \lt 0 $$ {K_{\max }} $
    考虑地球曲率$ \hat z \lt 4519 $ m$ \hat z = 4519 $ m$ \hat z \gt 4519 $ m0.2878
    不考虑地球曲率$ z \lt 4510 $ m$ z = 4510 $ m$ z \gt 4510 $ m0.2877
    下载: 导出CSV

    表 2  考虑地球曲率后会聚区向声源方向前移距离

    Table 2.  Distance of convergence zone moving forward towards sound source after considering the earth curvature.

    第4个会聚区第9个会聚区第16个会聚区
    上反转点会聚区前移距离/km2.55.59.6
    下反转点会聚区前移距离/km2.35.49.7
    下载: 导出CSV
  • [1]

    Jensen F B, Kuperman W A, Porter M B 2011 Schmidt H Computational Ocean Acoustics ( NewYork: Springer-Verlag) p125

    [2]

    Hale F E 1961 J. Acoust. Soc. Am. 33 456Google Scholar

    [3]

    Urick R J 1965 J. Acoust. Soc. Am. 38 348

    [4]

    朴胜春, 栗子洋, 王笑寒, 张明辉 2021 物理学报 70 024301Google Scholar

    Piao S C, Li Z Y, Wang X H, Zhang M H 2021 Acta Phys. Sin. 70 024301Google Scholar

    [5]

    李文, 李整林 2016 中国科学: 物理学 力学 天文学 46 094303Google Scholar

    Li W, Li Z L 2016 Sci. Sin. Phys. Mech. Astron. 46 094303Google Scholar

    [6]

    张仁和 1982 声学学报 7 75Google Scholar

    Zhang R H 1982 Acta Acust 7 75Google Scholar

    [7]

    张仁和 1980 声学学报 1 28

    Zhang R H 1980 Acta Acust 1 28

    [8]

    Bongiovanni K P, Siegmann W L, Ko D S 1996 J. Acoust. Soc. Am. 100 3033Google Scholar

    [9]

    Tolstoy I, Clay C S 1987 Ocean Acoustics: Theory and Experiment in Underwater Sound (New York: American Institute of Physics) p20

    [10]

    Wu S L, Li Z L, Qin J X, Wang M Y, Li W 2022 J. Mar. Sci. Eng. 10 424Google Scholar

    [11]

    庄益夫, 张旭, 刘艳 2013 海洋通报 32 45Google Scholar

    Zhuang Y F, Zhang X, Liu Y 2013 Mar. Sci. Bull. 32 45Google Scholar

    [12]

    张晶晶, 罗博 2017 声学与电子工程 2017 8

    Zhang J J, Luo B 2017 Acoust. Electron. Eng. 2017 8

    [13]

    Yang Y, Guo L H, Gong Z X 2020 Global Oceans 2020: Singapore–U. S. Gulf Coast Electr Network, October 5–30, 2021 p2021-10-08

    [14]

    龚敏, 肖金泉, 王孟新, 吴寅庚, 黄德华 1987 声学学报 12 417Google Scholar

    Gong M, Xiao J Q, Wang M X, Wu Y G, Huang D H 1987 Acta Acust. 12 417Google Scholar

    [15]

    Vadov R A 2005 Acoust. Phys. 51 265Google Scholar

    [16]

    徐传秀, 朴胜春, 张红星, 杨士莪, 张海刚, 周建波 2015 声学技术 34 79

    Xu C X, Piao S C, Zhang H X, Yang S E, Zhang H G, Zhou J B 2015 Tech. Acoust. 34 79

    [17]

    毕思昭, 彭朝晖 2021 物理学报 70 114303Google Scholar

    Bi S Z, Peng Z H 2021 Acta Phys. Sin. 70 114303Google Scholar

    [18]

    Munk W H, O'Reilly W C, Reid J L 1988 J. Phys. Oceanogr. 18 1876Google Scholar

    [19]

    Yan J, Kang K Y 1995 Appl. Acoust. 45 9Google Scholar

    [20]

    Yan J 1999 Appl. Acoust. 57 163Google Scholar

    [21]

    郭肖晋, 马树青, 张理论, 蓝强, 黄创霞 2022 物理学报 72 044302Google Scholar

    [22]

    陈维恒, 李兴校 2002 黎曼几何引论 (北京: 北京大学出版社 第267页

    Chen W H, Li X X 2002 Introduction to Riemannian Geometry (Beijing: Peking University Press) p267 (in Chinese)

    [23]

    刘伯胜, 雷家煜 2010 水声学原理 (哈尔滨: 哈尔滨工程大学出版社) 第77页

    Liu B S, Lei J Y 2010 Principles of Underwater Acoustics (Harbin: Harbin Engineering University Press) p77 (in Chinese)

    [24]

    Cheeger J, Ebin D G 2008 Comparison Theorems in Riemannian Geometry (Providence, Rhode Island: American Mathematical Society) p35

  • [1] 郭肖晋, 马树青, 张理论, 蓝强, 黄创霞. 水声射线传播的黎曼几何建模·基础理论. 物理学报, 2023, 72(4): 044302. doi: 10.7498/aps.72.20221451
    [2] 吴双林, 李整林, 秦继兴, 王梦圆, 董凡辰. 东印度洋热带偶极子对声会聚区影响分析. 物理学报, 2022, 71(13): 134301. doi: 10.7498/aps.71.20212355
    [3] 张海刚, 马志康, 龚李佳, 张明辉, 周建波. 声衍射相移对深海会聚区焦散结构的影响. 物理学报, 2022, 71(20): 204302. doi: 10.7498/aps.71.20220763
    [4] 刘阳希子, 项正, 郭建广, 顾旭东, 付松, 周若贤, 花漫, 朱琪, 易娟, 倪彬彬. 甚低频台站信号对地球内辐射带和槽区能量电子的散射效应分析. 物理学报, 2021, 70(14): 149401. doi: 10.7498/aps.70.20202029
    [5] 朴胜春, 栗子洋, 王笑寒, 张明辉. 深海不完整声道下反转点会聚区研究. 物理学报, 2021, 70(2): 024301. doi: 10.7498/aps.70.20201375
    [6] 毕思昭, 彭朝晖. 地球曲率对远距离声传播的影响. 物理学报, 2021, 70(11): 114303. doi: 10.7498/aps.70.20201858
    [7] 蒋光禹, 孙超, 李沁然. 涡旋对深海风成噪声垂直空间特性的影响. 物理学报, 2020, 69(14): 144301. doi: 10.7498/aps.69.20200059
    [8] 张鹏, 李整林, 吴立新, 张仁和, 秦继兴. 深海海底反射会聚区声传播特性. 物理学报, 2019, 68(1): 014301. doi: 10.7498/aps.68.20181761
    [9] 李晟昊, 李整林, 李文, 秦继兴. 深海海底山环境下声传播水平折射效应研究. 物理学报, 2018, 67(22): 224302. doi: 10.7498/aps.67.20181480
    [10] 孙梅, 周士弘. 大深度接收时深海直达波区的复声强及声线到达角估计. 物理学报, 2016, 65(16): 164302. doi: 10.7498/aps.65.164302
    [11] 孙梅, 周士弘, 李整林. 基于矢量水听器的深海直达波区域声传播特性及其应用. 物理学报, 2016, 65(9): 094302. doi: 10.7498/aps.65.094302
    [12] 胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利. 深海海底斜坡环境下的声传播. 物理学报, 2016, 65(1): 014303. doi: 10.7498/aps.65.014303
    [13] 周先春, 汪美玲, 石兰芳, 周林锋, 吴琴. 基于梯度与曲率相结合的图像平滑模型的研究. 物理学报, 2015, 64(4): 044201. doi: 10.7498/aps.64.044201
    [14] 吴腾飞, 周昌乐, 王小华, 黄孝喜, 谌志群, 王荣波. 基于平均场理论的微博传播网络模型. 物理学报, 2014, 63(24): 240501. doi: 10.7498/aps.63.240501
    [15] 陈丽娟, 鲁世平. 地球磁层电磁场中粒子引导中心漂移运动模型的周期轨. 物理学报, 2014, 63(19): 190202. doi: 10.7498/aps.63.190202
    [16] 任殿波, 张京明, 王聪. 变曲率弯路车辆换道虚拟轨迹模型. 物理学报, 2014, 63(7): 078902. doi: 10.7498/aps.63.078902
    [17] 王晶, 马瑞玲, 王龙, 孟俊敏. 采用混合模型数值模拟从深海到浅海内波的传播. 物理学报, 2012, 61(6): 064701. doi: 10.7498/aps.61.064701
    [18] 李 琦, 张 波, 李肇基. 漂移区表面阶梯掺杂LDMOS的击穿电压模型. 物理学报, 2008, 57(3): 1891-1896. doi: 10.7498/aps.57.1891
    [19] 周晓华, 张劭光, 杨继庆, 屈学民, 刘渊声, 王斯刚. 基于自发曲率模型对几种极限形状膜泡及典型相变和分裂过程的研究. 物理学报, 2007, 56(10): 6137-6142. doi: 10.7498/aps.56.6137
    [20] 潘威炎. 关于地球曲率对低频电波电离层反射系数计算的影响. 物理学报, 1981, 30(5): 661-670. doi: 10.7498/aps.30.661
计量
  • 文章访问数:  4137
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-24
  • 修回日期:  2022-12-06
  • 上网日期:  2022-12-17
  • 刊出日期:  2023-02-20

/

返回文章
返回