搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

质子辐照CH3NH3PbI3基钙钛矿太阳能电池的损伤效应

薛斌韬 张利民 梁永齐 刘宁 汪定平 陈亮 王铁山

引用本文:
Citation:

质子辐照CH3NH3PbI3基钙钛矿太阳能电池的损伤效应

薛斌韬, 张利民, 梁永齐, 刘宁, 汪定平, 陈亮, 王铁山

Proton irradiation induced damage effects in CH3NH3PbI3-based perovskite solar cells

Xue Bin-Tao, Zhang Li-Min, Liang Yong-Qi, Liu Ning, Wang Ding-Ping, Chen Liang, Wang Tie-Shan
PDF
HTML
导出引用
  • 针对钙钛矿太阳能电池 (PSCs)的空间应用, 研究了动能为0.1—20.0 MeV的质子在CH3NH3PbI3 (简称MAPbI3)薄膜及其太阳能电池中引起的损伤效应. 结果表明, PSCs具有良好质子辐照稳定性, 当0.1 MeV (2.0 MeV)质子的注量超过1×1013 p/cm2 (1×1014 p/cm2)时, 才会引起电池光电性能的降低. PSCs载流子传输层的辐照退化可能是造成电池性能降低的主要原因. MAPbI3中的有机成分MAI会在质子辐照作用下发生分解, 分解产生的气态产物(NH3和CH3I)将最终导致PSCs表面金电极的剥落. 对于具有更大离子射程的10 MeV和20 MeV质子, 入射质子会在PSCs的玻璃基底中产生色心缺陷, 造成玻璃对可见光透射率的降低. 色心缺陷可以在室温或100 ℃条件下发生热退火, 降低玻璃的透射损失.
    Perovskite solar cells (PSCs) have a great potential for space applications due to their high specific power, low cost and high defect tolerance. PSCs used in space will be subjected to high-energy particle irradiation, especially proton irradiation, resulting in the decline of photovoltaic (PV) performance. However, the research on proton irradiation effects in PSCs is still in its infancy stage. In this work, the CH3NH3PbI3 (MAPbI3) thin films and their PSCs are irradiated by protons with energy of 0.1, 2, 10, 20 MeV, etc. Irradiation-induced changes in PV parameters of the PSCs are studied as a function of proton fluence. The structural and surface morphological changes of the irradiated MAPbI3 films and Au electrode layers of PSCs are characterized by X-ray diffraction and scanning electron microscopy. In addition, UV spectrophotometer is also employed to analyze the transmission loss in glass substrate induced by proton irradiation. It is found that PSCs exhibit superior resistance against proton irradiation. The PV properties of the PSCs don’t degrade after 0.1 MeV (2 MeV) proton irradiation up to a fluence of 1×1013 p/cm2 (1×1014 p/cm2). The irradiation-induced damage in the charge transport layers may be the main cause for the performance degradation of PSCs. The gaseous products (NH3 and CH3I) of perovskite decomposition eventually lead to exfoliation of the top Au electrode from the PSCs. Regarding 10 and 20 MeV proton irradiation with larger projected ion ranges, the irradiations create color center defects in glass substrate of PSCs, which results in a decrease in light transmission of visible spectrum. However, the color center defects, specifically non-bridging oxygen hole centers, will be partly annealed at room temperature or 100 ℃, reducing the transmission loss in glass. The reported results may help predict the performance degradation of PSCs in space irradiation environment.
      通信作者: 张利民, zhanglm@lzu.edu.cn
    • 基金项目: 抗辐照应用技术创新中心创新基金项目(批准号: KZFC2020020201)和国家自然科学基金(批准号: U20B2008)资助的课题.
      Corresponding author: Zhang Li-Min, zhanglm@lzu.edu.cn
    • Funds: Project supported by the Fund of National Innovation Center of Radiation Application (Grant No. KZFC2020020201) and the National Natural Science Foundation of China (Grant No. U20B2008).
    [1]

    Kojima A, Techima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, Seok S I 2015 Nature 517 476Google Scholar

    [3]

    Saliba M, Matsui T, Seo J Y, Domanski K, Correa-Baena J P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, Hagfeldt Anders, Grätzel M 2016 Energy Environ. 9 1989Google Scholar

    [4]

    Min H, Lee D Y, Kim J, Kim G, Lee K S, Kim J, Paik M J, Kim Y K, Kim K S, Kim M G, Shin T J, Seok S I 2021 Nature 598 444Google Scholar

    [5]

    Kang S, Jeong J, Cho S, Yoon Y J, Park S, Lim S, Kim J Y, Ko H 2019 J. Mater. Chem. A 7 1107Google Scholar

    [6]

    AZUR SPACE. http://www.azurspace.com/index.php/en/ [2022-09-14]

    [7]

    Kheraj V, Simond B J, Toshniwal A, Misra S, Peroncik P, Zhang C, Vardeny Z V, Scarpulla M A 2018 J. Lumin. 194 353Google Scholar

    [8]

    Tu Y, Wu J, Xu G, Yang X, Cai R, Gong Q, Zhu R, Huang W 2021 Adv. Mater. 33 2006545Google Scholar

    [9]

    Yang J, Bao Q, Shen L, Ding L 2020 Nano Energy 76 105019Google Scholar

    [10]

    Miyazawa Y, Ikegami M, Chen H W, Ohshima T, Imaizumi M, Hirose K, Miyasaka T 2018 iScience 2 148Google Scholar

    [11]

    Xiong G, Qin Z, Li B, Wang L, Zhang X, Zheng Z, Zhu H, Zhao S, Gao J, Li B, Yang J, Li X, Luo J, Han Z, Liu X, Zhao F 2021 J. Mater. Chem. C 9 2095Google Scholar

    [12]

    Durant B K, Afshari H, Singh S, Rout B, Eperon G E, Sellers I R 2021 ACS Energy Lett. 6 2362Google Scholar

    [13]

    Barbé J, Hughes D, Wei Z, Pockett A, Lee H K H, Heasman K C, Carnie M J, Watson T M, Tsoi W C 2019 Sol. Rrl. 3 1900219Google Scholar

    [14]

    Brus V V, Lang F, Bundesmann J, Seidel S, Denker A, Rech B, Landi G, Neitzert H C, Rappich J, Nickel N H 2017 Adv. Electron. Mater. 3 1600438Google Scholar

    [15]

    Boldyreva A G, Frolova L A, Zhidkov I S, Gutsev L G, Kurmaev E Z, Ramachandran B R, Petrov V G, Stevenson K J, Aldoshin S M, Troshin P A 2020 J. Phys. Chem. Lett. 11 2630Google Scholar

    [16]

    Boldyreva A G, Akbulatov A F, Tsarev S A, Luchkin S Y, Zhidkov I S, Kurmaev E Z, Stevenson K J, Petrov V G, Troshin P A 2019 J. Phys. Chem. Lett. 10 813Google Scholar

    [17]

    Tu Y, Xu G, Yang X, Zhang Y, Li Z, Su R, Luo D, Yang W, Miao Y, Cai R, Jiang L, Du X, Yang Y, Liu Q, Yang G, Zhao S, Huang W, Gong Q, Zhu R 2019 Sci. China-Phys. Mech. Astron. 62 7Google Scholar

    [18]

    Kirmani A R, Durant B K, Grandidier J, Haegel N M, Kelzenberg M D, Lao Y M, McGehee M D, McMillon-Brown L, Ostrowski D P, Peshek T J, Rout B, Sellers I R, Steger M, Walker D, Wilt D M, VanSant K T, Luther J M 2022 Joule 6 1015Google Scholar

    [19]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instrum. Methods. Phys. Res. B 268 1818Google Scholar

    [20]

    Xue B, Zhang L, Li Z, Jiang W, Liang Y, Liu N, Pan C, Chen L, Wang T 2022 Nucl. Instrum. Methods. Phys. Res. B 526 29Google Scholar

    [21]

    Serge T G, Bernard Z, Bruno K, Boubacar S, Mahamadi S, Martial Z, Issa Z 2019 Int. J. Photoenergy 2019 8306492Google Scholar

    [22]

    Ohshima T, Sato S, Imaizumi M, Nakamura T, Sugaya T, Matsubara K, Niki S 2013 Sol. Energy Mater Sol. Cells 108 263Google Scholar

    [23]

    Jacobsson T J, Correa-Baena J P, Anaraki E H, Philippe B, Stranks S D, Bouduban M E F, Tress W, Schenk K, Teuscher J, Moser J E, Rensmo H, Hagfeldt A 2016 J. Am. Chem. Soc. 138 10331Google Scholar

    [24]

    Yang J, Hong Q, Yuan Z, Xu R, Guo X, Xiong S, Liu X, Braun S, Li Y, Tang J, Duan C, Fahlman M, Bao Q 2018 Adv. Optical Mater. 12 1800262Google Scholar

    [25]

    Chaudhary B, Kulkarni A, Jena A K, Ikegami M, Miyasaka T 2020 Energy Technol. 8 1900990Google Scholar

    [26]

    Jena A K, Ikegami M, Miyasaka T 2017 ACS Energy Lett. 2 1760Google Scholar

    [27]

    Kim S, Bae S, Lee S, Cho K, Lee K D, Kim H, Park S, Kwon G, Ahn S W, Lee H M, Kang Y, Lee H S, Kim D 2017 Sci. Rep. 7 1200Google Scholar

    [28]

    Mejri A, Farah K, Eleuch H, Ouada H B 2008 Radiat. Meas. 43 1372Google Scholar

    [29]

    Sheng J W, Kadono K, Yazawa T 2002 Appl. Radiat. Isot. 57 813Google Scholar

    [30]

    Acha C, Sanca G A, Barella M, Alurralde M, Marlasca F G, Huhtinen H, Paturi P, Golmar F, Levy P 2021 Radiat. Phys. Chem. 183 109404Google Scholar

  • 图 1  PSCs样品的结构示意图(a), 截面SEM图像(b)和实物图(c)

    Fig. 1.  Sketch (a), cross-section SEM image (b) and photograph (c) of PSCs sample.

    图 2  SRIM预测的注量为1×1014 p/cm2的0.1 MeV质子(黑色与红色实线)和注量为2.2×1015 p/cm2的2 MeV质子(黑色与红色虚线)在PSCs样品中产生的注入H原子浓度(a)和离位损伤与电子能量沉积分布(b)

    Fig. 2.  SRIM-predicted depth profiles of implanted H atomic concentrations (a) and atomic displacement damage and electronic energy deposition (b) in PSCs irradiated with 0.1 MeV protons to 1×1014 p/cm2 (black and red solid line) and 2 MeV protons to 2.2×1015 p/cm2 (black and red dotted line).

    图 3  质子辐照PSCs的PV参数随质子注量的变化 (a) 0.1 MeV; (b) 2 MeV

    Fig. 3.  PV parameters versus proton fluence for PSCs irradiated with protons: (a) 0.1 MeV; (b) 2 MeV.

    图 4  质子辐照前后钙钛矿薄膜的XRD谱 (a) 0.1 MeV; (b) 2 MeV

    Fig. 4.  XRD patterns of perovskite thin films before and after proton irradiations: (a) 0.1 MeV; (b) 2 MeV.

    图 5  2 MeV质子辐照前(a)和辐照后(b)钙钛矿薄膜的SEM图像(质子注量为2.2×1015 p/cm2)

    Fig. 5.  SEM images of perovskite thin films before (a) and after (b) 2 MeV proton irradiation (Proton fluence is 2.2 × 1015 p/cm2).

    图 6  质子辐照前后PSCs Au电极表面的SEM图像 (a) 辐照前; (b) 0.1 MeV质子辐照后; (c), (d) 2 MeV质子辐照后. (e) SnO2/FTO/玻璃基底的透射谱

    Fig. 6.  SEM images of the Au electrode surface of PSCs before and after proton irradiations: (a) Before irradiations; (b) after irradiations with 0.1 MeV proton; (c), (d) after irradiations with 2 MeV proton. (e) Transmittance spectra of SnO2/FTO/glass substrates.

    图 7  SRIM预测的2, 10和20 MeV质子在PSCs玻璃基底中产生的电子能量沉积分布(10和20 MeV质子的注量为1×1012 p/cm2, 2 MeV质子的注量为2.2×1015 p/cm2)

    Fig. 7.  SRIM-predicted depth profiles of electronic energy deposition in the glass substrates of PSCs irradiated with 2, 10 and 20 MeV protons (10 and 20 MeV proton fluences are 1×1012 p/cm2, and 2 MeV proton fluence is 2.2×1015 p/cm2)

    图 8  质子辐照PSCs的PV参数随质子注量的变化 (a) 10 MeV; (b) 20 MeV

    Fig. 8.  PV parameters versus proton fluence for PSCs irradiated with protons: (a) 10 MeV; (b) 20 MeV.

    图 9  质子辐照前后钙钛矿薄膜的XRD谱 (a) 10 MeV; (b) 20 MeV

    Fig. 9.  XRD patterns of perovskite thin films before and after proton irradiations: (a) 10 MeV; (b) 20 MeV.

    图 10  质子(注量均为1×1012 p/cm2)辐照前后PSCs Au电极表面的SEM图像 (a) 辐照前; (b), (c) 分别为10和20 MeV质子辐照后. (d), (e) SnO2/FTO/玻璃基底透射谱

    Fig. 10.  SEM images of Au electrode surface of PSCs before and after irradiations with 10 and 20 MeV proton (Proton fluences are 1×1012 p/cm2): (a) Before irradiations; (b), (c) after irradiations with 10 and 20 MeV proton, respectively; (d), (e) Transmittance spectra of SnO2/FTO/glass substrates.

    表 1  用于质子辐照实验的原生PSCs样品的PV参数

    Table 1.  PV parameters of as-prepared PSCs sample used for proton irradiation experiments.

    质子能量/MeVVOC/VJSC/(mA·cm–2)FFPCE/%
    0.11.02 ± 0.0418.40 ± 0.720.68 ± 0.0312.75 ± 0.63
    2.01.04 ± 0.0418.88 ± 0.580.71 ± 0.0314.08 ± 1.18
    10.01.08 ± 0.0218.10 ± 0.410.75 ± 0.0214.66 ± 0.82
    20.01.08 ± 0.0218.37 ± 0.390.74 ± 0.0214.58 ± 0.68
    下载: 导出CSV

    表 2  不同能量质子辐照实验的注量率和注量范围

    Table 2.  Flux and fluence for proton irradiations with different proton energies.

    质子能量
    /MeV
    注量率
    /(108 p·cm–2·s–1)
    注量范围
    /(p·cm–2)
    0.150001×1012—1×1014
    2.01041×1012—2.2×1015
    10.0 和 20.013×109—1×1012
    下载: 导出CSV
  • [1]

    Kojima A, Techima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, Seok S I 2015 Nature 517 476Google Scholar

    [3]

    Saliba M, Matsui T, Seo J Y, Domanski K, Correa-Baena J P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, Hagfeldt Anders, Grätzel M 2016 Energy Environ. 9 1989Google Scholar

    [4]

    Min H, Lee D Y, Kim J, Kim G, Lee K S, Kim J, Paik M J, Kim Y K, Kim K S, Kim M G, Shin T J, Seok S I 2021 Nature 598 444Google Scholar

    [5]

    Kang S, Jeong J, Cho S, Yoon Y J, Park S, Lim S, Kim J Y, Ko H 2019 J. Mater. Chem. A 7 1107Google Scholar

    [6]

    AZUR SPACE. http://www.azurspace.com/index.php/en/ [2022-09-14]

    [7]

    Kheraj V, Simond B J, Toshniwal A, Misra S, Peroncik P, Zhang C, Vardeny Z V, Scarpulla M A 2018 J. Lumin. 194 353Google Scholar

    [8]

    Tu Y, Wu J, Xu G, Yang X, Cai R, Gong Q, Zhu R, Huang W 2021 Adv. Mater. 33 2006545Google Scholar

    [9]

    Yang J, Bao Q, Shen L, Ding L 2020 Nano Energy 76 105019Google Scholar

    [10]

    Miyazawa Y, Ikegami M, Chen H W, Ohshima T, Imaizumi M, Hirose K, Miyasaka T 2018 iScience 2 148Google Scholar

    [11]

    Xiong G, Qin Z, Li B, Wang L, Zhang X, Zheng Z, Zhu H, Zhao S, Gao J, Li B, Yang J, Li X, Luo J, Han Z, Liu X, Zhao F 2021 J. Mater. Chem. C 9 2095Google Scholar

    [12]

    Durant B K, Afshari H, Singh S, Rout B, Eperon G E, Sellers I R 2021 ACS Energy Lett. 6 2362Google Scholar

    [13]

    Barbé J, Hughes D, Wei Z, Pockett A, Lee H K H, Heasman K C, Carnie M J, Watson T M, Tsoi W C 2019 Sol. Rrl. 3 1900219Google Scholar

    [14]

    Brus V V, Lang F, Bundesmann J, Seidel S, Denker A, Rech B, Landi G, Neitzert H C, Rappich J, Nickel N H 2017 Adv. Electron. Mater. 3 1600438Google Scholar

    [15]

    Boldyreva A G, Frolova L A, Zhidkov I S, Gutsev L G, Kurmaev E Z, Ramachandran B R, Petrov V G, Stevenson K J, Aldoshin S M, Troshin P A 2020 J. Phys. Chem. Lett. 11 2630Google Scholar

    [16]

    Boldyreva A G, Akbulatov A F, Tsarev S A, Luchkin S Y, Zhidkov I S, Kurmaev E Z, Stevenson K J, Petrov V G, Troshin P A 2019 J. Phys. Chem. Lett. 10 813Google Scholar

    [17]

    Tu Y, Xu G, Yang X, Zhang Y, Li Z, Su R, Luo D, Yang W, Miao Y, Cai R, Jiang L, Du X, Yang Y, Liu Q, Yang G, Zhao S, Huang W, Gong Q, Zhu R 2019 Sci. China-Phys. Mech. Astron. 62 7Google Scholar

    [18]

    Kirmani A R, Durant B K, Grandidier J, Haegel N M, Kelzenberg M D, Lao Y M, McGehee M D, McMillon-Brown L, Ostrowski D P, Peshek T J, Rout B, Sellers I R, Steger M, Walker D, Wilt D M, VanSant K T, Luther J M 2022 Joule 6 1015Google Scholar

    [19]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instrum. Methods. Phys. Res. B 268 1818Google Scholar

    [20]

    Xue B, Zhang L, Li Z, Jiang W, Liang Y, Liu N, Pan C, Chen L, Wang T 2022 Nucl. Instrum. Methods. Phys. Res. B 526 29Google Scholar

    [21]

    Serge T G, Bernard Z, Bruno K, Boubacar S, Mahamadi S, Martial Z, Issa Z 2019 Int. J. Photoenergy 2019 8306492Google Scholar

    [22]

    Ohshima T, Sato S, Imaizumi M, Nakamura T, Sugaya T, Matsubara K, Niki S 2013 Sol. Energy Mater Sol. Cells 108 263Google Scholar

    [23]

    Jacobsson T J, Correa-Baena J P, Anaraki E H, Philippe B, Stranks S D, Bouduban M E F, Tress W, Schenk K, Teuscher J, Moser J E, Rensmo H, Hagfeldt A 2016 J. Am. Chem. Soc. 138 10331Google Scholar

    [24]

    Yang J, Hong Q, Yuan Z, Xu R, Guo X, Xiong S, Liu X, Braun S, Li Y, Tang J, Duan C, Fahlman M, Bao Q 2018 Adv. Optical Mater. 12 1800262Google Scholar

    [25]

    Chaudhary B, Kulkarni A, Jena A K, Ikegami M, Miyasaka T 2020 Energy Technol. 8 1900990Google Scholar

    [26]

    Jena A K, Ikegami M, Miyasaka T 2017 ACS Energy Lett. 2 1760Google Scholar

    [27]

    Kim S, Bae S, Lee S, Cho K, Lee K D, Kim H, Park S, Kwon G, Ahn S W, Lee H M, Kang Y, Lee H S, Kim D 2017 Sci. Rep. 7 1200Google Scholar

    [28]

    Mejri A, Farah K, Eleuch H, Ouada H B 2008 Radiat. Meas. 43 1372Google Scholar

    [29]

    Sheng J W, Kadono K, Yazawa T 2002 Appl. Radiat. Isot. 57 813Google Scholar

    [30]

    Acha C, Sanca G A, Barella M, Alurralde M, Marlasca F G, Huhtinen H, Paturi P, Golmar F, Levy P 2021 Radiat. Phys. Chem. 183 109404Google Scholar

  • [1] 曹涧秋, 周尚德, 刘鹏飞, 黄值河, 王泽锋, 司磊, 陈金宝. 辐照效应对于掺镱光纤放大器模式不稳定阈值影响的理论研究. 物理学报, 2024, 73(20): 204202. doi: 10.7498/aps.73.20240816
    [2] 罗攀, 李响, 孙学银, 谭骁洪, 罗俊, 甄良. 新型空间太阳能电池用的钙钛矿薄膜与器件的电子辐照效应. 物理学报, 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [3] 李培, 徐洁, 贺朝会, 刘佳欣. 钙钛矿太阳能电池辐照实验研究. 物理学报, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [4] 傅婧, 蔡毓龙, 李豫东, 冯婕, 文林, 周东, 郭旗. 质子辐照下正照式和背照式图像传感器的单粒子瞬态效应. 物理学报, 2022, 71(5): 054206. doi: 10.7498/aps.71.20211838
    [5] 刘晔, 郭红霞, 琚安安, 张凤祁, 潘霄宇, 张鸿, 顾朝桥, 柳奕天, 冯亚辉. 质子辐照作用下浮栅单元的数据翻转及错误退火. 物理学报, 2022, 71(11): 118501. doi: 10.7498/aps.71.20212405
    [6] 李哲夫, 贾彦彦, 刘仁多, 徐玉海, 王光宏, 夏晓彬, 沈卫祖. 质子辐照对永磁合金微观结构演化的研究. 物理学报, 2018, 67(1): 016104. doi: 10.7498/aps.67.20172025
    [7] 李哲夫, 贾彦彦, 刘仁多, 徐玉海, 王光宏, 夏晓彬. Sm2Co17型永磁合金的辐照效应研究. 物理学报, 2017, 66(22): 226101. doi: 10.7498/aps.66.226101
    [8] 张宁, 张鑫, 杨爱香, 把得东, 冯展祖, 陈益峰, 邵剑雄, 陈熙萌. 质子束辐照单层石墨烯的损伤效应. 物理学报, 2017, 66(2): 026103. doi: 10.7498/aps.66.026103
    [9] 曾骏哲, 李豫东, 文林, 何承发, 郭旗, 汪波, 玛丽娅, 魏莹, 王海娇, 武大猷, 王帆, 周航. 质子与中子辐照对电荷耦合器件暗信号参数的影响及其效应分析. 物理学报, 2015, 64(19): 194208. doi: 10.7498/aps.64.194208
    [10] 文林, 李豫东, 郭旗, 任迪远, 汪波, 玛丽娅. 质子辐照导致科学级电荷耦合器件电离效应和位移效应分析. 物理学报, 2015, 64(2): 024220. doi: 10.7498/aps.64.024220
    [11] 曾骏哲, 何承发, 李豫东, 郭旗, 文林, 汪波, 玛丽娅, 王海娇. 电荷耦合器件在质子辐照下的粒子输运仿真与效应分析. 物理学报, 2015, 64(11): 114214. doi: 10.7498/aps.64.114214
    [12] 杨剑群, 李兴冀, 马国亮, 刘超铭, 邹梦楠. 170keV质子辐照对多壁碳纳米管薄膜微观结构与导电性能的影响. 物理学报, 2015, 64(13): 136401. doi: 10.7498/aps.64.136401
    [13] 吕玲, 张进成, 李亮, 马晓华, 曹艳荣, 郝跃. 3 MeV质子辐照对AlGaN/GaN高电子迁移率晶体管的影响. 物理学报, 2012, 61(5): 057202. doi: 10.7498/aps.61.057202
    [14] 金豫浙, 胡益培, 曾祥华, 杨义军. GaN基多量子阱蓝光LED的γ辐照效应. 物理学报, 2010, 59(2): 1258-1262. doi: 10.7498/aps.59.1258
    [15] 张林, 韩超, 马永吉, 张义门, 张玉明. Ni/4H-SiC肖特基势垒二极管的γ射线辐照效应. 物理学报, 2009, 58(4): 2737-2741. doi: 10.7498/aps.58.2737
    [16] 赵慧杰, 何世禹, 孙彦铮, 孙强, 肖志斌, 吕伟, 黄才勇, 肖景东, 吴宜勇. 100 keV质子辐照对空间GaAs/Ge太阳电池光电效应的影响. 物理学报, 2009, 58(1): 404-410. doi: 10.7498/aps.58.404
    [17] 乔 辉, 廖 毅, 胡伟达, 邓 屹, 袁永刚, 张勤耀, 李向阳, 龚海梅. 碲镉汞焦平面光伏器件的实时γ辐照效应研究. 物理学报, 2008, 57(11): 7088-7093. doi: 10.7498/aps.57.7088
    [18] 范鲜红, 陈 波, 关庆丰. 质子辐照对纯铝薄膜微观结构的影响. 物理学报, 2008, 57(3): 1829-1833. doi: 10.7498/aps.57.1829
    [19] 魏 强, 刘 海, 何世禹, 郝小鹏, 魏 龙. 质子辐照铝膜反射镜的慢正电子湮没研究. 物理学报, 2006, 55(10): 5525-5530. doi: 10.7498/aps.55.5525
    [20] 张廷庆, 刘传洋, 刘家璐, 王剑屏, 黄智, 徐娜军, 何宝平, 彭宏论, 姚育娟. 低温低剂量率下金属-氧化物-半导体器件的辐照效应. 物理学报, 2001, 50(12): 2434-2438. doi: 10.7498/aps.50.2434
计量
  • 文章访问数:  3521
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-02
  • 修回日期:  2023-05-11
  • 上网日期:  2023-05-12
  • 刊出日期:  2023-07-05

/

返回文章
返回