搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

块状和超薄磁性材料中巨大且可调控的面内自旋角位移

李乾阳 袁帅杰 杨锦 王勇 马祖海 陈宇 周新星

引用本文:
Citation:

块状和超薄磁性材料中巨大且可调控的面内自旋角位移

李乾阳, 袁帅杰, 杨锦, 王勇, 马祖海, 陈宇, 周新星

Giant and controllable in-plane spin angular shifts in bulk and ultrathin magnetic materials

Li Qian-Yang, Yuan Shuai-Jie, Yang Jin, Wang Yong, Ma Zu-Hai, Chen Yu, Zhou Xin-Xing
PDF
HTML
导出引用
  • 磁光克尔效应是指处于磁场中的光束在磁体表面发生反射时, 反射光的偏振面相对入射光发生旋转的物理现象, 它反映了磁化强度对磁性材料光学性质的影响. 磁性介质的磁光克尔效应则由含磁光常数的介电张量表征, 因此对磁光常数进行精确测量具有重要的科学意义. 光子自旋霍尔效应表现为光束在折射率不同的介质界面上传输时由于自旋-轨道相互作用而产生的光子自旋分裂现象. 过去大多数研究利用光子自旋霍尔效应的横向空间位移来表征磁光常数. 然而, 现有工作只考虑了单个磁场方向的磁光克尔效应, 并且由于微小的自旋空间位移而需要引入复杂的弱测量技术. 本文从理论上全面探究了3种磁光克尔效应条件下的面内自旋角位移, 发现通过改变磁场方向和磁性材料的厚度(考虑块状和超薄)可以实现对光子自旋霍尔效应的有效操纵. 同时, 该研究提出了一种直接测量磁光常数的新方法, 即通过直接观测巨大的面内自旋角位移来表征磁光常数的振幅与相位. 该方法不需要引入弱测量系统, 不仅为磁光常数的测量提供了直接有效的探针, 并且扩展了自旋光子学的相关研究.
    The magneto-optical Kerr effect (MOKE) refers to the rotation of the polarization plane when a linearly polarized light is reflected at the surface of magnetic material. The MOKE reveals the magnetization of the optical properties of magnetic material and can be characterized by the dielectric tensor containing the magneto-optical constant. Thus, exploring the MOKE requires very precise determination of the magneto-optical constant. The photonic spin Hall effect (PSHE), which corresponds to the lateral and in-plane spin-dependent splitting of the beam, can be used as an effective method to characterize the magneto-optical constant due to its advantage of being extremely sensitive to changes in the physical parameters of the material. Most of the previous studies only considered the case of a single thickness of magnetic material and a single MOKE and need to introduce complex weak measurement techniques to observe the photonic spin Hall effect. In this work, we theoretically investigate the in-plane spin angular shifts in three MOKE cases in bulk and ultrathin magnetic materials. We can effectively tune the in-plane angular displacements of different magnetic material thickness by changing the magnetic field direction corresponding to different MOKEs and changing the magneto-optical constants (including amplitude and phase). The research results show that in the case of bulk and ultrathin magnetic materials, the internal spin angular displacements under different MOKEs will show different trends when the magneto-optical constants change the amplitude and phase, especially in ultra-thin magnetic material. In the lateral Kerr effect in thin material, the photon in-plane angular displacement does not affect the change of the magneto-optical constant, but in other cases, the amplitude relative to the phase has a much larger effect on the photon in-plane angular displacement. In this regard, we propose a new method which can directly determine the amplitude and phase of the magneto-optical constant by using the huge in-plane spin angular displacement without considering the weak measurements and can also judge different MOKEs according to the variation of the in-plane angular displacement in the bulk and ultrathin magnetic materials. This method not only provides a new probe for measuring magneto-optical constants but also expands the study of spin photonics.
      通信作者: 陈宇, yuchen@szu.edu.cn ; 周新星, xinxingzhou@hunnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11604095)、湖南省自然科学基金(批准号: 2017JJ3209)和长沙市杰出创新青年培养计划(批准号: KQ2107013)资助的课题.
      Corresponding author: Chen Yu, yuchen@szu.edu.cn ; Zhou Xin-Xing, xinxingzhou@hunnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.11604095), the Natural Science Foundation of Hunan Province, China(Grant No. 2017JJ3209), and the Training Program for Excellent Young Innovators of Changsha, China (Grant No. KQ2107013).
    [1]

    Stanciu C D, Hansteen F, Kimel A V, Kirilyuk A, Tsukamoto A, Itoh A, Rasing T 2007 Phys. Rev. Lett. 99 047601Google Scholar

    [2]

    Lee O J, You L, Jang J, Subramanian V, Salahuddin S 2015 Appl. Phys. Lett. 107 252401Google Scholar

    [3]

    Zhao X, Zhang X, Yang H, Cai W, Zhao Y, Wang Z, Zhao W 2019 Nanotechnology 30 335707Google Scholar

    [4]

    Hansteen F, Kimel A, Kirilyuk A, Rasing T 2005 Phys. Rev. Lett. 95 047402Google Scholar

    [5]

    Kerr LL D J 1877 Philos. Mag. J. Sci. 3 321

    [6]

    Moog E R, Bader S D 1985 Superlattices Microstruct. 1 543Google Scholar

    [7]

    Soldatov I V, Schäfer R 2017 J. Appl. Phys. 122 153906Google Scholar

    [8]

    Akahane K, Kimura T, Otani Y 2004 J. Magn. Soci. Jpn 28 122Google Scholar

    [9]

    Kato Y K, Myers R C, Gossard A C, Awschalom D D 2004 Science 306 1910Google Scholar

    [10]

    Grunin A A, Zhdanov A G, Ezhov A A, Ganshina E A, Fedyanin A A 2010 Appl. Phys. Lett. 97 261908Google Scholar

    [11]

    Florczak J M, Dahlberg E D 1990 J. Appl. Phys. 67 7520Google Scholar

    [12]

    Zak J, Moog E R, Liu C, Bader S D 1990 J. Appl. Phys. 68 4203Google Scholar

    [13]

    Qiu Z Q, Bader S D 2000 Rev. Sci. Instrum. 71 1243Google Scholar

    [14]

    Ren J, Li Y, Lin Y, Qin Y, Wu R, Yang J, Xiao Y, Yang H Y, Gong Q 2012 Appl. Phys. Lett. 101 171103Google Scholar

    [15]

    He Y, Xie L, Qiu J, Luo L, Liu X, Li Z, Zhang Z, Du J 2019 J. Appl. Phys. 125 023101Google Scholar

    [16]

    Li G, Xiang J, Zhang Y, Deng F, Panmai M, Zhuang W, Lan S, Lei D Y 2021 Nano Lett. 21 2453Google Scholar

    [17]

    Tian J, Zuo Y, Hou M, Jiang Y 2021 Opt. Express 29 8763Google Scholar

    [18]

    陈聿, 刘垄, 黄忠, 屠林林, 詹鹏 2016 物理学报 65 147302Google Scholar

    Chen Y, Liu L, Huang Z, Tu L L, Zhan P 2016 Acta Phys. Sin. 65 147302Google Scholar

    [19]

    Qiu X, Zhou X, Hu D, Du J, Gao F, Zhang Z, Luo H 2014 Appl. Phys. Lett. 105 131111Google Scholar

    [20]

    Li T, Wang Q, Taallah A, Zhang S, Yu T, Zhang Z 2020 Opt. Express. 28 29086Google Scholar

    [21]

    王莉岑, 邱晓东, 张志友, 石瑞英 2015 物理学报 64 174202Google Scholar

    Wang L C, Qiu X D, Zhang Z Y, Shi R Y 2015 Acta Phys. Sin. 64 174202Google Scholar

    [22]

    Onoda M, Murakami S, Nagaosa N 2004 Phys. Rev. Lett. 93 083901Google Scholar

    [23]

    Bliokh K Y, Rodriguez-Fortuno F J, Nori F, Zayats A V 2015 Nat. Photon. 9 796Google Scholar

    [24]

    Bliokh K Y, Nori F 2015 Phys. Rep. 592 1Google Scholar

    [25]

    Kalhor F, Thundat T, Jacob Z 2016 Appl. Phys. Lett. 108 061102Google Scholar

    [26]

    Ling X, Zhou X, Huang K, Liu Y, Qiu C, Luo H, Wen S 2017 Rep. Prog. Phys. 80 066401Google Scholar

    [27]

    李星, 周新星, 罗海陆 2014 光学学报 34 0731002Google Scholar

    Li X, Zhou X X, Luo H L 2014 Acta Opt. Sin. 34 0731002Google Scholar

    [28]

    Ling X H, Yi X N, Zhou X X, Liu Y C, Shu W X, Luo H L, Wen S C 2014 Appl. Phys. Lett. 105 151101Google Scholar

    [29]

    Li Y Q, Wu Z S, Zhang Y Y, Wang M J 2014 Chin. Phys. B 23 074202

    [30]

    易煦农, 李瑛, 刘亚超, 凌晓辉, 张志友, 罗海陆 2014 物理学报 63 094203Google Scholar

    Yi X N, Li Y, Liu Y C, Ling X H, Zhang Z Y, Luo H L 2014 Acta Phys. Sin. 63 094203Google Scholar

    [31]

    Shitrit N, Ulevich I. Y, Maguid E, Ozeri D, Eksler D V, Kleiner V, Hasman E 2013 Science 340 724Google Scholar

    [32]

    Zhou X, Sheng L, Ling X 2018 Sci. Rep. 8 1221Google Scholar

    [33]

    Xie L, Qiu X, Luo L, Liu X, Li Z, Zhang Z, Du J, Wang D 2017 Appl. Phys. Lett. 111 191106Google Scholar

    [34]

    Zhou X, Xiao Z, Luo H, Wen S 2012 Phys. Rev. A85 043809

    [35]

    Zhou X, Ling X, Luo H, Wen S 2012 Appl. Phys. Lett. 101 251602Google Scholar

    [36]

    Bliokh K Y, Smirnova D, Nori F 2015 Sci. 348 1448Google Scholar

    [37]

    Qin Y, Li Y, Feng X, Liu Z, He H, Xiao Y, Gong Q 2010 Opt. Express. 18 16832Google Scholar

    [38]

    Zhang W, Wu W, Chen S, Zhang J, Ling X, Shu W, Lou H, Wen S 2018 Photon. Res. 6 511Google Scholar

    [39]

    Zhou X, Zhang J, Ling X, Chen S, Luo H, Wen S 2013 Phys. Rev. A 88 053840

    [40]

    Kort-Kamp W J. M 2017 Phys. Rev. Lett. 119 147401Google Scholar

    [41]

    Nalitov A V, Malpuech G, Terças H, Solnyshkov D D 2015 Phys. Rev. Lett. 114 026803Google Scholar

    [42]

    Cai L, Liu M, Chen S, Liu Y, Shu W, Luo H, Wen S 2017 Phys. Rev. A 95 013809Google Scholar

    [43]

    Kort-Kamp W J M, Culchac F J, Capaz R B, Pinheiro F A 2018 Phys. Rev. B 98 195431

    [44]

    Zhou X, Xiao Z, Luo H, Wen S 2012 Phys. Rev. A 85 043809Google Scholar

    [45]

    Zhou X X, Ling X, Luo H L, Wen S C 2014 Appl. Phys. Lett. 104 051130

    [46]

    Wu Y, Sheng L, Xie L, Li S, Nie P, Chen Y, Zhou X, Ling X 2020 Carbon 166 396Google Scholar

    [47]

    Chen S, Ling X, Shu W, Luo H, Wen S 2020 Phys. Rev. Appl. 13 014057Google Scholar

    [48]

    Yang Z J, Scheinfein M R 1993 J. Appl. Phys. 74 6810Google Scholar

    [49]

    Bliokh K Y, Kivshar Y S, Nori F 2014 Phys. Rev. Lett. 113 033601Google Scholar

    [50]

    You C Y, Shin S C 1998 J. Appl. Phys. 84 541Google Scholar

  • 图 1  磁性材料表面的光子自旋霍尔效应 (a), (b)高斯光束在块状铁(空气-铁)和超薄铁(空气-铁-玻璃)上的反射示意图; (c), (d)右旋圆偏振分量(RCP)所产生的角位移$\varDelta _ - ^X = Z\emptyset _ - ^X$示意图. 块状铁的厚度大于450 nm, 超薄铁厚度$d$满足$2{\text{π }}d|{n_1}|\lambda \ll 1$

    Fig. 1.  The photonic spin Hall effect on the surface of magnetic materials: (a), (b) Schematic diagram of Gaussian beam on bulk Fe (air-Fe) and ultrathin Fe (air-Fe-glass); (c), (d) schematic diagram of angular shifts $\varDelta _ - ^X = Z\emptyset _ - ^X$ induced by right-handed circularly-polarized component (RCP). The thickness of bulk Fe is greater than 450 nm, which is considered an infinite thickness, and the thickness of ultrathin Fe satisfies$2{\text{π }}d|{n_1}|\lambda \ll 1$.

    图 2  特殊入射条件下的磁性材料铁表面(块状和超薄)的面内巨大角位移 (a)(b)显示了极向克尔效应和横向克尔效应下块状铁的角位移; (c)(d)显示了极向克尔效应和横向克尔效应下超薄铁的角位移. 其中, Δbulk, Δultrathin分别表示为块状铁和超薄铁的光子面内角位移

    Fig. 2.  Giant spin angular shifts under special incident conditions (bulk and ultrathin): (a)(b) The angular shifts of bulk Fe under the condition of Polar Kerr effect and Transverse Kerr effect; (c)(d) for ultrathin Fe. Δbulk, Δultrathinare denoted as the angular shifts for bulk and ultrathin Fe, respectively.

    图 3  面内角位移对磁光振幅${Q_0}$ (从$ 0 $增大到对应的饱和值)的敏感程度 (a)—(d)显示了在极向克尔效应和横向克尔效应下块状铁和超薄铁的角位移变化; (e)—(h)描述了在不同偏振幅${Q_0}$对应的角位移曲线, 其中插图为右圆偏振分量的电场分布

    Fig. 3.  Sensitivity of in-plane angular displacement on the magneto-optical constant amplitude ${Q_0}$ (increasing from $ 0 $ to the corresponding saturation value): (a)–(d) The variation of angular shifts of bulk Fe and ultrathin Fe under the Polar and Transverse Kerr effect; (e)–(h) the angular shifts curves corresponding to their left panels at different amplitudes${Q_0}$. Here, the insets denote electric field distribution of the right-handed circularly polarized component.

    图 4  面内角位移对磁光常数相位q (从0增大到相应的饱和值)的敏感程度 (a)—(d)显示了在极向和横向克尔效应下块状铁和超薄铁的面内角位移变化; (e)—(h)描述了在对应于左图的不同相位q的角位移曲线

    Fig. 4.  Sensitivity of in-plane angular displacement on the magneto-optical constant phases q (increasing from 0 to the corresponding saturation value): (a)–(d) The variation of angular shifts of bulk Fe and ultrathin Fe under the Polar and Transverse Kerr effects; (e)–(h) the angular shift curves corresponding to their left panels at different phases q.

  • [1]

    Stanciu C D, Hansteen F, Kimel A V, Kirilyuk A, Tsukamoto A, Itoh A, Rasing T 2007 Phys. Rev. Lett. 99 047601Google Scholar

    [2]

    Lee O J, You L, Jang J, Subramanian V, Salahuddin S 2015 Appl. Phys. Lett. 107 252401Google Scholar

    [3]

    Zhao X, Zhang X, Yang H, Cai W, Zhao Y, Wang Z, Zhao W 2019 Nanotechnology 30 335707Google Scholar

    [4]

    Hansteen F, Kimel A, Kirilyuk A, Rasing T 2005 Phys. Rev. Lett. 95 047402Google Scholar

    [5]

    Kerr LL D J 1877 Philos. Mag. J. Sci. 3 321

    [6]

    Moog E R, Bader S D 1985 Superlattices Microstruct. 1 543Google Scholar

    [7]

    Soldatov I V, Schäfer R 2017 J. Appl. Phys. 122 153906Google Scholar

    [8]

    Akahane K, Kimura T, Otani Y 2004 J. Magn. Soci. Jpn 28 122Google Scholar

    [9]

    Kato Y K, Myers R C, Gossard A C, Awschalom D D 2004 Science 306 1910Google Scholar

    [10]

    Grunin A A, Zhdanov A G, Ezhov A A, Ganshina E A, Fedyanin A A 2010 Appl. Phys. Lett. 97 261908Google Scholar

    [11]

    Florczak J M, Dahlberg E D 1990 J. Appl. Phys. 67 7520Google Scholar

    [12]

    Zak J, Moog E R, Liu C, Bader S D 1990 J. Appl. Phys. 68 4203Google Scholar

    [13]

    Qiu Z Q, Bader S D 2000 Rev. Sci. Instrum. 71 1243Google Scholar

    [14]

    Ren J, Li Y, Lin Y, Qin Y, Wu R, Yang J, Xiao Y, Yang H Y, Gong Q 2012 Appl. Phys. Lett. 101 171103Google Scholar

    [15]

    He Y, Xie L, Qiu J, Luo L, Liu X, Li Z, Zhang Z, Du J 2019 J. Appl. Phys. 125 023101Google Scholar

    [16]

    Li G, Xiang J, Zhang Y, Deng F, Panmai M, Zhuang W, Lan S, Lei D Y 2021 Nano Lett. 21 2453Google Scholar

    [17]

    Tian J, Zuo Y, Hou M, Jiang Y 2021 Opt. Express 29 8763Google Scholar

    [18]

    陈聿, 刘垄, 黄忠, 屠林林, 詹鹏 2016 物理学报 65 147302Google Scholar

    Chen Y, Liu L, Huang Z, Tu L L, Zhan P 2016 Acta Phys. Sin. 65 147302Google Scholar

    [19]

    Qiu X, Zhou X, Hu D, Du J, Gao F, Zhang Z, Luo H 2014 Appl. Phys. Lett. 105 131111Google Scholar

    [20]

    Li T, Wang Q, Taallah A, Zhang S, Yu T, Zhang Z 2020 Opt. Express. 28 29086Google Scholar

    [21]

    王莉岑, 邱晓东, 张志友, 石瑞英 2015 物理学报 64 174202Google Scholar

    Wang L C, Qiu X D, Zhang Z Y, Shi R Y 2015 Acta Phys. Sin. 64 174202Google Scholar

    [22]

    Onoda M, Murakami S, Nagaosa N 2004 Phys. Rev. Lett. 93 083901Google Scholar

    [23]

    Bliokh K Y, Rodriguez-Fortuno F J, Nori F, Zayats A V 2015 Nat. Photon. 9 796Google Scholar

    [24]

    Bliokh K Y, Nori F 2015 Phys. Rep. 592 1Google Scholar

    [25]

    Kalhor F, Thundat T, Jacob Z 2016 Appl. Phys. Lett. 108 061102Google Scholar

    [26]

    Ling X, Zhou X, Huang K, Liu Y, Qiu C, Luo H, Wen S 2017 Rep. Prog. Phys. 80 066401Google Scholar

    [27]

    李星, 周新星, 罗海陆 2014 光学学报 34 0731002Google Scholar

    Li X, Zhou X X, Luo H L 2014 Acta Opt. Sin. 34 0731002Google Scholar

    [28]

    Ling X H, Yi X N, Zhou X X, Liu Y C, Shu W X, Luo H L, Wen S C 2014 Appl. Phys. Lett. 105 151101Google Scholar

    [29]

    Li Y Q, Wu Z S, Zhang Y Y, Wang M J 2014 Chin. Phys. B 23 074202

    [30]

    易煦农, 李瑛, 刘亚超, 凌晓辉, 张志友, 罗海陆 2014 物理学报 63 094203Google Scholar

    Yi X N, Li Y, Liu Y C, Ling X H, Zhang Z Y, Luo H L 2014 Acta Phys. Sin. 63 094203Google Scholar

    [31]

    Shitrit N, Ulevich I. Y, Maguid E, Ozeri D, Eksler D V, Kleiner V, Hasman E 2013 Science 340 724Google Scholar

    [32]

    Zhou X, Sheng L, Ling X 2018 Sci. Rep. 8 1221Google Scholar

    [33]

    Xie L, Qiu X, Luo L, Liu X, Li Z, Zhang Z, Du J, Wang D 2017 Appl. Phys. Lett. 111 191106Google Scholar

    [34]

    Zhou X, Xiao Z, Luo H, Wen S 2012 Phys. Rev. A85 043809

    [35]

    Zhou X, Ling X, Luo H, Wen S 2012 Appl. Phys. Lett. 101 251602Google Scholar

    [36]

    Bliokh K Y, Smirnova D, Nori F 2015 Sci. 348 1448Google Scholar

    [37]

    Qin Y, Li Y, Feng X, Liu Z, He H, Xiao Y, Gong Q 2010 Opt. Express. 18 16832Google Scholar

    [38]

    Zhang W, Wu W, Chen S, Zhang J, Ling X, Shu W, Lou H, Wen S 2018 Photon. Res. 6 511Google Scholar

    [39]

    Zhou X, Zhang J, Ling X, Chen S, Luo H, Wen S 2013 Phys. Rev. A 88 053840

    [40]

    Kort-Kamp W J. M 2017 Phys. Rev. Lett. 119 147401Google Scholar

    [41]

    Nalitov A V, Malpuech G, Terças H, Solnyshkov D D 2015 Phys. Rev. Lett. 114 026803Google Scholar

    [42]

    Cai L, Liu M, Chen S, Liu Y, Shu W, Luo H, Wen S 2017 Phys. Rev. A 95 013809Google Scholar

    [43]

    Kort-Kamp W J M, Culchac F J, Capaz R B, Pinheiro F A 2018 Phys. Rev. B 98 195431

    [44]

    Zhou X, Xiao Z, Luo H, Wen S 2012 Phys. Rev. A 85 043809Google Scholar

    [45]

    Zhou X X, Ling X, Luo H L, Wen S C 2014 Appl. Phys. Lett. 104 051130

    [46]

    Wu Y, Sheng L, Xie L, Li S, Nie P, Chen Y, Zhou X, Ling X 2020 Carbon 166 396Google Scholar

    [47]

    Chen S, Ling X, Shu W, Luo H, Wen S 2020 Phys. Rev. Appl. 13 014057Google Scholar

    [48]

    Yang Z J, Scheinfein M R 1993 J. Appl. Phys. 74 6810Google Scholar

    [49]

    Bliokh K Y, Kivshar Y S, Nori F 2014 Phys. Rev. Lett. 113 033601Google Scholar

    [50]

    You C Y, Shin S C 1998 J. Appl. Phys. 84 541Google Scholar

  • [1] 薛文明, 李金, 何朝宇, 欧阳滔, 罗朝波, 唐超, 钟建新. H-Pb-Cl中可调控的巨型Rashba自旋劈裂和量子自旋霍尔效应. 物理学报, 2023, 72(5): 057101. doi: 10.7498/aps.72.20221493
    [2] 刘香莲, 李凯宙, 李晓琼, 张强. 二维电介质光子晶体中量子自旋与谷霍尔效应共存的研究. 物理学报, 2023, 72(7): 074205. doi: 10.7498/aps.72.20221814
    [3] 李乾阳, 袁帅杰, 杨锦, 王勇, 马祖海, 陈宇, 周新星. 块状和超薄磁性材料中巨大且可调控的面内自旋角位移. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221643
    [4] 白占斌, 王锐, 周亚洲, Tianru Wu(吴天如), 葛建雷, 李晶, 秦宇远, 费付聪, 曹路, 王学锋, 王欣然, 张帅, 孙力玲, 宋友, 宋凤麒. 石墨烯中选择性增强Kane-Mele型自旋轨道相互作用. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211815
    [5] 谢智强, 贺炎亮, 王佩佩, 苏明样, 陈学钰, 杨博, 刘俊敏, 周新星, 李瑛, 陈书青, 范滇元. 基于Pancharatnam-Berry相位超表面的二维光学边缘检测. 物理学报, 2020, 69(1): 014101. doi: 10.7498/aps.69.20191181
    [6] 梁滔, 李铭. 自旋轨道耦合系统中的整数量子霍尔效应. 物理学报, 2019, 68(11): 117101. doi: 10.7498/aps.68.20190037
    [7] 何冬梅, 彭斌, 张万里, 张文旭. 掺铌SrTiO3中的逆自旋霍尔效应. 物理学报, 2019, 68(10): 106101. doi: 10.7498/aps.68.20190118
    [8] 刘金安, 涂佳隆, 卢志利, 吴柏威, 胡琦, 马洪华, 陈欢, 易煦农. 基于Pancharatnam-Berry相位和动力学相位调控纵向光子自旋霍尔效应. 物理学报, 2019, 68(6): 064201. doi: 10.7498/aps.68.20182004
    [9] 万婷, 罗朝明, 闵力, 陈敏, 肖磊. 基于合金介电常数的可控特性增强光子自旋霍尔效应. 物理学报, 2018, 67(6): 064201. doi: 10.7498/aps.67.20171824
    [10] 龙洋, 任捷, 江海涛, 孙勇, 陈鸿. 超构材料中的光学量子自旋霍尔效应. 物理学报, 2017, 66(22): 227803. doi: 10.7498/aps.66.227803
    [11] 陈聿, 刘垄, 黄忠, 屠林林, 詹鹏. 一维金属光栅嵌入磁性介质纳米结构下的横向磁光克尔效应的增强. 物理学报, 2016, 65(14): 147302. doi: 10.7498/aps.65.147302
    [12] 韩方彬, 张文旭, 彭斌, 张万里. NiFe/Pt薄膜中角度相关的逆自旋霍尔效应. 物理学报, 2015, 64(24): 247202. doi: 10.7498/aps.64.247202
    [13] 易煦农, 李瑛, 凌晓辉, 张志友, 范滇元. 光在Metasurface中的自旋-轨道相互作用. 物理学报, 2015, 64(24): 244202. doi: 10.7498/aps.64.244202
    [14] 王莉岑, 邱晓东, 张志友, 石瑞英. 磁光克尔效应中的光子自旋分裂. 物理学报, 2015, 64(17): 174202. doi: 10.7498/aps.64.174202
    [15] 罗幸, 周新星, 罗海陆, 文双春. 光自旋霍尔效应中的交叉偏振特性研究. 物理学报, 2012, 61(19): 194202. doi: 10.7498/aps.61.194202
    [16] 蒋洪良, 张荣军, 周宏明, 姚端正, 熊贵光. InAs量子点中自旋-轨道相互作用下电子自旋弛豫的参量特征. 物理学报, 2011, 60(1): 017204. doi: 10.7498/aps.60.017204
    [17] 王志明. GaAs自旋注入及巨霍尔效应的研究. 物理学报, 2011, 60(7): 077203. doi: 10.7498/aps.60.077203
    [18] 马娟, 罗海陆, 文双春. 多层介质中的光自旋霍尔效应研究. 物理学报, 2011, 60(9): 094205. doi: 10.7498/aps.60.094205
    [19] 周文远, 田建国, 臧维平, 刘智波, 张春平, 张光寅. 克尔介质中瞬态热光非线性效应的作用. 物理学报, 2004, 53(2): 620-625. doi: 10.7498/aps.53.620
    [20] 周青春, 王嘉赋, 徐荣青. 自旋-轨道耦合对磁性绝缘体磁光Kerr效应的影响. 物理学报, 2002, 51(7): 1639-1644. doi: 10.7498/aps.51.1639
计量
  • 文章访问数:  3503
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-18
  • 修回日期:  2022-09-20
  • 上网日期:  2022-12-29
  • 刊出日期:  2023-01-05

/

返回文章
返回