-
为探究基于激光吸收光谱技术的燃烧场二维测量光路布置方式, 实现有限投影下更精确的燃烧场二维重建, 根据分数阶微积分理论, 提出一种基于分数阶Tikhonov正则化的光路优化方法. 将经典的整数阶Tikhonov正则化推广到分数阶模式, 建立了基于分数阶Tikhonov正则化的光路设计目标函数. 利用遗传算法分析(0, 1)范围内不同阶数的计算结果, 得到最佳光路布置方式. 采用近红外波段7185.6 cm–1的H2O特征吸收谱线结合20条测试光路对10×10离散化网格区域进行计算, 对比分析五种光路布置方式对多种分布模型的重建结果, 结果表明, 基于分数阶Tikhonov正则化的光路布置方式具有最佳重建效果. 研究结果对有限投影条件下激光吸收光谱二维测量光路的优化设计理论研究具有重要意义, 可以促进激光吸收光谱技术在复杂发动机燃烧场二维重建及燃烧效率提升方面的应用.
-
关键词:
- 激光吸收光谱 /
- 二维重建 /
- 分数阶Tikhonov正则化 /
- 光路优化
Beam arrangement with limited projections based on tunable diode laser absorption spectroscopy is the key to achieving a more accurate two-dimensional reconstruction of the combustion. Using fractional calculus theory, a beam optimization method based on fractional Tikhonov regularization is proposed. The beam arrangement function based on fractional Tikhonov regularization is established by extending the standard Tikhonov regularization to fractional modes. The genetic algorithm is used to analyze the calculation results of different orders in a range of (0, 1), and the beam arrangement is obtained. Using 20 laser beams to scan the characteristic absorption spectrum of H2O in the near-infrared band 7185.6 cm–1, modeling the calculations in a 10×10 element discrete tomography domain, and comparing the reconstruction results of the five beam arrangements for different Gaussian distribution models, the beam arrangement based on fractional Tikhonov regularization shows more obvious advantages. This design method proposed in this work is valuable for the theoretical study of the optimal design of two-dimensional measurement beams based on the tunable diode laser absorption spectroscopy technique, which can promote the application of this technique in the two-dimensional reconstruction of complex engine combustion and combustion efficiency improvement.-
Keywords:
- laser absorption spectroscopy /
- two-dimensional reconstruction /
- fractional Tikhonov regularization /
- beam arrangement optimization
[1] Strand C L, Hanson R K 2015 AIAA J. 53 2978Google Scholar
[2] Wang Z, Deguchi Y, Kamimoto T, Tainaka K, Tanno K 2020 Fuel 268 117370Google Scholar
[3] Liu C, Xu L, Chen J, Cao Z, Lin Y, Cai W 2015 Opt. Express 23 22494Google Scholar
[4] Jatana G S, Perfetto A K, Geckler S C, Partridge W P 2019 Sens. Actuators, B 293 173Google Scholar
[5] Peng W Y, Strand C L, Hanson R K 2020 Appl. Phys. B 126 1Google Scholar
[6] Tsekenis S, Wilson D, Lengden M, Hyvönen J, Leinonen J, Shah A, Andersson Ö, McCann H 2017 Flow Meas. Instrum. 53 116Google Scholar
[7] Liu C, Tsekenis S-A, Polydorides N, McCann H 2018 IEEE Sens. J. 19 1748Google Scholar
[8] Shui C, Wang Y, Cai W, Zhou B 2021 Opt. Express 29 20889Google Scholar
[9] Brown M, Herring G, Cabell K, Hass N, Barhorst T, Gruber M 2012 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Nashville, Tennessee, January 9–12, 2012 p857
[10] [11] Wang F, Wu Q, Huang Q, Zhang H, Yan J, Cen K 2015 Opt. Commun. 346 53Google Scholar
[12] Song J, Hong Y, Wang G, Pan H 2013 Appl. Phys. B 112 529Google Scholar
[13] 王兴平, 彭冬, 李佳胜, 金熠, 翟超 2021 中国激光 48 0711002Google Scholar
Wang X P, Peng D, Li J S, JinY, Zhai C 2021 Chin. J. Lasers 48 0711002Google Scholar
[14] 李金义 2008 博士学位论文 (天津: 天津大学)
Li J Y 2013 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese)
[15] Terzija N, Davidson J, Garcia-Stewart C, Wright P, Ozanyan K, Pegrum S, Litt T, McCann H 2008 Meas. Sci. Technol. 19 094007Google Scholar
[16] Sun P, Zhang Z, Li Z, Guo Q, Dong F 2017 Appl. Sci. 7 990Google Scholar
[17] Xu L, Liu C, Jing W, Cao Z, Xue X, Lin Y 2016 Rev. Sci. Instrum. 87 013101Google Scholar
[18] 房鹏飞, 贾兆丽, 陈东, 王尹秀 2016 激光与光电子学进展 53 071001Google Scholar
Fang P F, Jia Z L, Chen D, Wang Y X 2016 Laser Optoelectron. Prog. 53 071001Google Scholar
[19] 宋俊玲, 洪延姬, 王广宇 2013 光学学报 33 0430001Google Scholar
Song J L, Hong Y J, Wang G Y 2013 Acta Opt. Sin. 33 0430001Google Scholar
[20] Tsekenis S, Tait N, McCann H 2015 Rev. Sci. Instrum. 86 035104Google Scholar
[21] Yu T, Tian B, Cai W 2017 Opt. express 25 5982Google Scholar
[22] 宋俊玲, 洪延姬, 王广宇, 潘虎 2014 红外与激光工程 43 2460
Song J L, Hong Y J, Wang G Y, Pan H 2014 Infrared Laser Eng. 43 2460
[23] 那奕君, 李宁, 黄孝龙, 翁春生 2020 光谱学与光谱分析 40 3686
Na Y J, Li N, Huang X L, Weng C S 2020 Spectrosc. Spectral Anal. 40 3686
[24] Grauer S J, Hadwin P J, Daun K J 2016 Appl. Opt. 55 5772Google Scholar
[25] Twynstra M G, Daun K J 2012 Appl. Opt. 51 7059Google Scholar
[26] 李宁, Tu Xin, 黄孝龙, 翁春生 2020 物理学报 69 227801Google Scholar
Li N, Tu X, Huang X L, Weng C S 2020 Acta Phys. Sin. 69 227801Google Scholar
[27] Morigi S, Reichel L, Sgallari F 2017 J. Comput. Appl. Math. 324 142Google Scholar
[28] Hochstenbach M E, Reichel L 2011 BIT Numer. Math. 51 197Google Scholar
-
图 7 五种光路布置方式的空间分布图与投影点分布图 (a) 2×10正交光路布置方式; (b) 4×5扇形光路布置方式; (c) 交叉光路布置方式; (d) 基于标准Tikhonov正则化设计的光路布置方式; (e) 基于分数阶Tikhonov正则化设计的光路布置方式
Fig. 7. Spatial distribution and projection point distribution diagram of five beam arrangements: (a) 2×10 orthogonal optical path arrangement; (b) 4×5 fan-shaped optical path arrangement; (c) cross optical path arrangement; (d) beam arrangement based on standard Tikhonov regularization design; (e) beam arrangement based on fractional Tikhonov regularization design.
图 8 单峰分布模型与不同光路布置方式的重建结果图 (a) 重建模型; (b) 2×10正交光路布置方式; (c) 4×5扇形光路布置方式; (d) 交叉光路布置方式; (e) 基于标准Tikhonov正则化设计的光路布置方式; (f) 基于分数阶Tikhonov正则化设计的光路布置方式
Fig. 8. Reconstruction results of unimodal distribution model and different beam arrangements: (a) reconstruction model; (b) 2×10 orthogonal beam arrangement; (c) 4×5 fan-shaped beam arrangement; (d) cross beam arrangement (e) beam arrangement based on standard Tikhonov regularization design; (f) beam arrangement based on fractional Tikhonov regularization design.
图 9 双峰分布模型与不同光路布置方式的重建结果图 (a) 重建模型; (b) 2×10正交光路布置方式; (c) 4×5扇形光路布置方式; (d) 交叉光路布置方式; (e) 基于标准Tikhonov正则化设计的光路布置方式; (f) 基于分数阶Tikhonov正则化设计的光路布置方式
Fig. 9. Reconstruction results of bimodal distribution model and different beam arrangements: (a) Reconstruction model; (b) 2×10 orthogonal beam arrangement; (c) 4×5 fan-shaped beam arrangement; (d) cross beam arrangement; (e) beam arrangement based on standard Tikhonov regularization design; (f) beam arrangement based on fractional Tikhonov regularization design.
-
[1] Strand C L, Hanson R K 2015 AIAA J. 53 2978Google Scholar
[2] Wang Z, Deguchi Y, Kamimoto T, Tainaka K, Tanno K 2020 Fuel 268 117370Google Scholar
[3] Liu C, Xu L, Chen J, Cao Z, Lin Y, Cai W 2015 Opt. Express 23 22494Google Scholar
[4] Jatana G S, Perfetto A K, Geckler S C, Partridge W P 2019 Sens. Actuators, B 293 173Google Scholar
[5] Peng W Y, Strand C L, Hanson R K 2020 Appl. Phys. B 126 1Google Scholar
[6] Tsekenis S, Wilson D, Lengden M, Hyvönen J, Leinonen J, Shah A, Andersson Ö, McCann H 2017 Flow Meas. Instrum. 53 116Google Scholar
[7] Liu C, Tsekenis S-A, Polydorides N, McCann H 2018 IEEE Sens. J. 19 1748Google Scholar
[8] Shui C, Wang Y, Cai W, Zhou B 2021 Opt. Express 29 20889Google Scholar
[9] Brown M, Herring G, Cabell K, Hass N, Barhorst T, Gruber M 2012 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Nashville, Tennessee, January 9–12, 2012 p857
[10] [11] Wang F, Wu Q, Huang Q, Zhang H, Yan J, Cen K 2015 Opt. Commun. 346 53Google Scholar
[12] Song J, Hong Y, Wang G, Pan H 2013 Appl. Phys. B 112 529Google Scholar
[13] 王兴平, 彭冬, 李佳胜, 金熠, 翟超 2021 中国激光 48 0711002Google Scholar
Wang X P, Peng D, Li J S, JinY, Zhai C 2021 Chin. J. Lasers 48 0711002Google Scholar
[14] 李金义 2008 博士学位论文 (天津: 天津大学)
Li J Y 2013 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese)
[15] Terzija N, Davidson J, Garcia-Stewart C, Wright P, Ozanyan K, Pegrum S, Litt T, McCann H 2008 Meas. Sci. Technol. 19 094007Google Scholar
[16] Sun P, Zhang Z, Li Z, Guo Q, Dong F 2017 Appl. Sci. 7 990Google Scholar
[17] Xu L, Liu C, Jing W, Cao Z, Xue X, Lin Y 2016 Rev. Sci. Instrum. 87 013101Google Scholar
[18] 房鹏飞, 贾兆丽, 陈东, 王尹秀 2016 激光与光电子学进展 53 071001Google Scholar
Fang P F, Jia Z L, Chen D, Wang Y X 2016 Laser Optoelectron. Prog. 53 071001Google Scholar
[19] 宋俊玲, 洪延姬, 王广宇 2013 光学学报 33 0430001Google Scholar
Song J L, Hong Y J, Wang G Y 2013 Acta Opt. Sin. 33 0430001Google Scholar
[20] Tsekenis S, Tait N, McCann H 2015 Rev. Sci. Instrum. 86 035104Google Scholar
[21] Yu T, Tian B, Cai W 2017 Opt. express 25 5982Google Scholar
[22] 宋俊玲, 洪延姬, 王广宇, 潘虎 2014 红外与激光工程 43 2460
Song J L, Hong Y J, Wang G Y, Pan H 2014 Infrared Laser Eng. 43 2460
[23] 那奕君, 李宁, 黄孝龙, 翁春生 2020 光谱学与光谱分析 40 3686
Na Y J, Li N, Huang X L, Weng C S 2020 Spectrosc. Spectral Anal. 40 3686
[24] Grauer S J, Hadwin P J, Daun K J 2016 Appl. Opt. 55 5772Google Scholar
[25] Twynstra M G, Daun K J 2012 Appl. Opt. 51 7059Google Scholar
[26] 李宁, Tu Xin, 黄孝龙, 翁春生 2020 物理学报 69 227801Google Scholar
Li N, Tu X, Huang X L, Weng C S 2020 Acta Phys. Sin. 69 227801Google Scholar
[27] Morigi S, Reichel L, Sgallari F 2017 J. Comput. Appl. Math. 324 142Google Scholar
[28] Hochstenbach M E, Reichel L 2011 BIT Numer. Math. 51 197Google Scholar
计量
- 文章访问数: 4083
- PDF下载量: 64
- 被引次数: 0