-
许多氨基酸分子的平动、转动及振动均落在太赫兹(THz)波段, 通过其在THz波段的特征指纹峰, 可以对氨基酸进行定性及定量研究. 本文利用太赫兹时域光谱技术测量了DL-谷氨酸及其一水合物在0.5—3.0 THz的室温太赫兹吸收谱, 发现二者的太赫兹特征峰存在明显差异. 基于DL-谷氨酸一水合物特征吸收峰(1.24 THz)在不同样品浓度下吸收幅度的变化, 对二者的混合样品进行了定量分析, 并对定量解析式进行了反推验证. 最后, 基于密度泛函理论对DL-谷氨酸及其一水合物进行了量化模拟, 在理论数据与实验峰匹配情况下, 对实验所得THz吸收峰的来源进行了讨论归纳. 研究结果表明, DL-谷氨酸及其一水合物的THz特征峰 (<2.80 THz)来源于分子间作用模式, 其余吸收峰来源于分子间与分子内的共同作用模式.The rotation, translation, and vibration of many amino acid molecules fall in the terahertz (THz) range, thus qualitative and quantitative researches of amino acids can be carried out through their THz absorption characteristic fingerprint peaks. In this work, the room-temperature THz absorption spectra of DL-glutamic acid and its monohydrate at 0.5–3.0 THz are measured by utilizing terahertz time-domain spectroscopy (THz-TDS). It is found that the THz characteristic peaks of these two amino acids are obviously different from each other. Moreover, according to the changes of the absorption amplitude of the characteristic absorption peak (1.24 THz) of DL-glutamate monohydrate at different sample concentrations, the mixed samples of DL-glutamate and its monohydrate are quantitatively analyzed, and the quantitative analysis formula is verified. In addition, the optical mode of DL-glutamic acid and its monohydrate in THz region are predicted by using density functional theory (DFT). On condition that the theoretical data are matched with the experimental peaks, the origins of THz absorption peaks obtained in the experiment are discussed and summarized. The results show that the THz characteristic peaks (<2.80 THz) of DL-glutamic acid and its monohydrate come from the intermolecular interactions, and the other absorption peaks result from the combination of intermolecular and intramolecular interactions.
-
Keywords:
- DL-glutamic acid /
- hydrates /
- terahertz waves /
- absorption spectrum
[1] Hui Z Q, Xu W Z, Li X H, Guo P G, Zhang Y, Liu J S 2019 Nanoscale 11 6045Google Scholar
[2] 侯磊, 王俊喃, 王磊, 施卫 2021 物理学报 70 243202Google Scholar
Hou L, Wang J N, Wang L, Shi W 2021 Acta Phys. Sin. 70 243202Google Scholar
[3] Zhang B, Li S P, Wang C Y, Zou T, Pan T T, Zhang J B, Zou X, Ren G H, Zhao H W 2018 Spectrochim. Acta A Mol. Biomol. Spectrosc. 190 40Google Scholar
[4] Neu J, Nikonow H, Schmuttenmaer C A 2018 J. Phys. Chem. A 122 5978Google Scholar
[5] Liu Y, Guo X T, Zhang X, Cao S Y, Ding X Q 2018 Crit. Rev. Anal. Chem. 37 341Google Scholar
[6] Kleist E M, Korter T M 2020 Anal. Chem. 92 1211Google Scholar
[7] Hui Y, Fan W H, Chen X, Liu L T, Wang H Q, Jiang X Q 2021 Spectrochim. Acta A Mol. Biomol. Spectrosc. 258 119825Google Scholar
[8] Zheng Z P, Fan W H, Li H, Tang J 2014 J. Mol. Spectrosc. 296 4Google Scholar
[9] 杨静琦, 李绍限, 赵红卫, 张建兵, 杨娜, 荆丹丹, 王晨阳, 韩家广 2014 物理学报 63 133203Google Scholar
Yang J Q, Li S X, Zhao H W, Zhang J B, Yang N, Jing D D, Wang C Y, Han J G 2014 Acta Phys. Sin. 63 133203Google Scholar
[10] Pan T T, Li S P, Zou T, Zheng Y, Zhang B, Wang C Y, Zhang J B, He M J, Zhao H 2017 Spectrochim. Acta A Mol. Biomol. Spectrosc. 178 19Google Scholar
[11] Dunitz D J, Schweizer W B 1995 Acta Crystallogr. C. 51 1377Google Scholar
[12] Ciunik Z, Glowiak T 1983 Acta Crystallogr. C 39 1271Google Scholar
[13] Paive M F 2017 . Ph. D. Dissertation (Fortaleza: Federal University of Ceare)
[14] Huang P J, Ma Y H, Li X, Hou D B, Cai J H, Zhang G X 2015 SPIE. 9795 979531Google Scholar
[15] Leos S, A. Terán T Q, García P, Archila A, Cabrera R 2012 J. Food. Sci. 77 118Google Scholar
[16] Wang A P, Gong X, Liu X 2016 Phys. Chem. Testing 52 369Google Scholar
[17] Lee J W, Thomas L C, Schmidt S J, Agric J 2011 Food. Chem. 59 684Google Scholar
[18] Zhang R, Mcewen J S, Gao F, Wang Y, Szanyi J, Peden C H F 2014 Acs. Catalysis. 4 4093Google Scholar
[19] Fug F, Rohe K, Vargas J, Nies C, Possart W 2016 Polymer 99 671Google Scholar
[20] Cortez V M, Fierro C, Farias M, Vargas O, Flores A, Mani G 2016 J. Chem. Phys. 472 81Google Scholar
[21] Mariko Y, Fumiaki M, Koh J Y, Masahiko T, Masanori H 2005 Appl. Phys. 86 53903Google Scholar
[22] Michael R, Williams C, Alan B, True A, Izmaylov F, Timothy A, French Z, Konstanze S, Charles A S 2011 Phys. Chem. Chem. Phys. 13 11719Google Scholar
[23] Hu M D, Tang M G, Wang H B, Zhang M K, Zhu H P, Yang Z B, Zhou H L, Zhang H, Hu J, Guo Y S, Xiao W, Liao Y S 2021 Spectrochim. Acta A Mol. Biomol. Spectrosc. 254 119611Google Scholar
[24] Zhu Z Q, Bian Y G, Zhang X, Zeng R N, Yang B 2022 Spectrochim. Acta A Mol. Biomol. Spectrosc. 275 121150Google Scholar
-
表 1 DL-Glu及DL-Glu·H2O的实验(Exp.)和PBE理论计算谱结果(单位: THz)
Table 1. Experimental (Exp.) and PBE theoretical results of DL-Glu and DL-Glu·H2O (in THz).
DL-Glu DL-Glu·H2O Exp. PBE 描述 Exp PBE 描述 1.63 1.66(4.74)1 绕晶胞 a 轴转动 1.24 1.51(1.23) 沿晶胞 a 轴平动 2.38 1.69 1.72(12.43) 绕晶胞 a 轴转动 2.61 2.58(3.89) 绕晶胞 c 轴转动 1.92 1.78(1.69) 绕晶胞 a 轴转动 2.59(3.96) 绕晶胞 a 轴转动 2.22 2.16(6.76) 绕晶胞 b 轴转动 2.96 2.84(22.54) 官能团的振动 2.30(23.11) 绕晶胞 a 轴转动 2.90(4.10) 绕晶胞 a 轴转动 2.38 2.49(5.98) 绕晶胞 a 轴转动 2.58(3.47) 绕晶胞 b 轴转动 2.81 2.85(4.41) 绕晶胞 c 轴转动 2.87(27.11) 绕晶胞 c 轴转动 3.0(7.23) 官能团的振动 注: 1括号里的是红外强度(kM/mol). -
[1] Hui Z Q, Xu W Z, Li X H, Guo P G, Zhang Y, Liu J S 2019 Nanoscale 11 6045Google Scholar
[2] 侯磊, 王俊喃, 王磊, 施卫 2021 物理学报 70 243202Google Scholar
Hou L, Wang J N, Wang L, Shi W 2021 Acta Phys. Sin. 70 243202Google Scholar
[3] Zhang B, Li S P, Wang C Y, Zou T, Pan T T, Zhang J B, Zou X, Ren G H, Zhao H W 2018 Spectrochim. Acta A Mol. Biomol. Spectrosc. 190 40Google Scholar
[4] Neu J, Nikonow H, Schmuttenmaer C A 2018 J. Phys. Chem. A 122 5978Google Scholar
[5] Liu Y, Guo X T, Zhang X, Cao S Y, Ding X Q 2018 Crit. Rev. Anal. Chem. 37 341Google Scholar
[6] Kleist E M, Korter T M 2020 Anal. Chem. 92 1211Google Scholar
[7] Hui Y, Fan W H, Chen X, Liu L T, Wang H Q, Jiang X Q 2021 Spectrochim. Acta A Mol. Biomol. Spectrosc. 258 119825Google Scholar
[8] Zheng Z P, Fan W H, Li H, Tang J 2014 J. Mol. Spectrosc. 296 4Google Scholar
[9] 杨静琦, 李绍限, 赵红卫, 张建兵, 杨娜, 荆丹丹, 王晨阳, 韩家广 2014 物理学报 63 133203Google Scholar
Yang J Q, Li S X, Zhao H W, Zhang J B, Yang N, Jing D D, Wang C Y, Han J G 2014 Acta Phys. Sin. 63 133203Google Scholar
[10] Pan T T, Li S P, Zou T, Zheng Y, Zhang B, Wang C Y, Zhang J B, He M J, Zhao H 2017 Spectrochim. Acta A Mol. Biomol. Spectrosc. 178 19Google Scholar
[11] Dunitz D J, Schweizer W B 1995 Acta Crystallogr. C. 51 1377Google Scholar
[12] Ciunik Z, Glowiak T 1983 Acta Crystallogr. C 39 1271Google Scholar
[13] Paive M F 2017 . Ph. D. Dissertation (Fortaleza: Federal University of Ceare)
[14] Huang P J, Ma Y H, Li X, Hou D B, Cai J H, Zhang G X 2015 SPIE. 9795 979531Google Scholar
[15] Leos S, A. Terán T Q, García P, Archila A, Cabrera R 2012 J. Food. Sci. 77 118Google Scholar
[16] Wang A P, Gong X, Liu X 2016 Phys. Chem. Testing 52 369Google Scholar
[17] Lee J W, Thomas L C, Schmidt S J, Agric J 2011 Food. Chem. 59 684Google Scholar
[18] Zhang R, Mcewen J S, Gao F, Wang Y, Szanyi J, Peden C H F 2014 Acs. Catalysis. 4 4093Google Scholar
[19] Fug F, Rohe K, Vargas J, Nies C, Possart W 2016 Polymer 99 671Google Scholar
[20] Cortez V M, Fierro C, Farias M, Vargas O, Flores A, Mani G 2016 J. Chem. Phys. 472 81Google Scholar
[21] Mariko Y, Fumiaki M, Koh J Y, Masahiko T, Masanori H 2005 Appl. Phys. 86 53903Google Scholar
[22] Michael R, Williams C, Alan B, True A, Izmaylov F, Timothy A, French Z, Konstanze S, Charles A S 2011 Phys. Chem. Chem. Phys. 13 11719Google Scholar
[23] Hu M D, Tang M G, Wang H B, Zhang M K, Zhu H P, Yang Z B, Zhou H L, Zhang H, Hu J, Guo Y S, Xiao W, Liao Y S 2021 Spectrochim. Acta A Mol. Biomol. Spectrosc. 254 119611Google Scholar
[24] Zhu Z Q, Bian Y G, Zhang X, Zeng R N, Yang B 2022 Spectrochim. Acta A Mol. Biomol. Spectrosc. 275 121150Google Scholar
计量
- 文章访问数: 3552
- PDF下载量: 65
- 被引次数: 0