搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于星间激光干涉测量的分频相位计辅助弱光锁相

乐陶然 穆衡霖 徐欣 谈宜东 尉昊赟 李岩

引用本文:
Citation:

用于星间激光干涉测量的分频相位计辅助弱光锁相

乐陶然, 穆衡霖, 徐欣, 谈宜东, 尉昊赟, 李岩

Weak-light phase locking aided by frequency division phase meter for intersatellite laser interferometry

Le Tao-Ran, Mu Heng-Lin, Xu Xin, Tan Yi-Dong, Wei Hao-Yun, Li Yan
PDF
HTML
导出引用
  • 弱光锁相是星间激光干涉测距的重要环节, 通过锁相环跟踪外差干涉光信号相位. 受散粒噪声、激光频率噪声等各类噪声限制, 锁相环内部本地振荡器信号与外差信号间存在一定相位差, 而锁相环的鉴相范围只有正负半个周期, 若相位差某时刻超过鉴相范围, 则本地振荡器在反馈调节下可能会进入错误的工作点, 出现周跳, 导致后续相位重构出错. 本文提出了基于引力波探测背景的一种周跳诊断方法, 在原锁相环基础上引入一个具有更大鉴相范围的辅助分频相位计, 可以对锁相环是否出现周跳提供判断依据. 结合已有的锁相环及噪声理论, 建立了分频相位计的理论模型, 以此数值模拟了分频相位计工作, 模拟结果表明, 分频相位计可以实现大范围鉴相, 具有判断弱光锁相周跳的能力.
    Weak light phase locking is an important part of intersatellite laser interference ranging. Phase-locked loop (PLL) is used to track the phase of heterodyne interference optical signal. Owing to shot noise, laser frequency and other kinds of noise, there is a phase difference between the internal PLL local oscillator and the heterodyne signal, while the phase detection range of the PLL is only one period. If the phase difference exceeds the phase detection range at a certain time, the local oscillator may enter the wrong operating point under feedback regulation, resulting in cycle clip, which leads to subsequent phase reconstruction errors. In this paper, a cycle clip diagnosis method based on the detection background of gravitational waves is proposed. Based on the original PLL, an auxiliary frequency phase divider with larger phase detection range is introduced, which can provide a basis for judging whether the cycle clip occurs in the PLL. In this paper, a digital weak-light PLL model is established to evaluate the influence of various noise. The theoretical spectral density of the error phase is given according to the two main kinds of noise (laser phase noise and particle noise). Considering the limited detection range of PLL, large error phase may lead to cycle clip, making the PLL work at the wrong locking point. A phase meter with smaller frequency division phase range can be used to solve this problem. First, the input heterodyne sine signal is converted into in-phase square wave N frequency division. Then the phase difference is determined by comparing the output signal with output signal reduced by 1/N through the time-to-degital converter (TDC) Based on the theory of PLL and noise, the theoretical model of frequency division phase meter is established. The simulation results show that the frequency division phase meter can realize a wide range of phase detection under the current theoretical framework and has the ability to judge the cycle clip of weak light phase locking. It can be used in the weak- light phase locking task represented by LISA.
      通信作者: 李岩, liyan@mail.tsinghua.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2020YFC220073)资助的课题.
      Corresponding author: Li Yan, liyan@mail.tsinghua.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2020YFC220073).
    [1]

    Danzmannk K, Prince T, Binetruy P 2011 LISA Assessment Study Report http://sci.esa.int/web/lisa/-/48364-lisa-assessment-study-report-yellow-book 2011 [2022-10-1]

    [2]

    Gong X, Xu S, Bai S, et al. 2011 Class. Quantum Grav. 28 094012Google Scholar

    [3]

    eLISA Consortium 2013 arXiv: 1305.5720 v1 [astro-ph]

    [4]

    Luo Z R, Liu H S, Jin G 2018 Opt. Laser Technol. 105 146Google Scholar

    [5]

    Bender P. L, Begelman M. C, Gair J. R 2013 Class. Quantum Grav. 30 165017Google Scholar

    [6]

    Danzmann K, Rudiger A 2003 Class. Quantum Grav. 20 1Google Scholar

    [7]

    Shaddock D, Ware B, Halverson P G, Spero R E, Klipstein B 2006 AIP Conf. Proc. 873 654Google Scholar

    [8]

    Sheard B S, Heinzel G, Danzmann K, Shaddock D A, Klipstein W M, Folkner W M 2012 J. Geodesy 86 12

    [9]

    Paul W M 2005 Class. Quantum Grav. 22 243Google Scholar

    [10]

    Dong Y, Liu H, Luo Z R, Li Y, Jin G 2016 Sci. China Tech. Sci. 59 730Google Scholar

    [11]

    Gerberding O, Sheard B, Bykov L, et al. 2013 Class. Quantum Grav. 30 235029Google Scholar

    [12]

    Liao A C, Ni W T, Shy J T 2002 Int. J. Mod. Phys. D 11 1075Google Scholar

    [13]

    Samuel P F, Timothy T L, Kirk M, Andrew J S, Robert L W, David E M, Daniel A S 2014 Opt. Lett. 39 5251Google Scholar

    [14]

    Jiang Y Z, Jin X L, YEH H C, Liang Y R 2021 Opt. Express 29 18336Google Scholar

    [15]

    Liang Y R, Feng Y J, Xiao G Y 2021 Rev. Sci. Instrum. 92 124501Google Scholar

    [16]

    Wang G, Ni W T 2019 Res. Astron. Astrophys. 19 058Google Scholar

    [17]

    Xu M Y, Wu H Z, Liang Y R, Luo D, Wang P P, Tan Y J, Shao C G 2022 Sensors 22 7349Google Scholar

    [18]

    Gardner F M 2005 Phaselock Techniques (New Jersey: John Wiley&Sons) pp66–71

    [19]

    Wand V, Guzman F, Heinzel G, Danzmann K 2006 AIP Conf. Proc. 873 689Google Scholar

    [20]

    Bykov I, Delgadol J, Marín Antonio F. G, Heinzel G, Danzmann K 2009 J. Phys. Conf. Ser. 154 012017Google Scholar

    [21]

    Valliyakalayil J T, Sutton A J H, Spero R E, Shaddock D A, Kirk M 2022 Phys. Rev. D 105 062005Google Scholar

    [22]

    Zhang Y, Hines A S, Valdes G, Guzman F 2021 Sensors 21 5788Google Scholar

    [23]

    梁浴榕 2013 博士学位论文 (武汉: 华中理工大学)

    Liang Y R 2013 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [24]

    Francis S P 2017 Ph. D. Dissertation (Canberra Australian: National University)

    [25]

    Miller R L 1937 Proc. I. R. E 27 446

  • 图 1  星间激光干涉系统及锁相环

    Fig. 1.  Intersatellite laser interference system and phase-locked loop (PLL).

    图 2  锁相环构成

    Fig. 2.  Phase locked loop structure.

    图 3  线性锁相环模型框图

    Fig. 3.  Block diagram of the linearized PLL model.

    图 4  误差相位标准差与带宽关系 (a)自由运转激光; (b)稳频激光

    Fig. 4.  Standard deviation of phase error as a function of bandwidth: (a) Free-running laser; (b) frequency-stabilized laser.

    图 5  锁相环中的周跳

    Fig. 5.  Cycle slipping in a phase locked loop.

    图 6  (a)方波信号相位差测量; (b)分频后的方波信号

    Fig. 6.  (a) Square wave signal phase difference measurement; (b) square wave signal after frequency division.

    图 7  分频相位计模型

    Fig. 7.  Frequency division phase meter model.

    图 8  (a)构造的激光相位噪声谱密度与谱密度理论值; (b) 构造的散粒噪声谱密度与谱密度理论值

    Fig. 8.  (a) The constructed spectral density and theoretical value of spectral density of laser phase noise; (b) the constructed spectral density and theoretical value of spectral density of granular noise.

    图 9  (a)滤波后得到的正弦信号序列; (b)将正弦信号转方波并经过10分频后的结果

    Fig. 9.  (a) The sinusoidal signal sequence obtained after filtering; (b) converting sinusoidal signal into square wave and passing through 10 frequency division.

    图 10  分频相位计输出正确地表示相位差

    Fig. 10.  The output of frequency divider phase meter correctly represents the phase difference.

    图 11  (a), (b) NCO相位减小或增大$2{\text{π }}$分频相位计的输出; (c), (d) NCO相位减小或增大$4{\text{π }}$分频相位计的输出; (e), (f) NCO相位减小或增大$6{\text{π }}$分频相位计的输出

    Fig. 11.  (a), (b) NCO phase decreases or increases by one period, the output of the frequency divider phase meter; (c), (d) NCO phase decreases or increases for two periods, the output of the divider phase meter; (e), (f) NCO phase decreases or increases for three periods, the output of the divider phase meter.

    图 12  一段时间内的误差相位和分频相位计输出

    Fig. 12.  Error phase and frequency division phase meter output over a period of time.

    表 1  弱光锁相噪声总结

    Table 1.  Noise of weak light phase locking.

    噪声名称谱密度/(${\text{cycles} } \cdot { { {\text{Hz} } } ^{ - 1/2} }$)噪声性质
    激光相位噪声$4.77 \times (1\;\text{Hz}/f)$相位噪声
    NCO读出噪声$9 \times {10^{ - 14}}$相位噪声
    寄存器量化噪声$0.6 \times ({ { { {10}^{ - 6} }~{\text{Hz} } } }/{f})$相位噪声
    时钟噪声$2.1 \times (10^{-6}\;{\rm Hz}/f)$相位噪声
    散粒噪声$6.9 \times {10^{ - 6}}$加性噪声
    ADC量化噪声$0.56 \times {10^{ - 6}}$加性噪声
    下载: 导出CSV
  • [1]

    Danzmannk K, Prince T, Binetruy P 2011 LISA Assessment Study Report http://sci.esa.int/web/lisa/-/48364-lisa-assessment-study-report-yellow-book 2011 [2022-10-1]

    [2]

    Gong X, Xu S, Bai S, et al. 2011 Class. Quantum Grav. 28 094012Google Scholar

    [3]

    eLISA Consortium 2013 arXiv: 1305.5720 v1 [astro-ph]

    [4]

    Luo Z R, Liu H S, Jin G 2018 Opt. Laser Technol. 105 146Google Scholar

    [5]

    Bender P. L, Begelman M. C, Gair J. R 2013 Class. Quantum Grav. 30 165017Google Scholar

    [6]

    Danzmann K, Rudiger A 2003 Class. Quantum Grav. 20 1Google Scholar

    [7]

    Shaddock D, Ware B, Halverson P G, Spero R E, Klipstein B 2006 AIP Conf. Proc. 873 654Google Scholar

    [8]

    Sheard B S, Heinzel G, Danzmann K, Shaddock D A, Klipstein W M, Folkner W M 2012 J. Geodesy 86 12

    [9]

    Paul W M 2005 Class. Quantum Grav. 22 243Google Scholar

    [10]

    Dong Y, Liu H, Luo Z R, Li Y, Jin G 2016 Sci. China Tech. Sci. 59 730Google Scholar

    [11]

    Gerberding O, Sheard B, Bykov L, et al. 2013 Class. Quantum Grav. 30 235029Google Scholar

    [12]

    Liao A C, Ni W T, Shy J T 2002 Int. J. Mod. Phys. D 11 1075Google Scholar

    [13]

    Samuel P F, Timothy T L, Kirk M, Andrew J S, Robert L W, David E M, Daniel A S 2014 Opt. Lett. 39 5251Google Scholar

    [14]

    Jiang Y Z, Jin X L, YEH H C, Liang Y R 2021 Opt. Express 29 18336Google Scholar

    [15]

    Liang Y R, Feng Y J, Xiao G Y 2021 Rev. Sci. Instrum. 92 124501Google Scholar

    [16]

    Wang G, Ni W T 2019 Res. Astron. Astrophys. 19 058Google Scholar

    [17]

    Xu M Y, Wu H Z, Liang Y R, Luo D, Wang P P, Tan Y J, Shao C G 2022 Sensors 22 7349Google Scholar

    [18]

    Gardner F M 2005 Phaselock Techniques (New Jersey: John Wiley&Sons) pp66–71

    [19]

    Wand V, Guzman F, Heinzel G, Danzmann K 2006 AIP Conf. Proc. 873 689Google Scholar

    [20]

    Bykov I, Delgadol J, Marín Antonio F. G, Heinzel G, Danzmann K 2009 J. Phys. Conf. Ser. 154 012017Google Scholar

    [21]

    Valliyakalayil J T, Sutton A J H, Spero R E, Shaddock D A, Kirk M 2022 Phys. Rev. D 105 062005Google Scholar

    [22]

    Zhang Y, Hines A S, Valdes G, Guzman F 2021 Sensors 21 5788Google Scholar

    [23]

    梁浴榕 2013 博士学位论文 (武汉: 华中理工大学)

    Liang Y R 2013 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [24]

    Francis S P 2017 Ph. D. Dissertation (Canberra Australian: National University)

    [25]

    Miller R L 1937 Proc. I. R. E 27 446

  • [1] 李响, 王嘉伟, 李番, 黄天时, 党昊, 赵得胜, 田龙, 史少平, 李卫, 尹王保, 郑耀辉. 面向地基引力波探测频段的超低噪声激光强度噪声评估系统. 物理学报, 2025, 74(3): 034202. doi: 10.7498/aps.74.20241319
    [2] 尚鑫, 李番, 马正磊, 黄天时, 党昊, 李卫, 尹王保, 田龙, 陈力荣, 郑耀辉. 0.1 mHz-1 Hz频段超低噪声光电探测器实验研究. 物理学报, 2025, 74(5): . doi: 10.7498/aps.74.20241635
    [3] 郭禧庆, 周静, 王晨曦, 秦琛, 郭成哲, 李刚, 张鹏飞, 张天才. 地基引力波探测激光干涉仪的真空残余气体噪声分析. 物理学报, 2024, 73(5): 050401. doi: 10.7498/aps.73.20231462
    [4] 阮远东, 章志昊, 贾茳勰, 顾煜宁, 张善端, 崔旭高, 洪葳, 白彦峥, 田朋飞. 空间引力波探测中电荷管理系统的紫外光源应用. 物理学报, 2024, 73(22): 220401. doi: 10.7498/aps.73.20241115
    [5] 王在渊, 王洁浩, 李宇航, 柳强. 面向空间引力波探测的毫赫兹频段低强度噪声单频激光器. 物理学报, 2023, 72(5): 054205. doi: 10.7498/aps.72.20222127
    [6] 王嘉伟, 李健博, 李番, 郑立昂, 高子超, 安炳南, 马正磊, 尹王保, 田龙, 郑耀辉. 面向空间引力波探测的程控低噪声高精度电压基准源. 物理学报, 2023, 72(4): 049502. doi: 10.7498/aps.72.20222119
    [7] 李庆回, 李卫, 孙瑜, 王雅君, 田龙, 陈力荣, 张鹏飞, 郑耀辉. 面向第三代地基引力波探测的激光源需求分析. 物理学报, 2022, 71(16): 164203. doi: 10.7498/aps.71.20220552
    [8] 杨光, 刘琦, 聂敏, 刘原华, 张美玲. 基于极化-空间模超纠缠的量子网络多跳纠缠交换方法研究. 物理学报, 2022, 71(10): 100301. doi: 10.7498/aps.71.20212173
    [9] 李番, 王嘉伟, 高子超, 李健博, 安炳南, 李瑞鑫, 白禹, 尹王保, 田龙, 郑耀辉. 面向空间引力波探测的激光强度噪声评估系统. 物理学报, 2022, 71(20): 209501. doi: 10.7498/aps.71.20220841
    [10] 查冰婷, 袁海璐, 马少杰, 陈光宋. 单光束扩束扫描激光周视探测系统参数对探测能力的影响. 物理学报, 2019, 68(7): 070601. doi: 10.7498/aps.68.20181860
    [11] 徐涵, 陈树新, 吴昊, 陈坤, 洪磊. 基于数字非线性锁相环的相干态相位估计. 物理学报, 2019, 68(2): 024204. doi: 10.7498/aps.68.20181602
    [12] 郑香脂, 张爱兵, 关燚炳, 刘超, 孙越强, 王文静, 田峥, 孔令高, 丁建京. 电磁监测试验卫星离子漂移计探测技术. 物理学报, 2017, 66(20): 209401. doi: 10.7498/aps.66.209401
    [13] 关佳, 顾翊晟, 朱成杰, 羊亚平. 利用相干制备的三能级原子介质实现低噪声弱光相位操控. 物理学报, 2017, 66(2): 024205. doi: 10.7498/aps.66.024205
    [14] 李慧, 赵琳, 李亮. 基于贝叶斯压缩感知的周跳探测与修复方法. 物理学报, 2016, 65(24): 249101. doi: 10.7498/aps.65.249101
    [15] 周品嘉, 王轶文, 韦联福. 应用于弱光探测的热敏超导谐振器. 物理学报, 2014, 63(7): 070701. doi: 10.7498/aps.63.070701
    [16] 佘彦超, 王登龙, 丁建文. 电磁感应透明介质中的弱光空间暗孤子环. 物理学报, 2009, 58(5): 3198-3202. doi: 10.7498/aps.58.3198
    [17] 赵红娥, 刘思敏, 郭 儒, 汪大云, 禹宣伊, 高垣梅, 黄春福, 许京军. LiNbO3:Fe晶体二波耦合弱光放大的物理机理. 物理学报, 2003, 52(11): 2781-2787. doi: 10.7498/aps.52.2781
    [18] 郑庆璋, 唐孟希, 胡恩科. 论引力波探测器方位与引力波源方位间的关系. 物理学报, 1990, 39(5): 685-692. doi: 10.7498/aps.39.685
    [19] 徐步新, 秦荣先. 集中质量音叉式引力波天线与Vela星引力辐射探测的探讨. 物理学报, 1982, 31(8): 1097-1106. doi: 10.7498/aps.31.1097
    [20] 郑庆障, 崔世治. 扭摆——探测低频引力波的一种可能的天线. 物理学报, 1980, 29(9): 1204-1209. doi: 10.7498/aps.29.1204
计量
  • 文章访问数:  3367
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-11
  • 修回日期:  2023-03-28
  • 上网日期:  2023-05-22
  • 刊出日期:  2023-07-20

/

返回文章
返回