搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al原子的替位掺杂与表面吸附对BiVO4 (010) 晶面光电催化分解水析氧性能的影响

李秋红 马小雪 潘靖

引用本文:
Citation:

Al原子的替位掺杂与表面吸附对BiVO4 (010) 晶面光电催化分解水析氧性能的影响

李秋红, 马小雪, 潘靖

Effect of substitution doping and surface adsorption of Al atoms on photocatalytic decomposition of water and oxygen from BiVO4 (010) crystal surface

Li Qiu-Hong, Ma Xiao-Xue, Pan Jing
PDF
HTML
导出引用
  • 太阳能光电催化分解水制氢气和氧气是获得可再生能源的可行方案之一, 利用密度泛函理论计算, 对比了替位掺杂和表面吸附过渡金属Al原子对BiVO4 (010)晶面析氧(OER)性能的影响. 结果表明, 两种方式都能有效调控BiVO4的电子结构进而调节其OER性能, 而表面吸附因能改善BiVO4的导电性和光吸收, 降低电子-空穴复合, 增强OER过程中活性位点与含氧中间体之间的相互作用, 降低决速步的过电势, 被认为是提高(010)晶面析氧性能的有效手段. 本工作为设计高效的二维半导体析氧反应的光催化剂提供了重要参考.
    Using solar photoelectrochemical decomposition of water to produce hydrogen and oxygen is one of the most feasible approaches to obtaining renewable energy. Compared with hydrogen-evolution reaction (HER), the oxygen-evolution reaction (OER) is very complex, there are four sluggish proton-coupled electron transfer processes. It is critical to improve OER performance. The BiVO4 (010) facet possesses low surface energy, strong visible absorption, and good activity for OER, and is considered as one of the most suitable PEC catalysts. However, its poor electron conductivity, low charge carrier mobility, and high charge recombination rates significantly limit its practical applications. To achieve highly active OER photocatalysts, we modify BiVO4 (010) facet by substitutial doping with Al atom and surface adsorption with Al atom. According to density functional theory calculations, we compare OER performances of these two modified BiVO4 (010) facets. The results show that both approaches can effectively regulate the electronic structure of BiVO4 and then tune OER activity resulting from the change of the structure. Though Al substitutional doping reduces the band gap of the (010) facet and enhances the visible light absorption, the improvement of OER performance is not significant because the doping site is inside and has little influence on the surface active site. Importantly, the surface adsorption of Al atom is considered as an efficient means to improve the OER activity on BiVO4 (010) facet due to the combined action between surface adsorbed Al and active site Bi atoms. Al adsorbed (010) facet exhibits excellent OER catalytic activity: 1) the induction of localized states and the reduction of band gap are conducive to the electronic transition, optical absorption, thus increasing the electrical conductivity; 2) there is lower hole effective mass, and thus effectively enhancing the ability to transfer from anode surface to electrolyte surface, thereby increasing the difference between the effective mass ratio of electron−hole pairs and 1 and effectively reducing the electron-hole recombination; 3) the nteraction between the active sites and oxygen-containing intermediates is reinforced in the OER process, therefore the potential determining step of OER decreases effectively. This work provides an important reference for designing efficient and stable two-dimensional semiconductor-based photocatalysts for OER. We believe that it will arouse great interest of the BiVO4 community and motivate numerous experimental researches.
      通信作者: 潘靖, jp@yzu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 12074332, 21903014)资助的课题
      Corresponding author: Pan Jing, jp@yzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074332, 21903014).
    [1]

    Pavone M, Caspary Toroker M 2020 ACS Energy Lett. 5 2042Google Scholar

    [2]

    Tahir M B, Nawaz T, Nabi G, Sagir M, Rafique M, Ahmed A, Muhammad S 2020 Int. J. Hydrogen Energy 45 22833Google Scholar

    [3]

    Mushtaq M A, Arif M, Fang X, Yasin G, Ye W, Basharat M, Zhou B, Yang S, Ji S, Yan D 2021 J. Mater. Chem. A 9 2742Google Scholar

    [4]

    Han H, Kment S, Karlicky F, Wang L, Naldoni A, Schmuki P, Zboril R 2018 Small 14 1

    [5]

    Huang H, Shang M, Zou Y, Song W, Zhang Y 2019 Nanoscale 11 21188Google Scholar

    [6]

    Tian C M, Li W W, Lin Y M, et al. 2020 J. Phys. Chem. C 124 12548Google Scholar

    [7]

    Kudo A, Miseki Y 2009 Chem. Soc. Rev. 38 253Google Scholar

    [8]

    Thalluri S M, Bai L, Lv C, Huang Z, Hu X, Liu L 2020 Adv. Sci. 7 1902102Google Scholar

    [9]

    Pan J, Ma X, Zhang W, Hu J 2021 RSC Adv. 12 540

    [10]

    Thalluri S M, Suarez C M, Hussain M, Hernandez S, Virga A, Saracco G, Russo N 2013 Ind. Eng. Chem. Res. 52 17414Google Scholar

    [11]

    Wang Q, Lin Y, Li P, Ma M, Maheskumar V, Jiang Z, Zhang R 2021 Int. J. Hydrogen Energy 46 247Google Scholar

    [12]

    Li P, Chen X, He H, Zhou X, Zhou Y, Zou Z 2018 Adv. Mater. 30 4

    [13]

    Irani R, Ahmet I Y, Jang J W, et al. 2020 Sol. Rrl. 4 1900290Google Scholar

    [14]

    Massaro A, Pecoraro A, Hernández S, Talarico G, Muñoz-García A B, Pavone M 2022 Mol. Catal. 517 112036Google Scholar

    [15]

    Qi Y, Zhang J, Kong Y, et al. 2022 Nat. Commun. 13 1

    [16]

    Wen L, Ding K, Huang S, Zhang Y, Li Y, Chen W 2017 New J. Chem. 41 1094Google Scholar

    [17]

    Ullah H, Tahir A A, Mallick T K 2018 Appl. Catal. B Environ. 224 895Google Scholar

    [18]

    Maheskumar V, Lin Y M, Jiang Z, Vidhya B, Ghosal A 2022 J. Photochem. Photobiol. A Chem. 426 113757Google Scholar

    [19]

    Zhao X, Hu J, Yao X, Chen S, Chen Z 2018 ACS Appl. Energy Mater. 1 3410Google Scholar

    [20]

    Ma L, Liu Z, Chen T, Liu Y, Fang G 2020 Electrochim. Acta 355 136777Google Scholar

    [21]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [22]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [24]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [25]

    Hu J, Zhao X, Chen W, Su H, Chen Z 2017 J. Phys. Chem. C 121 18702Google Scholar

    [26]

    Tokunaga S, Kato H, Kudo A 2001 Chem. Mater. 13 4624Google Scholar

    [27]

    Kahneman D, Tversky A 1979 Asp. Gen. La Planif. Tribut. En Venez. 2009 31

    [28]

    Zhang X, Huang Y, Ma F, Zhang Z, Wei X 2018 J. Phys. Chem. Solids 121 85Google Scholar

    [29]

    Anke B, Rohloff M, Willinger M G, Hetaba W, Fischer A, Lerch M 2017 Solid State Sci. 63 1Google Scholar

    [30]

    Zhao R, Zhang L, Fan G, Chen Y, Huang G, Zhang H, Zhu J, Guan X 2021 Cem. Concr. Res. 144 106420Google Scholar

    [31]

    Würfel P 2003 Sol. Energy Mater. Sol. Cells 79 153Google Scholar

    [32]

    Ma H, Chen X Q, Li R, Wang S, Dong J, Ke W 2017 Acta Mater. 130 137Google Scholar

    [33]

    Shi J, Zhang W, Gu Q 2022 Solid State Commun. 351 114794Google Scholar

    [34]

    Bi Y, Yang Y, Shi X L, Feng L, Hou X, Ye X, Zhang L, Suo G, Lu S, Chen Z G 2021 J. Mater. Sci. Technol. 83 102Google Scholar

  • 图 1  (a) ms-BiVO4块体结构侧视图; (b) 块体钒酸铋的能带结构与态密度; (c) BiVO4 (010)面结构的侧视图; (d) Al替代V位点的侧视图; (e) Al原子吸附在BiVO4 (010)晶面的侧视图; BiVO4 (010)晶面共48个原子, 包括8个Bi (紫色)、8个V (灰色)和32个O (红色)原子

    Fig. 1.  (a) The side view of bulk ms-BiVO4; (b) band structure and PDOS of bulk BiVO4; the side views of (c) pristine, (d) Al doped and (e) Al adsorbed BiVO4 (010) facets. There are 48 atoms in BiVO4 (010) facet including 8 Bi (purple), 8 V (gray), and 32 O (red) atoms.

    图 2  (a) 原始的、(b) Al替位掺杂和(c) 表面吸附的BiVO4 (010)晶面总态密度和分波态密度; 插图是导带底和价带顶处电荷密度图, 费米能级设置为零; (d) 原始的、(e) Al替位掺杂和(f) 表面吸附BiVO4 (010)晶表面沿 z 轴的平均静电势

    Fig. 2.  The total and partial density of states of (a) pure, (b) Al substitutional doped and (c) surface adsorbed BiVO4 (010) surfaces; the inset is the charge density of VBM and CBM , the Fermi level is set to zero. Average electrostatic potentials along the z axis of (d) pure, (e) Al substitutional doped and (f) surface adsorbed BiVO4 (010) surfaces.

    图 3  原始的、Al替位掺杂和表面吸附BiVO4的(010)晶面的(a)光吸收谱图; (b) (F(R)1/2与光子能量关系图像

    Fig. 3.  (a) The calculated absorption coefficient and (b) the (F(R)1/2 with the change of photon energy in pure, Al substitutional doped and surface adsorbed BiVO4 (010) surfaces.

    图 4  OER四电子步过程中含氧中间体H2Oads, HOads, Oads和HOOads吸附在原始的、Al替位掺杂和表面吸附的BiVO4 (010)表面以Bi或Al为活性位点的吸附结构和吸附能. “–”和“@”符号分别表示(010)面上的键和吸附状态、吸附能与键长的统一单位为eV和Å

    Fig. 4.  The adsorbed structure and adsorbed energies of the oxygenated intermediates of H2Oads, HOads, Oads and HOOads adsorbed on pure, Al substitutional doped and surface adsorbed BiVO4 (010) surfaces during the four steps of OER, where Bi and Al respectively act as active site. The “–”, and “@” signs stand for bond, and adsorption state on the surface, the unity units of adsorption energy and bond length are eV and Å, respectively.

    图 5  OER四个电子步在U = 0, pH = 0, T = 298 K下自由能台阶图 (a)原始BiVO4 (010)晶面; (b) Al替位掺杂(010)晶面; (c) 表面吸附(010)晶面, Upds表示决速步的过电势

    Fig. 5.  Free energy profiles of OER on (a) pure BiVO4 (010) facet; (b) Al doped (010) facet and (c) Al adsorbed (010) facet at U = 0, pH = 0, T = 298 K. Upds represents the potential of the rate determining step.

    表 1  原始的及Al原子替位掺杂和表面吸附的钒酸铋(010)晶面的形成能、禁带宽度、功函数、电子有效质量、空穴有效质量、电子-空穴有效质量比、决速步过电势

    Table 1.  The formation energy, band gap, the work function, effective mass of electron, effective mass of hole and relative ratio of the effective masses, the potential of the rate determining step of pure, Al substitutional doped and surface adsorbed BiVO4 (010) surfaces.

    SystemEform/eVEg /eVW/eV$m_{\rm{e}}^* $/me$m_{\rm{h}}^* $/meDUpds/V
    Pure (010) facet2.227.441.551.491.041.31
    Al doped (010) facet–6.322.037.661.537.970.191.38
    Al adsorbed (010) facet–2.922.024.681.900.414.631.07
    下载: 导出CSV
  • [1]

    Pavone M, Caspary Toroker M 2020 ACS Energy Lett. 5 2042Google Scholar

    [2]

    Tahir M B, Nawaz T, Nabi G, Sagir M, Rafique M, Ahmed A, Muhammad S 2020 Int. J. Hydrogen Energy 45 22833Google Scholar

    [3]

    Mushtaq M A, Arif M, Fang X, Yasin G, Ye W, Basharat M, Zhou B, Yang S, Ji S, Yan D 2021 J. Mater. Chem. A 9 2742Google Scholar

    [4]

    Han H, Kment S, Karlicky F, Wang L, Naldoni A, Schmuki P, Zboril R 2018 Small 14 1

    [5]

    Huang H, Shang M, Zou Y, Song W, Zhang Y 2019 Nanoscale 11 21188Google Scholar

    [6]

    Tian C M, Li W W, Lin Y M, et al. 2020 J. Phys. Chem. C 124 12548Google Scholar

    [7]

    Kudo A, Miseki Y 2009 Chem. Soc. Rev. 38 253Google Scholar

    [8]

    Thalluri S M, Bai L, Lv C, Huang Z, Hu X, Liu L 2020 Adv. Sci. 7 1902102Google Scholar

    [9]

    Pan J, Ma X, Zhang W, Hu J 2021 RSC Adv. 12 540

    [10]

    Thalluri S M, Suarez C M, Hussain M, Hernandez S, Virga A, Saracco G, Russo N 2013 Ind. Eng. Chem. Res. 52 17414Google Scholar

    [11]

    Wang Q, Lin Y, Li P, Ma M, Maheskumar V, Jiang Z, Zhang R 2021 Int. J. Hydrogen Energy 46 247Google Scholar

    [12]

    Li P, Chen X, He H, Zhou X, Zhou Y, Zou Z 2018 Adv. Mater. 30 4

    [13]

    Irani R, Ahmet I Y, Jang J W, et al. 2020 Sol. Rrl. 4 1900290Google Scholar

    [14]

    Massaro A, Pecoraro A, Hernández S, Talarico G, Muñoz-García A B, Pavone M 2022 Mol. Catal. 517 112036Google Scholar

    [15]

    Qi Y, Zhang J, Kong Y, et al. 2022 Nat. Commun. 13 1

    [16]

    Wen L, Ding K, Huang S, Zhang Y, Li Y, Chen W 2017 New J. Chem. 41 1094Google Scholar

    [17]

    Ullah H, Tahir A A, Mallick T K 2018 Appl. Catal. B Environ. 224 895Google Scholar

    [18]

    Maheskumar V, Lin Y M, Jiang Z, Vidhya B, Ghosal A 2022 J. Photochem. Photobiol. A Chem. 426 113757Google Scholar

    [19]

    Zhao X, Hu J, Yao X, Chen S, Chen Z 2018 ACS Appl. Energy Mater. 1 3410Google Scholar

    [20]

    Ma L, Liu Z, Chen T, Liu Y, Fang G 2020 Electrochim. Acta 355 136777Google Scholar

    [21]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [22]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [24]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [25]

    Hu J, Zhao X, Chen W, Su H, Chen Z 2017 J. Phys. Chem. C 121 18702Google Scholar

    [26]

    Tokunaga S, Kato H, Kudo A 2001 Chem. Mater. 13 4624Google Scholar

    [27]

    Kahneman D, Tversky A 1979 Asp. Gen. La Planif. Tribut. En Venez. 2009 31

    [28]

    Zhang X, Huang Y, Ma F, Zhang Z, Wei X 2018 J. Phys. Chem. Solids 121 85Google Scholar

    [29]

    Anke B, Rohloff M, Willinger M G, Hetaba W, Fischer A, Lerch M 2017 Solid State Sci. 63 1Google Scholar

    [30]

    Zhao R, Zhang L, Fan G, Chen Y, Huang G, Zhang H, Zhu J, Guan X 2021 Cem. Concr. Res. 144 106420Google Scholar

    [31]

    Würfel P 2003 Sol. Energy Mater. Sol. Cells 79 153Google Scholar

    [32]

    Ma H, Chen X Q, Li R, Wang S, Dong J, Ke W 2017 Acta Mater. 130 137Google Scholar

    [33]

    Shi J, Zhang W, Gu Q 2022 Solid State Commun. 351 114794Google Scholar

    [34]

    Bi Y, Yang Y, Shi X L, Feng L, Hou X, Ye X, Zhang L, Suo G, Lu S, Chen Z G 2021 J. Mater. Sci. Technol. 83 102Google Scholar

  • [1] 朱庞栋, 王长昊, 王如志. 节线半金属AlB2水环境下发生吸附后拓扑表面态变化. 物理学报, 2024, 73(12): 127101. doi: 10.7498/aps.73.20240404
    [2] 雷雪玲, 朱巨湧, 柯强, 欧阳楚英. 第一性原理研究硼掺杂氧化石墨烯对过氧化锂氧化反应的催化机理. 物理学报, 2024, 73(9): 098804. doi: 10.7498/aps.73.20240197
    [3] 白成, 吴用, 辛雨慈, 牟俊峰, 江俊颖, 丁鼎, 夏雷, 余鹏. NaCu5S3复合NixFe-LDH的结构对水解氧析出性能的影响. 物理学报, 2023, 72(10): 108201. doi: 10.7498/aps.72.20230146
    [4] 张德贺, 周文哲, 李奥林, 欧阳方平. 原子替位掺杂对单层Janus WSeTe电子结构的影响. 物理学报, 2021, 70(9): 096301. doi: 10.7498/aps.70.20201888
    [5] 卢奕宏, 柯聪明, 付明明, 吴志明, 康俊勇, 张纯淼, 吴雅苹. 单层GaSe表面Fe原子吸附体系电子自旋性质调控. 物理学报, 2017, 66(16): 166301. doi: 10.7498/aps.66.166301
    [6] 嘉明珍, 王红艳, 陈元正, 马存良. Na+替位掺杂对Li2MnSiO4的电子结构以及Li+迁移过程的影响. 物理学报, 2016, 65(5): 057101. doi: 10.7498/aps.65.057101
    [7] 王凯, 张文华, 刘凌云, 徐法强. VO2薄膜表面氧缺陷的修复:F4TCNQ分子吸附反应. 物理学报, 2016, 65(8): 088101. doi: 10.7498/aps.65.088101
    [8] 张凤春, 李春福, 张丛雷, 冉曾令. H2S, HS自由基以及S原子在Fe(111)表面吸附的密度泛函研究. 物理学报, 2014, 63(12): 127101. doi: 10.7498/aps.63.127101
    [9] 殷聪, 谢逸群, 巩秀芳, 庄军, 宁西京. 理论预测晶体表面吸附二维原子岛的形状. 物理学报, 2009, 58(8): 5291-5296. doi: 10.7498/aps.58.5291
    [10] 张爱平, 张进治. 水热法制备不同形貌和结构的BiVO4粉末. 物理学报, 2009, 58(4): 2336-2344. doi: 10.7498/aps.58.2336
    [11] 许桂贵, 吴青云, 张健敏, 陈志高, 黄志高. 第一性原理研究氧在Ni(111)表面上的吸附能及功函数. 物理学报, 2009, 58(3): 1924-1930. doi: 10.7498/aps.58.1924
    [12] 徐 敬. 用分子模拟方法研究羟基乙叉二膦酸(HEDP)在方解石表面的吸附行为. 物理学报, 2006, 55(3): 1107-1112. doi: 10.7498/aps.55.1107
    [13] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究. 物理学报, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [14] 张 超, 王永亮, 颜 超, 张庆瑜. 替位杂质对低能Pt原子与Pt(111)表面相互作用影响的分子动力学模拟. 物理学报, 2006, 55(6): 2882-2891. doi: 10.7498/aps.55.2882
    [15] 于 洋, 徐力方, 顾长志. 氢吸附金刚石(001)表面的第一性原理研究. 物理学报, 2004, 53(8): 2710-2714. doi: 10.7498/aps.53.2710
    [16] 李 波, 鲍世宁, 庄友谊, 曹培林. 乙烯在Ni(110)表面吸附的几何结构. 物理学报, 2003, 52(1): 202-206. doi: 10.7498/aps.52.202
    [17] 晏浩, 赵学应, 赵汝光, 杨威生. 甘氨酸在Cu(111)表面吸附的扫描隧道显微镜研究. 物理学报, 2001, 50(10): 1964-1969. doi: 10.7498/aps.50.1964
    [18] 庄友谊, 吴 悦, 张建华, 张寒洁, 汪 健, 李海洋, 何丕模, 鲍世宁. C2H4在Ru(1010)表面吸附与分解的研究. 物理学报, 2000, 49(10): 2101-2105. doi: 10.7498/aps.49.2101
    [19] 王 浩, 赵学应, 杨威生. 天冬氨酸在Cu(001)表面吸附的扫描隧道显微镜研究. 物理学报, 2000, 49(7): 1316-1320. doi: 10.7498/aps.49.1316
    [20] 刘建成, 陈家平, 李德宇. BiVO4的晶体结构和光学观察. 物理学报, 1983, 32(8): 1053-1060. doi: 10.7498/aps.32.1053
计量
  • 文章访问数:  4637
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-21
  • 修回日期:  2022-10-13
  • 上网日期:  2022-10-27
  • 刊出日期:  2023-01-20

/

返回文章
返回