搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AlGaN基深紫外LED电子阻挡层的智能优化设计

冯丽雅 路慧敏 朱一帆 陈毅勇 于彤军 王建萍

引用本文:
Citation:

AlGaN基深紫外LED电子阻挡层的智能优化设计

冯丽雅, 路慧敏, 朱一帆, 陈毅勇, 于彤军, 王建萍

Intelligent optimization design of electron barrier layer for AlGaN-based deep-ultraviolet light-emitting diodes

Feng Li-Ya, Lu Hui-Min, Zhu Yi-Fan, Chen Yi-Yong, Yu Tong-Jun, Wang Jian-Ping
PDF
HTML
导出引用
  • 为了提高AlGaN基深紫外发光二极管(light emitting diode, LED)的内量子效率(internal quantum efficiency, IQE), 本文采用了基于InAlGaN/ AlGaN超晶格的电子阻挡层(electron blocking layer, EBL)结构, 结果表明与传统的单层和双层电子阻挡层结构相比, 超晶格EBL结构能够有效提高LED的内量子效率. 在此基础上, 本文提出了基于JAYA智能算法的LED结构优化方法, 应用该方法以最大化内量子效率为目标, 对InAlGaN/AlGaN超晶格EBL结构进行优化设计. 结果表明, 采用优化超晶格EBL结构后电子泄露和空穴注入问题都有所改善, 在200 mA电流注入时深紫外LED的内量子效率比采用单层结构EBL提高了41.2%.
    AlGaN-based deep-ultraviolet light-emitting diodes (DUV LEDs) are widely used in sterilization, sensing, water purification, medical treatment, non-line of sight (NLOS) communication and many other fields. Especially it has been reported that the global novel coronavirus (COVID-19) can be effectively inactivated by the DUV light with a wavelength below 280 nm (UVC) within a few seconds, which has also attracted great attention. However, the external quantum efficiency (EQE) of UVC LED is still at a low level, generally not more than 10%. As an important component of EQE, internal quantum efficiency (IQE) plays a crucial role in realizing high-performance DUV-LED. In order to improve the IQE of AlGaN-based DUV-LED, this work adopts an electron blocking layer (EBL) structure based on InAlGaN/AlGaN superlattice. The results show that the superlattice EBL structure can effectively improve the IQE compared with the traditional single-layer and double-layer EBL structure for the DUV-LED. On this basis, the optimization method based on JAYA intelligent algorithm for LED structure design is proposed in this work. Using the proposed design method, the InAlGaN/AlGaN superlattice EBL structure is further optimized to maximize the LED’s IQE. It is demonstrated that the optimized superlattice EBL structure is beneficial to not only the suppression of electron leakage but also the improvement of hole injection, leading to the increase of carrier recombination in the active region. As a result, the IQE of the DUV-LED at 200 mA injection current is 41.2% higher than that of the single-layer EBL structure. In addition, the optimized structure reduces IQE at high current from 25% to 4%. The optimization method based on intelligent algorithm can break through the limitation of the current LED structure design and provide a new method to improve the efficiency of AlGaN-based DUV-LED.
      通信作者: 路慧敏, hmlu@ustb.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62234003)、广东省基础与应用基础研究基金(批准号: 2021B1515120086)和佛山市人民政府科技创新专项资金(批准号: BK20BF013)资助的课题.
      Corresponding author: Lu Hui-Min, hmlu@ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62234003), the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant No. 2021B1515120086) and the People’s Government’s Special Foundation for Science and Technology Innovation of Foshan Municipal (Grant No.BK20BF013).
    [1]

    Ren Z J, Yu H B, Liu Z L, et al. 2020 J. Phys. D Appl. Phys. 53 073002Google Scholar

    [2]

    Wang J X, Yan J X, Guo Y A, et al. 2015 Sci Sin. Phys. Mech. Astron. 45 067303Google Scholar

    [3]

    Khan A, Balakrishnan K, Katona T 2008 Nat. Photonics 2 067303Google Scholar

    [4]

    Kneissl M, Seong T Y, Han J, Amano H 2019 Nat. Photonics. 13 233Google Scholar

    [5]

    Park J S, Kim J K, Cho J, Seong T Y 2017 ECS J. Solid State Sci. Technol. 6 Q42Google Scholar

    [6]

    Xia Z H, Liang S H, Li B Q, Wang F, Zhang D M 2021 Optik 231 166392Google Scholar

    [7]

    Storm N, McKay L G A, Downs S N, et al. 2020 Sci. Rep. 10 22421Google Scholar

    [8]

    Hirayama H, Tsukada Y, Maeda T, Kamata K 2010 Appl. Phys. Express 3 031002Google Scholar

    [9]

    Islam N U, Usman M, Khan S, Jamil T, Rasheed S, Ali S, Saeed S 2021 Optik 248 168212Google Scholar

    [10]

    Usman M, Malik S, Hussain M, Jamal H, Khan MA 2021 Opt. Mater. 112 110745Google Scholar

    [11]

    Mondal R K, Chatterjee V, Pal S 2020 Semicond. Sci. Technol. 35 055031Google Scholar

    [12]

    Wang Y F, Mussaab I Niass, Wang F, Liu Y H 2020 Chin. Phys. B 29 480

    [13]

    Jamil T, Usman M, Jamal H, Khan S, Rasheed S, Ali S 2021 J. Electro. Mater. 50 5612Google Scholar

    [14]

    Rao R V 2016 Int. J. Ind. Eng. Comp. 7 19

    [15]

    Gao K Z, Yang F J, Zhou M C, Pan Q K, Suganthan P N 2019 IEEE Trans. Cybernetics. 49 1944Google Scholar

    [16]

    Gao K Z, Zhang Y C, Sadollah A, Lentzakis A, Su R 2017 Swarm. Evol. Comput. 37 58Google Scholar

    [17]

    Mymrin V F, Bulashevich K A, Podolskaya N I, et al. 2005 Phys. Status Solidi C 2 2928Google Scholar

    [18]

    Kim S J, Kim T G 2014 Phys. Status Solidi A 211 656Google Scholar

    [19]

    Kuo Y K, Chang J Y, Chen F M, Shih Y H, Chang H T 2016 IEEE Quantum Elect. 52 3300105Google Scholar

    [20]

    Xing Z Q, Zhou Y J, Liu Y H, Wang F 2020 Chin. Phys. Lett. 37 027302Google Scholar

    [21]

    Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815Google Scholar

    [22]

    Chuang S L, Chang C S 1996 Phys. Rev. B 54 2491Google Scholar

    [23]

    Dugdale D J, Brand S, Abram R A 2000 Phys. Rev. B 61 12933Google Scholar

  • 图 1  AlGaN基DUV LED结构示意图(左)和结构A(单层EBL)、B(双层EBL)、C(超晶格结构EBL)(右)

    Fig. 1.  Structure diagram of AlGaN based DUV LED(left)and Structure A (single layer EBL), B (double- layer EBL), C (superlattice structure EBL)(right).

    图 2  不同EBL结构AlGaN基深紫外LED内量子效率随电流密度变化曲线

    Fig. 2.  Variation curves of internal quantum efficiency with current density in AlGaN based DUV LED with different EBL structures.

    图 3  InAlGaN/AlGaN超晶格EBL结构参数不同时IQE曲线结果对比图 (a)量子垒的Al组分QB_x; (b)量子阱的Al组分 QW_x; (c)量子垒的厚度QB_d; (d) 量子阱的厚度QW_d; (e) 量子阱掺ln的大小y

    Fig. 3.  Comparison of IQE curves results for InAlGaN/AlGaN superlattice EBL with different structural parameters: (a) Al component of quantum barrier QB_x; (b) Al component of quantum well QW_x; (c) thickness of quantum barrier QB_d; (d) thickness of quantum well QW_d; (e) ln component in quantum well y.

    图 4  InAlGaN/AlGaN超晶格EBL结构参数和IQE随优化中迭代次数变化曲线: (a)量子垒的Al组分QB_x; (b) 量子垒的厚度QB_d; (c)量子阱的Al组分QW_x; (d)量子阱的厚度QW_d; (e)量子阱掺ln的大小y; (f)内量子效率IQE

    Fig. 4.  Curves of EBL structure parameters and IQE for InAlGaN/AlGaN superlattice changing with iterations in optimization: (a) Al component of quantum barrier QB_x; (b)thickness of quantum barrier QB_d; (c) Al component of quantum wells QW_x; (d)thickness of quantum well QW_d; (e) ln component in quantum well y; (f)the internal quantum efficiency IQE.

    图 5  采用不同EBL结构时AlGaN基深紫外LED的能带图 (a)结构C; (b)优化EBL结构

    Fig. 5.  Energy band diagram of AlGaN based DUV LED with different EBL structures: (a) Structure C; (b) optimized structure.

    图 6  采用不同EBL结构时AlGaN基深紫外LED的载流子浓度分布  (a)电子浓度; (b)空穴浓度

    Fig. 6.  Carrier concentration distribution of AlGaN based DUV LED with different EBL structures: (a) Electron concentration distribution; (b) hole concentration distribution.

    图 7  采用优化和未优化EBL结构时AlGaN基深紫外LED的发光特性: (a) L-I特性曲线; (b)发射光谱

    Fig. 7.  Optical properties of AlGaN based DUV LED with different EBL structures : (a) L-I characteristic curve; (b) emission spectrum.

    图 8  采用优化和未优化EBL结构时AlGaN基深紫外LED的内量子效率随电流密度变化曲线

    Fig. 8.  Internal quantum efficiency versus current density curve of AlGaN based DUV LED with and without optimized EBL structure.

  • [1]

    Ren Z J, Yu H B, Liu Z L, et al. 2020 J. Phys. D Appl. Phys. 53 073002Google Scholar

    [2]

    Wang J X, Yan J X, Guo Y A, et al. 2015 Sci Sin. Phys. Mech. Astron. 45 067303Google Scholar

    [3]

    Khan A, Balakrishnan K, Katona T 2008 Nat. Photonics 2 067303Google Scholar

    [4]

    Kneissl M, Seong T Y, Han J, Amano H 2019 Nat. Photonics. 13 233Google Scholar

    [5]

    Park J S, Kim J K, Cho J, Seong T Y 2017 ECS J. Solid State Sci. Technol. 6 Q42Google Scholar

    [6]

    Xia Z H, Liang S H, Li B Q, Wang F, Zhang D M 2021 Optik 231 166392Google Scholar

    [7]

    Storm N, McKay L G A, Downs S N, et al. 2020 Sci. Rep. 10 22421Google Scholar

    [8]

    Hirayama H, Tsukada Y, Maeda T, Kamata K 2010 Appl. Phys. Express 3 031002Google Scholar

    [9]

    Islam N U, Usman M, Khan S, Jamil T, Rasheed S, Ali S, Saeed S 2021 Optik 248 168212Google Scholar

    [10]

    Usman M, Malik S, Hussain M, Jamal H, Khan MA 2021 Opt. Mater. 112 110745Google Scholar

    [11]

    Mondal R K, Chatterjee V, Pal S 2020 Semicond. Sci. Technol. 35 055031Google Scholar

    [12]

    Wang Y F, Mussaab I Niass, Wang F, Liu Y H 2020 Chin. Phys. B 29 480

    [13]

    Jamil T, Usman M, Jamal H, Khan S, Rasheed S, Ali S 2021 J. Electro. Mater. 50 5612Google Scholar

    [14]

    Rao R V 2016 Int. J. Ind. Eng. Comp. 7 19

    [15]

    Gao K Z, Yang F J, Zhou M C, Pan Q K, Suganthan P N 2019 IEEE Trans. Cybernetics. 49 1944Google Scholar

    [16]

    Gao K Z, Zhang Y C, Sadollah A, Lentzakis A, Su R 2017 Swarm. Evol. Comput. 37 58Google Scholar

    [17]

    Mymrin V F, Bulashevich K A, Podolskaya N I, et al. 2005 Phys. Status Solidi C 2 2928Google Scholar

    [18]

    Kim S J, Kim T G 2014 Phys. Status Solidi A 211 656Google Scholar

    [19]

    Kuo Y K, Chang J Y, Chen F M, Shih Y H, Chang H T 2016 IEEE Quantum Elect. 52 3300105Google Scholar

    [20]

    Xing Z Q, Zhou Y J, Liu Y H, Wang F 2020 Chin. Phys. Lett. 37 027302Google Scholar

    [21]

    Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815Google Scholar

    [22]

    Chuang S L, Chang C S 1996 Phys. Rev. B 54 2491Google Scholar

    [23]

    Dugdale D J, Brand S, Abram R A 2000 Phys. Rev. B 61 12933Google Scholar

  • [1] 刘举, 曹一伟, 吕全江, 杨天鹏, 米亭亭, 王小文, 刘军林. 超晶格电子阻挡层周期数对AlGaN基深紫外发光二极管性能的影响. 物理学报, 2024, 73(12): 128503. doi: 10.7498/aps.73.20231969
    [2] 吴芳, 步扬, 刘志帆, 王少卿, 李思坤, 王向朝. 深紫外双层金属光栅偏振器的设计与分析. 物理学报, 2021, 70(4): 044203. doi: 10.7498/aps.70.20201403
    [3] 吴琴菲, 文锦辉. 基于智能搜寻者优化的频率分辨光学开关重构算法. 物理学报, 2021, 70(9): 090601. doi: 10.7498/aps.70.20201731
    [4] 吕浩昌, 赵云驰, 杨光, 董博闻, 祁杰, 张静言, 朱照照, 孙阳, 于广华, 姜勇, 魏红祥, 王晶, 陆俊, 王志宏, 蔡建旺, 沈保根, 杨峰, 张申金, 王守国. 基于深紫外激光-光发射电子显微技术的高分辨率磁畴成像. 物理学报, 2020, 69(9): 096801. doi: 10.7498/aps.69.20200083
    [5] 李金锋, 万婷, 王腾飞, 周文辉, 莘杰, 陈长水. 太赫兹量子级联激光器中有源区上激发态电子向高能级泄漏的研究. 物理学报, 2019, 68(2): 021101. doi: 10.7498/aps.68.20181882
    [6] 任峰, 阴生毅, 卢志鹏, 李阳, 王宇, 张申金, 杨峰, 卫东. 深紫外激光光发射与热发射电子显微镜在热扩散阴极研究中的应用. 物理学报, 2017, 66(18): 187901. doi: 10.7498/aps.66.187901
    [7] 时强, 李路平, 张勇辉, 张紫辉, 毕文刚. GaN/InxGa1-xN型最后一个量子势垒对发光二极管内量子效率的影响. 物理学报, 2017, 66(15): 158501. doi: 10.7498/aps.66.158501
    [8] 李维勤, 刘丁, 张海波. 高能电子照射绝缘样品的泄漏电流特性. 物理学报, 2014, 63(22): 227303. doi: 10.7498/aps.63.227303
    [9] 黄斌斌, 熊传兵, 张超宇, 黄基锋, 王光绪, 汤英文, 全知觉, 徐龙权, 张萌, 王立, 方文卿, 刘军林, 江风益. 硅基板和铜基板垂直结构GaN基LED变温变电流发光性能的研究. 物理学报, 2014, 63(21): 217806. doi: 10.7498/aps.63.217806
    [10] 王雪松, 冀子武, 王绘凝, 徐明升, 徐现刚, 吕元杰, 冯志红. 关于InGaN/GaN多量子阱结构内量子效率的研究. 物理学报, 2014, 63(12): 127801. doi: 10.7498/aps.63.127801
    [11] 高维尚, 邵诚, 高琴. 群体智能优化中的虚拟碰撞:雨林算法. 物理学报, 2013, 62(19): 190202. doi: 10.7498/aps.62.190202
    [12] 李盼池, 王海英, 宋考平, 杨二龙. 量子势阱粒子群优化算法的改进研究. 物理学报, 2012, 61(6): 060302. doi: 10.7498/aps.61.060302
    [13] 陈峻, 范广涵, 张运炎. 渐变型量子阱垒层厚度对GaN基双波长发光二极管发光特性调控的研究. 物理学报, 2012, 61(17): 178504. doi: 10.7498/aps.61.178504
    [14] 朱丽虹, 蔡加法, 李晓莹, 邓彪, 刘宝林. In组分渐变提高InGaN/GaN多量子阱发光二极管发光性能. 物理学报, 2010, 59(7): 4996-5001. doi: 10.7498/aps.59.4996
    [15] 李凤, 马忠权, 孟夏杰, 殷晏庭, 于征汕, 吕鹏. 晶硅太阳电池中Fe-B对与少子寿命、陷阱浓度及内量子效率的相关性. 物理学报, 2010, 59(6): 4322-4329. doi: 10.7498/aps.59.4322
    [16] 薛春荣, 易葵, 齐红基, 邵建达, 范正修. 氟化物材料在深紫外波段的光学常数. 物理学报, 2009, 58(7): 5035-5040. doi: 10.7498/aps.58.5035
    [17] 李敏, 尼启良, 陈波. 极端紫外波段碱卤化物光阴极材料量子效率计算. 物理学报, 2009, 58(10): 6894-6901. doi: 10.7498/aps.58.6894
    [18] 张俊兵, 林岳明, 柏 林, 曾祥华. AlGaInP LED电极形状的优化. 物理学报, 2008, 57(9): 5881-5886. doi: 10.7498/aps.57.5881
    [19] 李宏建, 彭景翠, 许雪梅, 瞿述, 夏辉. 聚合物发光器件中激子的解离与复合效率. 物理学报, 2001, 50(11): 2247-2251. doi: 10.7498/aps.50.2247
    [20] 胡恺生. 用高斯函数积分计算发光二极管(LED)的光视效能、功率效率和量子效率的方法. 物理学报, 1978, 27(6): 691-699. doi: 10.7498/aps.27.691
计量
  • 文章访问数:  4485
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-20
  • 修回日期:  2022-12-12
  • 上网日期:  2022-12-17
  • 刊出日期:  2023-02-20

/

返回文章
返回