-
弱光锁相是星间激光干涉测距的重要环节, 通过锁相环跟踪外差干涉光信号相位. 受散粒噪声、激光频率噪声等各类噪声限制, 锁相环内部本地振荡器信号与外差信号间存在一定相位差, 而锁相环的鉴相范围只有正负半个周期, 若相位差某时刻超过鉴相范围, 则本地振荡器在反馈调节下可能会进入错误的工作点, 出现周跳, 导致后续相位重构出错. 本文提出了基于引力波探测背景的一种周跳诊断方法, 在原锁相环基础上引入一个具有更大鉴相范围的辅助分频相位计, 可以对锁相环是否出现周跳提供判断依据. 结合已有的锁相环及噪声理论, 建立了分频相位计的理论模型, 以此数值模拟了分频相位计工作, 模拟结果表明, 分频相位计可以实现大范围鉴相, 具有判断弱光锁相周跳的能力.Weak light phase locking is an important part of intersatellite laser interference ranging. Phase-locked loop (PLL) is used to track the phase of heterodyne interference optical signal. Owing to shot noise, laser frequency and other kinds of noise, there is a phase difference between the internal PLL local oscillator and the heterodyne signal, while the phase detection range of the PLL is only one period. If the phase difference exceeds the phase detection range at a certain time, the local oscillator may enter the wrong operating point under feedback regulation, resulting in cycle clip, which leads to subsequent phase reconstruction errors. In this paper, a cycle clip diagnosis method based on the detection background of gravitational waves is proposed. Based on the original PLL, an auxiliary frequency phase divider with larger phase detection range is introduced, which can provide a basis for judging whether the cycle clip occurs in the PLL. In this paper, a digital weak-light PLL model is established to evaluate the influence of various noise. The theoretical spectral density of the error phase is given according to the two main kinds of noise (laser phase noise and particle noise). Considering the limited detection range of PLL, large error phase may lead to cycle clip, making the PLL work at the wrong locking point. A phase meter with smaller frequency division phase range can be used to solve this problem. First, the input heterodyne sine signal is converted into in-phase square wave N frequency division. Then the phase difference is determined by comparing the output signal with output signal reduced by 1/N through the time-to-degital converter (TDC) Based on the theory of PLL and noise, the theoretical model of frequency division phase meter is established. The simulation results show that the frequency division phase meter can realize a wide range of phase detection under the current theoretical framework and has the ability to judge the cycle clip of weak light phase locking. It can be used in the weak- light phase locking task represented by LISA.
-
Keywords:
- space gravitational wave detection /
- weak light phase locking /
- cycle slip /
- frequency division phase meter
[1] Danzmannk K, Prince T, Binetruy P 2011 LISA Assessment Study Report http://sci.esa.int/web/lisa/-/48364-lisa-assessment-study-report-yellow-book 2011 [2022-10-1]
[2] Gong X, Xu S, Bai S, et al. 2011 Class. Quantum Grav. 28 094012Google Scholar
[3] eLISA Consortium 2013 arXiv: 1305.5720 v1 [astro-ph]
[4] Luo Z R, Liu H S, Jin G 2018 Opt. Laser Technol. 105 146Google Scholar
[5] Bender P. L, Begelman M. C, Gair J. R 2013 Class. Quantum Grav. 30 165017Google Scholar
[6] Danzmann K, Rudiger A 2003 Class. Quantum Grav. 20 1Google Scholar
[7] Shaddock D, Ware B, Halverson P G, Spero R E, Klipstein B 2006 AIP Conf. Proc. 873 654Google Scholar
[8] Sheard B S, Heinzel G, Danzmann K, Shaddock D A, Klipstein W M, Folkner W M 2012 J. Geodesy 86 12
[9] Paul W M 2005 Class. Quantum Grav. 22 243Google Scholar
[10] Dong Y, Liu H, Luo Z R, Li Y, Jin G 2016 Sci. China Tech. Sci. 59 730Google Scholar
[11] Gerberding O, Sheard B, Bykov L, et al. 2013 Class. Quantum Grav. 30 235029Google Scholar
[12] Liao A C, Ni W T, Shy J T 2002 Int. J. Mod. Phys. D 11 1075Google Scholar
[13] Samuel P F, Timothy T L, Kirk M, Andrew J S, Robert L W, David E M, Daniel A S 2014 Opt. Lett. 39 5251Google Scholar
[14] Jiang Y Z, Jin X L, YEH H C, Liang Y R 2021 Opt. Express 29 18336Google Scholar
[15] Liang Y R, Feng Y J, Xiao G Y 2021 Rev. Sci. Instrum. 92 124501Google Scholar
[16] Wang G, Ni W T 2019 Res. Astron. Astrophys. 19 058Google Scholar
[17] Xu M Y, Wu H Z, Liang Y R, Luo D, Wang P P, Tan Y J, Shao C G 2022 Sensors 22 7349Google Scholar
[18] Gardner F M 2005 Phaselock Techniques (New Jersey: John Wiley&Sons) pp66–71
[19] Wand V, Guzman F, Heinzel G, Danzmann K 2006 AIP Conf. Proc. 873 689Google Scholar
[20] Bykov I, Delgadol J, Marín Antonio F. G, Heinzel G, Danzmann K 2009 J. Phys. Conf. Ser. 154 012017Google Scholar
[21] Valliyakalayil J T, Sutton A J H, Spero R E, Shaddock D A, Kirk M 2022 Phys. Rev. D 105 062005Google Scholar
[22] Zhang Y, Hines A S, Valdes G, Guzman F 2021 Sensors 21 5788Google Scholar
[23] 梁浴榕 2013 博士学位论文 (武汉: 华中理工大学)
Liang Y R 2013 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)
[24] Francis S P 2017 Ph. D. Dissertation (Canberra Australian: National University)
[25] Miller R L 1937 Proc. I. R. E 27 446
-
图 11 (a), (b) NCO相位减小或增大
$2{\text{π }}$ 分频相位计的输出; (c), (d) NCO相位减小或增大$4{\text{π }}$ 分频相位计的输出; (e), (f) NCO相位减小或增大$6{\text{π }}$ 分频相位计的输出Fig. 11. (a), (b) NCO phase decreases or increases by one period, the output of the frequency divider phase meter; (c), (d) NCO phase decreases or increases for two periods, the output of the divider phase meter; (e), (f) NCO phase decreases or increases for three periods, the output of the divider phase meter.
表 1 弱光锁相噪声总结
Table 1. Noise of weak light phase locking.
噪声名称 谱密度/(${\text{cycles} } \cdot { { {\text{Hz} } } ^{ - 1/2} }$) 噪声性质 激光相位噪声 $4.77 \times (1\;\text{Hz}/f)$ 相位噪声 NCO读出噪声 $9 \times {10^{ - 14}}$ 相位噪声 寄存器量化噪声 $0.6 \times ({ { { {10}^{ - 6} }~{\text{Hz} } } }/{f})$ 相位噪声 时钟噪声 $2.1 \times (10^{-6}\;{\rm Hz}/f)$ 相位噪声 散粒噪声 $6.9 \times {10^{ - 6}}$ 加性噪声 ADC量化噪声 $0.56 \times {10^{ - 6}}$ 加性噪声 -
[1] Danzmannk K, Prince T, Binetruy P 2011 LISA Assessment Study Report http://sci.esa.int/web/lisa/-/48364-lisa-assessment-study-report-yellow-book 2011 [2022-10-1]
[2] Gong X, Xu S, Bai S, et al. 2011 Class. Quantum Grav. 28 094012Google Scholar
[3] eLISA Consortium 2013 arXiv: 1305.5720 v1 [astro-ph]
[4] Luo Z R, Liu H S, Jin G 2018 Opt. Laser Technol. 105 146Google Scholar
[5] Bender P. L, Begelman M. C, Gair J. R 2013 Class. Quantum Grav. 30 165017Google Scholar
[6] Danzmann K, Rudiger A 2003 Class. Quantum Grav. 20 1Google Scholar
[7] Shaddock D, Ware B, Halverson P G, Spero R E, Klipstein B 2006 AIP Conf. Proc. 873 654Google Scholar
[8] Sheard B S, Heinzel G, Danzmann K, Shaddock D A, Klipstein W M, Folkner W M 2012 J. Geodesy 86 12
[9] Paul W M 2005 Class. Quantum Grav. 22 243Google Scholar
[10] Dong Y, Liu H, Luo Z R, Li Y, Jin G 2016 Sci. China Tech. Sci. 59 730Google Scholar
[11] Gerberding O, Sheard B, Bykov L, et al. 2013 Class. Quantum Grav. 30 235029Google Scholar
[12] Liao A C, Ni W T, Shy J T 2002 Int. J. Mod. Phys. D 11 1075Google Scholar
[13] Samuel P F, Timothy T L, Kirk M, Andrew J S, Robert L W, David E M, Daniel A S 2014 Opt. Lett. 39 5251Google Scholar
[14] Jiang Y Z, Jin X L, YEH H C, Liang Y R 2021 Opt. Express 29 18336Google Scholar
[15] Liang Y R, Feng Y J, Xiao G Y 2021 Rev. Sci. Instrum. 92 124501Google Scholar
[16] Wang G, Ni W T 2019 Res. Astron. Astrophys. 19 058Google Scholar
[17] Xu M Y, Wu H Z, Liang Y R, Luo D, Wang P P, Tan Y J, Shao C G 2022 Sensors 22 7349Google Scholar
[18] Gardner F M 2005 Phaselock Techniques (New Jersey: John Wiley&Sons) pp66–71
[19] Wand V, Guzman F, Heinzel G, Danzmann K 2006 AIP Conf. Proc. 873 689Google Scholar
[20] Bykov I, Delgadol J, Marín Antonio F. G, Heinzel G, Danzmann K 2009 J. Phys. Conf. Ser. 154 012017Google Scholar
[21] Valliyakalayil J T, Sutton A J H, Spero R E, Shaddock D A, Kirk M 2022 Phys. Rev. D 105 062005Google Scholar
[22] Zhang Y, Hines A S, Valdes G, Guzman F 2021 Sensors 21 5788Google Scholar
[23] 梁浴榕 2013 博士学位论文 (武汉: 华中理工大学)
Liang Y R 2013 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)
[24] Francis S P 2017 Ph. D. Dissertation (Canberra Australian: National University)
[25] Miller R L 1937 Proc. I. R. E 27 446
计量
- 文章访问数: 3367
- PDF下载量: 118
- 被引次数: 0