搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第一性原理研究单层Ge2X4S2 (X = P, As)的热电性能

余跃 杨恒玉 周五星 欧阳滔 谢国锋

引用本文:
Citation:

第一性原理研究单层Ge2X4S2 (X = P, As)的热电性能

余跃, 杨恒玉, 周五星, 欧阳滔, 谢国锋

First-principles study of thermoelectric performance of monolayer Ge2X4S2 (X = P, As)

Yu Yue, Yang Heng-Yu, Zhou Wu-Xing, Ouyang Tao, Xie Guo-Feng
PDF
HTML
导出引用
  • 单层Ge2X4S2(X = P, As)是最近预测的一种二维层状材料, 它们不仅拥有高的光吸收系数, 同时还有较高的载流子迁移率, 这意味着它们在光电和热电领域可能有较好的应用前景. 本文通过第一性原理和玻尔兹曼输运理论系统地研究了这两种材料的热电性质. 结果表明, 单层Ge2P4S2和Ge2As4S2在室温下展现较低的晶格热导率, 沿armchair方向分别为3.93 W·m–1·K–1和3.19 W·m–1·K–1, zigzag方向分别为4.38 W·m–1·K–1和3.79 W·m–1·K–1, 这主要是由低的声子群速度、大的格林艾森参数以及小的声子弛豫时间造成的. 基于HSE06泛函计算出的能带结构表明单层Ge2As4S2是带隙值为1.21 eV的直接带隙半导体, 而单层Ge2P4S2是带隙值为1.13 eV的间接带隙半导体. 价带上明显的双重简并现象使得单层Ge2P4S2和Ge2As4S2具有较大的塞贝克系数, 其中300 K时沿armchair方向分别达到了1800 μV·K–1和2070 μV·K–1. 对于具有较小晶格热导率和较高功率因子的单层Ge2X4S2而言, 它们的热电性能是非常值得期待的. 本文计算表明, 当处于最佳的n型掺杂时, 单层Ge2P4S2和Ge2As4S2在500 K时都具有较高的热电优值, 在两个方向的最大值分别为3.06 (armchair方向)和3.51 (zigzag方向), 以及3.21 (armchair方向)和2.54 (zigzag方向), 这意味着它们在中温热电应用领域存在较大的应用价值.
    Monolayer Ge2X4S2 (X = P, As) are novel two-dimensional (2D) layered materials with suitable optical absorption properties in the visible range and high carrier mobility, so they possess broad application prospects in the photoelectric and thermoelectric fields. In this work, their thermoelectric properties are systematicly evaluated by using the first-principles and Boltzmann transport theory. For monolayer Ge2As4S2 and Ge2P4S2, their smaller phonon group velocities, low relaxation times and the large Grüneisen parameters result in ultra-low lattice thermal conductivities, which are 3.93 W·m–1·K–1 and 3.19 W·m–1·K–1 in the armchair direction, 4.38 W·m–1·K–1 and 3.79 W·m–1·K–1 in the zigzag directions at 300 K. Their electronic band structures reveal that the monolayer Ge2As4S2 is a semiconductor with a direct band gap of 1.21 eV, while the single-layer Ge2P4S2 owns an indirect band gap of 1.13 eV. Meanwhile, the twofold degeneracy of valence band provides a large p-type Seebeck coefficient that is 1800 μV·K–1 for Ge2P4S2 and 2070 μV·K–1 for Ge2As4S2 in the armchair direction. Obviously, monolayer Ge2X4S2 has smaller lattice thermal conductivity and higher power factor, thus it is worth exploring their thermoelectric properties. The results prove that monolayer Ge2As4S2 and Ge2P4S2 have outstanding thermoelectric performances at 500 K when they are treated by optimal n-type doping. The maximum ZT values of monolayer Ge2As4S2 and Ge2P4S2 are 3.06 (armchair direction) and 3.51 (zigzag direction), as well as 3.21 (armchair direction) and 2.54 (zigzag direction), indicating that monolayer Ge2X4S2 can be a potential candidate in the medium-temperature thermoelectric applications.
      通信作者: 谢国锋, xieguofeng@hnust.cn
    • 基金项目: 国家自然科学基金(批准号: 11874145)资助的课题.
      Corresponding author: Xie Guo-Feng, xieguofeng@hnust.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11874145).
    [1]

    Yang J, Xi L L, Qiu W J, Wu L H, Shi X, Chen L D, Yang J H, Zhang W Q, Uher C, Singh D J 2016 npj Comput. Mater. 2 1Google Scholar

    [2]

    Ding Z D, An M, Mo S Q, Yu X X, Jin Z L, Liao Y X, Esfarjani K, Lü J T, Shiomi J, Yang N 2019 J. Mater. Chem. A 7 2114Google Scholar

    [3]

    Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 16631Google Scholar

    [4]

    Hicks L D, Harman T C, Dresselhaus M S 1993 Appl. Phys. Lett. 63 3230Google Scholar

    [5]

    Zhao L-D, Chang C, Tan G J, Kanatzidis M G 2016 Energy Environ. Sci. 9 044

    [6]

    Liu Y C, Wang W X, Yang J, Li S 2018 Adv. Sustainable Syst. 2 1800046Google Scholar

    [7]

    Tan Q, Zhao L D, Li J F, Wu C F, Wei T R, Xing Z B, Kanatzidis MG 2014 J. Mater. Chem. A 2 17302Google Scholar

    [8]

    Yan X, Poudel B, Ma Y, Liu W S, Joshi G, Wang H, Lan Y C, Wang D Z, Chen G, Ren Z F 2010 Nano Lett. 10 3373Google Scholar

    [9]

    Zhao L D, Dravid V P, Kanatzidis M G 2014 Energy Environ. Sci. 7 251Google Scholar

    [10]

    Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013 Nat. Chem. 5 263Google Scholar

    [11]

    Xie W J, He J, Kang H J, Tang X F, Zhu S, Laver M, Wang S Y, Copley J R D, Brown C M, Zhang Q J, Tritt T M 2010 Nano Lett. 10 3283Google Scholar

    [12]

    Dresselhaus M S, Dresselhaus G, Sun X, Zhang Z 1999 Phys. Solid State 41 679Google Scholar

    [13]

    Rashid Z, Nissimagoudar A S, Li W 2019 Phys. Chem. Chem. Phys. 21 5679Google Scholar

    [14]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [15]

    Guo S D, Li H C 2017 Comput. Mater. Sci. 139 361Google Scholar

    [16]

    Zare M, Rameshti B Z, Ghamsari F G, Asgari R 2017 Phys. Rev. B 95 045422Google Scholar

    [17]

    Zhang R Q, Zhou Z Z, QI N, Zhao B, Zhang Q K, Zhang Z Y, Chen Z Q 2019 J. Mater. Chem. C 7 14986Google Scholar

    [18]

    Ruleova P, Drasar C, Lostak P, Li C-P, Ballikaya S, Uher C 2010 Mater. Chem. Phys. 119 299Google Scholar

    [19]

    Yu J B, Sun Q 2018 Appl. Phys. Lett. 112 053901Google Scholar

    [20]

    Huang S, Wang Z Y, Xiong R, Yu H Y, Shi J 2019 Nano Energy 62 212Google Scholar

    [21]

    Zhu Y L, Yuan J H, Song Y Q, Xue K H, Wang S, Lian C, Li Z N, Xu M, Cheng X M, Miao X S 2019 Int. J. Hydrogen Energy 44 21536Google Scholar

    [22]

    Jing Y, MA Y D, LI Y F, Heine T 2017 Nano Lett. 17 1833Google Scholar

    [23]

    Zeng B W, Long M Q, Zhang X J, Dong Y L, Li M J, Yi Y G, Duan H M 2018 J. Phys. D:Appl. Phys. 51 235302Google Scholar

    [24]

    Zhu X L, Liu P F, Zhang J R, Zhang P, Zhou W X, Xie G F 2019 Nanoscale 11 19923Google Scholar

    [25]

    Ouyang T, Jiang E L, Tang C, Li J, He C Y, Zhong J X 2018 J. Mater. Chem. A 6 21532Google Scholar

    [26]

    Sun Z H, Yuan K P, Chang Z, Bi S P, Zhang X L, Tang D W 2020 Nanoscale 12 3330Google Scholar

    [27]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [28]

    Lee K, Murray É D, Kong L Z, Lundqvist B I, Langreth D C 2010 Phys. Rev. B 82 081101Google Scholar

    [29]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [30]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [31]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106Google Scholar

    [32]

    Li W, Lindsay L, Broido D A, Stewart D A, Mingo N 2012 Phys. Rev. B 86 174307Google Scholar

    [33]

    Li W, Carrete J, Katcho N A, Mingo N 2014 Comput. Phys. Commun. 185 1747Google Scholar

    [34]

    Madsen G K H, Singh D J 2006 Comput. Phys. Commun. 175 67Google Scholar

    [35]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [36]

    Bardeen J, Shockley W 1950 Phys. Rev. 80 72Google Scholar

    [37]

    Chaput L, Pécheur P, Scherrer H 2007 Phys. Rev. B 75 045116Google Scholar

    [38]

    Price P J 1981 Ann. Phys. 133 217Google Scholar

    [39]

    Xi J Y, Long M Q, Tang L, Wanf D, Shuai Z G 2012 Nanoscale 4 4348Google Scholar

    [40]

    Becke A D, Edgecombe K E 1990 J. Chem. Phys. 92 5397Google Scholar

    [41]

    Nalewajski R F, Köster A M, Escalante S 2005 J. Phys. Chem. A 109 10038Google Scholar

    [42]

    Savin A, Nesper R, Wengert S, Wengert S 1997 Angew. Chem. Int. Ed. 36 1808Google Scholar

    [43]

    Batsanov S S 2001 Inorg. Mater. 37 871Google Scholar

    [44]

    Gao Z B, Tao F, Ren J 2018 Nanoscale 10 12997Google Scholar

    [45]

    Gao Z B, Zhang Z F, Liu G, Wang J S 2019 Phys. Chem. Chem. Phys. 21 26033Google Scholar

    [46]

    Wee D, Kozinsky B, Marzari N, Fornari M 2010 Phys. Rev. B 81 045204Google Scholar

    [47]

    Zhou Z Z, Liu H J, Fan D D, Cao G H, Sheng Y 2019 Phys. Rev. B 99 085410Google Scholar

    [48]

    Li W, Carrete J, Mingo N 2013 Appl. Phys. Lett. 103 253103Google Scholar

    [49]

    Peng B, Zhang H, Shao H Z, Lu H L, Zhang D W, Zhu H Y 2016 Nano Energy 30 225Google Scholar

    [50]

    McGaughey A J H, Landry E S, Sellan D P, Amon C H 2011 Appl. Phys. Lett. 99 131904Google Scholar

    [51]

    Xie G F, Guo Y, Wei X L, Zhang K W, Sun L Z, Zhong J X, Zhang G, Zhang Y W 2014 Appl. Phys. Lett. 104 233901Google Scholar

    [52]

    Xie G F, Ju Z F, Zhou K K, Wei X L, Guo Z X, Cai Y Q, Zhang G 2018 npj Comput. Mater. 4 1Google Scholar

    [53]

    Wei X L, Wang Y C, Shen Y L, Xie G F, Xiao H P, Zhong J X, Zhang G 2014 Appl. Phys. Lett. 105 103902Google Scholar

    [54]

    Zhu L Y, Zhang G, Li B W 2014 Phys. Rev. B 90 214302Google Scholar

    [55]

    Li W, Mingo N 2015 Phys. Rev. B 91 144304Google Scholar

    [56]

    Pandey T, Polanco C A, Lindsay L, Parker D S 2017 Phys. Rev. B 95 224306Google Scholar

    [57]

    Pei Y Z, Wang H, Snyder G J 2012 Adv. Mater. 24 6125Google Scholar

    [58]

    Zhu X L, Yang H Y, Zhou W X, Wang T B, Xu N, Xie G F 2020 ACS Appl. Mater. Interfaces 12 36102Google Scholar

    [59]

    Cai Y Q, Zhang G, Zhang Y W 2014 J. Am. Chem. Soc. 136 6269Google Scholar

    [60]

    Zhang L C, Qin G Z, Fang W Z, Cui H J, Zheng Q R, Yan Q B, Su G 2016 Sci. Rep. 6 19830

    [61]

    Yi W C, Chen X, Wang Z X, Ding Y C, Yang B C, Liu X B 2019 J. Mater. Chem. C 7 7352Google Scholar

    [62]

    Heremans J P 2005 Acta Phys. Pol. A 108 609Google Scholar

    [63]

    Jonson M, Mahan G D 1980 Phys. Rev. B 21 4223Google Scholar

  • 图 1  (a) 单层Ge2X4S2的几何结构; (b) 对应的布里渊区; (c) 局域电荷密度. 其中紫色、红色以及蓝色球分别是Ge原子、P(As)原子和S原子

    Fig. 1.  (a) The structure of monolayer Ge2X4S2; (b) schematic diagram of the Brillouin zone; (c) electron localization function, where the purple, red and blue balls are Ge atoms, P (As) atoms and S atoms, respectively.

    图 2  单层Ge2P4S2 (a)和 Ge2As4S2 (b)的声子色散和对应的声子态密度, 以及它们对应的振动模式(c)

    Fig. 2.  Phonon Spectrum and density of state for monolayer Ge2P4S2 (a) and Ge2As4S2 (b), the corresponding vibration modes of acoustic phonon branches (ZA, TA, and LA) and the lowest optical breach (Opt1) near and at Г point.

    图 3  单层Ge2X4S2的晶格热导率与温度的关系(a), 累积晶格热导率与频率的关系(b), 各分支对累积晶格热导率的贡献(c), 累积晶格热导率与声子平均自由程的关系(d)

    Fig. 3.  (a) Lattice thermal conductively with respect to temperature, (b) cumulative lattice thermal conductivity as function of frequency, (c) the contribution of phonon acoustic mode (ZA, TA, LA) and optical modes (Opt) to the total lattice thermal conductivity, (d) cumulative lattice thermal conductivity as a function of mean free path (MFP) of monolayer Ge2X4S2.

    图 4  单层Ge2X4S2的声子群速度(a), (b), 格林艾森参数(c), (d), 声子弛豫时间和三声子散射相空间(e), (f), 图 (e)和图(f)中的插图为三声子散射相空间

    Fig. 4.  (a), (b) The phonon group velocity, (c), (d) Grüneisen parameters, and (e), (f) phonon relaxation time of monolayer Ge2X4S2. The inset of Fgiure (e) and Figure (f) is three-phonon scattering phase space.

    图 5  单层Ge2P4S2(a) 和Ge2As4S2 (b) 的电子能带结构和对应的电子态密度, 以及价带和导带在费米能级附近的电荷密度 (c)

    Fig. 5.  The electronic band structure and partial density of states for monolayer Ge2As4S2 (a) and Ge2P4S2 (b), the charge density of the valence and conduction bands near the Fermi level (c).

    图 6  单层Ge2X4S2的电子输运参数(a), (b)塞贝克系数; (c), (d)电导率; (e), (f) 电子热导率; (g), (h) 功率因子

    Fig. 6.  Electronic transport parameters of monolayer Ge2X4S2 include the Seebeck coefficient ((a), (b)), electrical conductivity ((c), (d)), electronic thermal conductivity ((e), (f)), and power factor ((g), (h)) as function of the chemical potential.

    图 7  单层Ge2X4S2ZT值分别与化学势((a)—(d))和载流子浓度((e)—(h))的关系

    Fig. 7.  The ZT values with respect to chemical potential (a)–(d) and carrier concentration (e)–(h) for monolayer Ge2X4S2.

    表 1  弛豫后的结构参数

    Table 1.  The parameters of optimal structure.

    晶格常数/Å键长/Å
    Ge—SGe—As (P)As—As (P—P)
    Ge2As4S27.102.482.602.48
    Ge2P4S26.772.502.492.21
    下载: 导出CSV

    表 2  300 K下单层Ge2X4S2的弹性模量C 2D, 形变势常数El, 有效质量m*, 载流子迁移率μ和弛豫时间τ

    Table 2.  Calculated elastic modulus C 2D, DP constant El, effective mass m*, carrier mobility μ and scattering time τ for electron and hole in monolayer Ge2X4S2 at 300 K.

    方向类型C 2D/(J·m–2)El /eVm* /meμ/(cm–2·V–1·s–1)τ/ps
    Ge2P4S2armchairelectron55.462.040.223277.220.41
    hole55.463.320.65131.230.05
    zigzagelectron48.441.970.223676.880.46
    hole48.443.230.65162.320.06
    Ge2As4S2armchairelectron48.942.300.193146.800.34
    hole48.946.560.24220.710.03
    zigzagelectron43.252.130.191943.610.21
    hole43.256.230.24275.500.04
    下载: 导出CSV
  • [1]

    Yang J, Xi L L, Qiu W J, Wu L H, Shi X, Chen L D, Yang J H, Zhang W Q, Uher C, Singh D J 2016 npj Comput. Mater. 2 1Google Scholar

    [2]

    Ding Z D, An M, Mo S Q, Yu X X, Jin Z L, Liao Y X, Esfarjani K, Lü J T, Shiomi J, Yang N 2019 J. Mater. Chem. A 7 2114Google Scholar

    [3]

    Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 16631Google Scholar

    [4]

    Hicks L D, Harman T C, Dresselhaus M S 1993 Appl. Phys. Lett. 63 3230Google Scholar

    [5]

    Zhao L-D, Chang C, Tan G J, Kanatzidis M G 2016 Energy Environ. Sci. 9 044

    [6]

    Liu Y C, Wang W X, Yang J, Li S 2018 Adv. Sustainable Syst. 2 1800046Google Scholar

    [7]

    Tan Q, Zhao L D, Li J F, Wu C F, Wei T R, Xing Z B, Kanatzidis MG 2014 J. Mater. Chem. A 2 17302Google Scholar

    [8]

    Yan X, Poudel B, Ma Y, Liu W S, Joshi G, Wang H, Lan Y C, Wang D Z, Chen G, Ren Z F 2010 Nano Lett. 10 3373Google Scholar

    [9]

    Zhao L D, Dravid V P, Kanatzidis M G 2014 Energy Environ. Sci. 7 251Google Scholar

    [10]

    Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013 Nat. Chem. 5 263Google Scholar

    [11]

    Xie W J, He J, Kang H J, Tang X F, Zhu S, Laver M, Wang S Y, Copley J R D, Brown C M, Zhang Q J, Tritt T M 2010 Nano Lett. 10 3283Google Scholar

    [12]

    Dresselhaus M S, Dresselhaus G, Sun X, Zhang Z 1999 Phys. Solid State 41 679Google Scholar

    [13]

    Rashid Z, Nissimagoudar A S, Li W 2019 Phys. Chem. Chem. Phys. 21 5679Google Scholar

    [14]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [15]

    Guo S D, Li H C 2017 Comput. Mater. Sci. 139 361Google Scholar

    [16]

    Zare M, Rameshti B Z, Ghamsari F G, Asgari R 2017 Phys. Rev. B 95 045422Google Scholar

    [17]

    Zhang R Q, Zhou Z Z, QI N, Zhao B, Zhang Q K, Zhang Z Y, Chen Z Q 2019 J. Mater. Chem. C 7 14986Google Scholar

    [18]

    Ruleova P, Drasar C, Lostak P, Li C-P, Ballikaya S, Uher C 2010 Mater. Chem. Phys. 119 299Google Scholar

    [19]

    Yu J B, Sun Q 2018 Appl. Phys. Lett. 112 053901Google Scholar

    [20]

    Huang S, Wang Z Y, Xiong R, Yu H Y, Shi J 2019 Nano Energy 62 212Google Scholar

    [21]

    Zhu Y L, Yuan J H, Song Y Q, Xue K H, Wang S, Lian C, Li Z N, Xu M, Cheng X M, Miao X S 2019 Int. J. Hydrogen Energy 44 21536Google Scholar

    [22]

    Jing Y, MA Y D, LI Y F, Heine T 2017 Nano Lett. 17 1833Google Scholar

    [23]

    Zeng B W, Long M Q, Zhang X J, Dong Y L, Li M J, Yi Y G, Duan H M 2018 J. Phys. D:Appl. Phys. 51 235302Google Scholar

    [24]

    Zhu X L, Liu P F, Zhang J R, Zhang P, Zhou W X, Xie G F 2019 Nanoscale 11 19923Google Scholar

    [25]

    Ouyang T, Jiang E L, Tang C, Li J, He C Y, Zhong J X 2018 J. Mater. Chem. A 6 21532Google Scholar

    [26]

    Sun Z H, Yuan K P, Chang Z, Bi S P, Zhang X L, Tang D W 2020 Nanoscale 12 3330Google Scholar

    [27]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [28]

    Lee K, Murray É D, Kong L Z, Lundqvist B I, Langreth D C 2010 Phys. Rev. B 82 081101Google Scholar

    [29]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [30]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [31]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106Google Scholar

    [32]

    Li W, Lindsay L, Broido D A, Stewart D A, Mingo N 2012 Phys. Rev. B 86 174307Google Scholar

    [33]

    Li W, Carrete J, Katcho N A, Mingo N 2014 Comput. Phys. Commun. 185 1747Google Scholar

    [34]

    Madsen G K H, Singh D J 2006 Comput. Phys. Commun. 175 67Google Scholar

    [35]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [36]

    Bardeen J, Shockley W 1950 Phys. Rev. 80 72Google Scholar

    [37]

    Chaput L, Pécheur P, Scherrer H 2007 Phys. Rev. B 75 045116Google Scholar

    [38]

    Price P J 1981 Ann. Phys. 133 217Google Scholar

    [39]

    Xi J Y, Long M Q, Tang L, Wanf D, Shuai Z G 2012 Nanoscale 4 4348Google Scholar

    [40]

    Becke A D, Edgecombe K E 1990 J. Chem. Phys. 92 5397Google Scholar

    [41]

    Nalewajski R F, Köster A M, Escalante S 2005 J. Phys. Chem. A 109 10038Google Scholar

    [42]

    Savin A, Nesper R, Wengert S, Wengert S 1997 Angew. Chem. Int. Ed. 36 1808Google Scholar

    [43]

    Batsanov S S 2001 Inorg. Mater. 37 871Google Scholar

    [44]

    Gao Z B, Tao F, Ren J 2018 Nanoscale 10 12997Google Scholar

    [45]

    Gao Z B, Zhang Z F, Liu G, Wang J S 2019 Phys. Chem. Chem. Phys. 21 26033Google Scholar

    [46]

    Wee D, Kozinsky B, Marzari N, Fornari M 2010 Phys. Rev. B 81 045204Google Scholar

    [47]

    Zhou Z Z, Liu H J, Fan D D, Cao G H, Sheng Y 2019 Phys. Rev. B 99 085410Google Scholar

    [48]

    Li W, Carrete J, Mingo N 2013 Appl. Phys. Lett. 103 253103Google Scholar

    [49]

    Peng B, Zhang H, Shao H Z, Lu H L, Zhang D W, Zhu H Y 2016 Nano Energy 30 225Google Scholar

    [50]

    McGaughey A J H, Landry E S, Sellan D P, Amon C H 2011 Appl. Phys. Lett. 99 131904Google Scholar

    [51]

    Xie G F, Guo Y, Wei X L, Zhang K W, Sun L Z, Zhong J X, Zhang G, Zhang Y W 2014 Appl. Phys. Lett. 104 233901Google Scholar

    [52]

    Xie G F, Ju Z F, Zhou K K, Wei X L, Guo Z X, Cai Y Q, Zhang G 2018 npj Comput. Mater. 4 1Google Scholar

    [53]

    Wei X L, Wang Y C, Shen Y L, Xie G F, Xiao H P, Zhong J X, Zhang G 2014 Appl. Phys. Lett. 105 103902Google Scholar

    [54]

    Zhu L Y, Zhang G, Li B W 2014 Phys. Rev. B 90 214302Google Scholar

    [55]

    Li W, Mingo N 2015 Phys. Rev. B 91 144304Google Scholar

    [56]

    Pandey T, Polanco C A, Lindsay L, Parker D S 2017 Phys. Rev. B 95 224306Google Scholar

    [57]

    Pei Y Z, Wang H, Snyder G J 2012 Adv. Mater. 24 6125Google Scholar

    [58]

    Zhu X L, Yang H Y, Zhou W X, Wang T B, Xu N, Xie G F 2020 ACS Appl. Mater. Interfaces 12 36102Google Scholar

    [59]

    Cai Y Q, Zhang G, Zhang Y W 2014 J. Am. Chem. Soc. 136 6269Google Scholar

    [60]

    Zhang L C, Qin G Z, Fang W Z, Cui H J, Zheng Q R, Yan Q B, Su G 2016 Sci. Rep. 6 19830

    [61]

    Yi W C, Chen X, Wang Z X, Ding Y C, Yang B C, Liu X B 2019 J. Mater. Chem. C 7 7352Google Scholar

    [62]

    Heremans J P 2005 Acta Phys. Pol. A 108 609Google Scholar

    [63]

    Jonson M, Mahan G D 1980 Phys. Rev. B 21 4223Google Scholar

  • [1] 严志, 方诚, 王芳, 许小红. 过渡金属元素掺杂对SmCo3合金结构和磁性能影响的第一性原理计算. 物理学报, 2024, 73(3): 037502. doi: 10.7498/aps.73.20231436
    [2] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料的预测. 物理学报, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [3] 黄盛星, 陈健, 王文菲, 王旭东, 姚曼. 新型双过渡金属MXene热电输运性能第一性原理计算. 物理学报, 2024, 73(14): 146301. doi: 10.7498/aps.73.20240432
    [4] 李梦荣, 应鹏展, 李勰, 崔教林. 采用熵工程技术改善SnTe基材料的热电性能. 物理学报, 2022, 71(23): 237302. doi: 10.7498/aps.71.20221247
    [5] 梁婷, 王阳阳, 刘国宏, 符汪洋, 王怀璋, 陈静飞. V掺杂二维MoS2体系气体吸附性能的第一性原理研究. 物理学报, 2021, 70(8): 080701. doi: 10.7498/aps.70.20202043
    [6] 钟淑琳, 仇家豪, 罗文崴, 吴木生. 稀土掺杂对LiFePO4性能影响的第一性原理研究. 物理学报, 2021, 70(15): 158203. doi: 10.7498/aps.70.20210227
    [7] 刘子媛, 潘金波, 张余洋, 杜世萱. 原子尺度构建二维材料的第一性原理计算研究. 物理学报, 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [8] 栾丽君, 何易, 王涛, LiuZong-Wen. CdS/CdMnTe太阳能电池异质结界面与光电性能的第一性原理计算. 物理学报, 2021, 70(16): 166302. doi: 10.7498/aps.70.20210268
    [9] 蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳. 二维磁性材料的物性研究及性能调控. 物理学报, 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [10] 郭宇, 周思, 赵纪军. 新型层状Bi2Se3的第一性原理研究. 物理学报, 2021, 70(2): 027102. doi: 10.7498/aps.70.20201434
    [11] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算. 物理学报, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [12] 王鹏程, 曹亦, 谢红光, 殷垚, 王伟, 王泽蓥, 马欣辰, 王琳, 黄维. 层状手性拓扑磁材料Cr1/3NbS2的磁学特性. 物理学报, 2020, 69(11): 117501. doi: 10.7498/aps.69.20200007
    [13] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究. 物理学报, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [14] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [15] 吴子华, 谢华清. 聚对苯撑/LiNi0.5Fe2O4纳米复合热电材料的制备及其性能研究. 物理学报, 2012, 61(7): 076502. doi: 10.7498/aps.61.076502
    [16] 李荣, 罗小玲, 梁国明, 付文升. 掺杂Fe对VH2解氢性能影响的第一性原理研究. 物理学报, 2011, 60(11): 117105. doi: 10.7498/aps.60.117105
    [17] 王作成, 李涵, 苏贤礼, 唐新峰. In0.3Co4Sb12-xSex 方钴矿热电材料的制备和热电性能. 物理学报, 2011, 60(2): 027202. doi: 10.7498/aps.60.027202
    [18] 周丽梅, 李炜, 蒋俊, 陈建敏, 李勇, 许高杰. β-Zn4Sb3/Zn1-δAlδO复合材料的制备及热电性能研究. 物理学报, 2011, 60(6): 067201. doi: 10.7498/aps.60.067201
    [19] 侯清玉, 张 跃, 陈 粤, 尚家香, 谷景华. 锐钛矿(TiO2)半导体的氧空位浓度对导电性能影响的第一性原理计算. 物理学报, 2008, 57(1): 438-442. doi: 10.7498/aps.57.438
    [20] 蒋 俊, 许高杰, 崔 平, 陈立东. TeI4掺杂量对n型Bi2Te3基烧结材料热电性能的影响. 物理学报, 2006, 55(9): 4849-4853. doi: 10.7498/aps.55.4849
计量
  • 文章访问数:  4783
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-23
  • 修回日期:  2023-01-25
  • 上网日期:  2023-02-04
  • 刊出日期:  2023-04-05

/

返回文章
返回