搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压直流电缆聚丙烯绝缘电场调控

俞葆青 夏兵 杨晓砚 万宝全 查俊伟

引用本文:
Citation:

高压直流电缆聚丙烯绝缘电场调控

俞葆青, 夏兵, 杨晓砚, 万宝全, 查俊伟

Electric field regulation of polypropylene insulation for high voltage DC cables

Yu Bao-Qing, Xia Bing, Yang Xiao-Yan, Wan Bao-Quan, Zha Jun-Wei
PDF
HTML
导出引用
  • 高压电缆是决定电力输送质量和容量的关键要素. 聚丙烯由于自身优良的耐热性、绝缘性和绿色环保性被广泛关注, 并应用于电缆绝缘材料开发. 高压电缆聚丙烯绝缘材料需要承受脉冲电压和直流额定电压, 容易引起电场畸变从而引发空间电荷积累. 此外, 电缆运行过程中, 温度会急剧升高, 严重影响电缆的绝缘性能, 导致电树枝的引发和生长. 因此需要对高压电缆进行电场调控从而抑制电场畸变、局部放电、电树枝化等劣化现象的出现. 本文重点介绍了高压直流电缆聚丙烯绝缘材料电场调控的理论与方法, 分析了当前电场调控的重点, 最后展望了聚丙烯电缆绝缘的应用前景.
    High voltage cable is the key factor to determine the quality and capacity of power transmission. Polypropylene has widely attracted more attention because of its excellent heat resistance, insulation and green environmental protection, and it is used as cable material. Polypropylene insulation material for high voltage cable needs to bear pulsed voltage and the DC rated voltage, which can easily cause electric field to be distorted and lead the space charge to be accumulated. Meanwhile, the change of cable temperature will also affect the conductivity of insulating material and promote the accumulation of space charge, resulting in the distortion of internal electric field of insulating material and the initiation and growth of electric tree. Therefore, it is necessary to regulate the electric field of high voltage cable so as to suppress the deterioration phenomena such as electric field distortion, partial discharge and electrical demoralization. In this work, the theory and method of regulating DC electric field of polypropylene insulation of high voltage cable is first introduced. Then the main direction of electric field regulation is presented. Finally, the application prospect of polypropylene cable insulation is also put forward.
      通信作者: 查俊伟, zhajw@ustb.edu.cn
    • 基金项目: 中央高校基本科研业务费(批准号: FRF-TP-20-02B2)资助的课题.
      Corresponding author: Zha Jun-Wei, zhajw@ustb.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. FRF-TP-20-02B2)
    [1]

    王亚, 吕泽鹏, 吴锴, 王霞, 刘通, 李锐海 2014 绝缘材料 47 22Google Scholar

    Wang Y, Lü Z P, Wu K, Wang X, Liu T, Li R H 2014 Insul. Mater. 47 22Google Scholar

    [2]

    梁旭明, 张平, 常勇 2012 电网技术 36 1Google Scholar

    Liang X M, Zhang P, Chang Y 2012 Power Syst. Tech. 36 1Google Scholar

    [3]

    Green C D, Vaughan A S, Stevens G C, Sutton S J, Geussens T, Fairhurst M J 2013 IEEE Trans. Dielectr. Electr. Insul. 20 1Google Scholar

    [4]

    Hosier I L, Vaughan A S, Swingler S G 2011 J. Mater. Sci. 46 4058Google Scholar

    [5]

    马超, 闵道敏, 李盛涛, 郑旭, 李西育, 闵超, 湛海涯 2017 物理学报 66 067701Google Scholar

    Ma C, Min D M, Li S T, Zheng X, Li X Y, Min C, Zhan H Y 2017 Acta Phys. Sin. 66 067701Google Scholar

    [6]

    Liu M C, Liu Y P, Li Y D, Zheng P, Rui H R 2017 IEEE Trans. Dielectr. Electr. Insul. 24 2282Google Scholar

    [7]

    查俊伟, 王帆 2022 物理学报 71 233601Google Scholar

    Zha J, Wang F 2022 Acta Phys. Sin. 71 233601Google Scholar

    [8]

    赵学风, 倪辉, 李旭, 林涛, 琚泽立, 蒲路, 范明豪, 邓军波, 张冠军 2018 高压电器 54 165Google Scholar

    Zhao X F, Ni H, Li X, Lin T, Ju Z L, Pu L, Fan M H, Deng J B, Zhang G J 2018 High Volt. Appar. 54 165Google Scholar

    [9]

    兰生, 李焜, 高新昀 2017 物理学报 66 136801Google Scholar

    Lan S, Li K, Gao X Y 2017 Acta Phys. Sin. 66 136801Google Scholar

    [10]

    刘智谦, 高震, 郝建, 李捍平, 马志鹏 2020 绝缘材料 53 29Google Scholar

    Liu Z Q, Gao Z, Hao J, Li H P, Ma Z P 2020 Insul. Mater. 53 29Google Scholar

    [11]

    王正洲, 瞿保钧, 范维澄, 徐云华 2001 高分子材料科学与工程 1 7Google Scholar

    Wang Z Z, Qu B J, Fan W C, Xu Y H 2001 Polym. Mater. Sci. Eng. 1 7Google Scholar

    [12]

    张洪宇 2020 硕士学位论文(哈尔滨: 哈尔滨理工大学)

    Zhang H Y 2020 M. S. Thesis (Harbin: Harbin University of Science and Technology) (in Chinese)

    [13]

    郑元浩 2022 硕士学位论文(青岛: 青岛科技大学)

    Zheng Y H 2022 M. S. Thesis (Qingdao: Qingdao University of Science and Technology) (in Chinese)

    [14]

    Gouda O E, ElFarskoury A A, Elsinnary A R, Farag A A 2018 IET Gener. Transm. Distrib. 12 1190Google Scholar

    [15]

    桂媛, 王智晖, 徐兴全, 王志勇, 马光耀, 刘若溪, 李泽瑞 2021 绝缘材料 54 72Google Scholar

    Gui Y, Wang Z H, Xu X Q, Wang Z Y, Ma G Y, Liu R X, Li Z R 2021 Insul. Mater. 54 72Google Scholar

    [16]

    杜伯学, 侯兆豪, 徐航, 李进, 李忠磊 2017 高电压技术 43 2769Google Scholar

    Du B X, Hou Z H, Xu H, Li J, Li Z L 2017 High Vol. Eng. 43 2769Google Scholar

    [17]

    Diao J C, Huang X Y, Jia Q C, Liu F, Jiang P K 2017 IEEE Trans. Dielectr. Electr. Insul. 24 1416Google Scholar

    [18]

    Zhou Y, Yang J M, Zhao H, Sun W F, Gao M Z, Zhao X D, Hu M, Xie S H 2019 Materials 12 1094Google Scholar

    [19]

    Wu Y H, Zha J W, Li W K, Wang S J, Dang Z M 2015 Appl. Phys. Lett. 107 112901Google Scholar

    [20]

    Zhang W, Xu M, Huang K W, Mu Q L, George C 2019 IEEE Trans. Dielectr. Electr. Insul. 26 714Google Scholar

    [21]

    Zha J W, Yan H D, Li W K, Dang Z M 2018 IEEE Trans. Dielectr. Electr. Insul. 25 1088Google Scholar

    [22]

    Yan H D, Zhang C, Li W K, Zha J W 2019 Polym. Compos. 41 780Google Scholar

    [23]

    周垚, 刘继平, 赵孝磊, 房晟辰, 何金良 2020 高压电器 56 155Google Scholar

    Zhou Y, Liu J P, Zhao X L, Fang S C, He J L 2020 High Volt. Appar. 56 155Google Scholar

    [24]

    Zhang Y Y, Shi K S, Zang C Y, Wei W C, Xu C H, Zha J W 2022 Materials 15 6289Google Scholar

    [25]

    Zha J W, Wang Y, Wang S J, Zheng M S, Bian X M, Dang Z M 2019 Appl. Phys. Lett. 114 252902Google Scholar

    [26]

    Zhao Y J, Bhonsle S, Dong S L, Lü Y P, Liu H M, Safaai J A, Davalos R V, Yao C G 2018 IEEE Trans. Biomed. Eng. 65 1810Google Scholar

    [27]

    Zha J W, Wu Y H, Wang S J, Wu D L, Yan H D, Dang Z M, 2016 IEEE Trans. Dielectr. Electr. Insul. 23 2337Google Scholar

    [28]

    刘畅, 李忠磊, 周硕凡, 范铭升, 杜伯学 2021 电气工程学报 16 42

    Liu C, Li Z L, Zhou S F, Fan M S, Du B X 2021 Elec. Manuf. 16 42

    [29]

    李喆, 龚瑾, 操卫康, 盛戈皞, 江秀臣 2015 高电压技术 41 1451Google Scholar

    Li Z, Gong J, Cao W K, Sheng G H, Jiang X C 2015 High Volt. Eng. 41 1451Google Scholar

    [30]

    Zheng Y S, Huang H F, Zhong X Y, Serdyuk Y V 2021 J. Phys. D Appl. Phys. 54 235501Google Scholar

    [31]

    Tian F Q, Zhang S T, Hou C Y 2021 Energies 14 1313Google Scholar

    [32]

    Dai X Y, Tian F Q, Li F, Zhang S T, Xing Z L, Wu J B 2021 Energies 14 4722Google Scholar

    [33]

    Zhou Y, Yuan C, Li C Y, Meng P F, Hu J, Li Q, He J L 2019 IEEE Trans. Dielectr. Electr. Insul. 26 1596Google Scholar

    [34]

    郝艳捧, 陈云, 阳林, 邱伟豪, 傅明利, 侯帅 2017 高电压技术 43 3534Google Scholar

    Hao Y P, Chen Y, Yang L, Qiu W H, Fu M L, Hou S 2017 High Volt. Eng. 43 3534Google Scholar

    [35]

    李忠华, 刘乐乐, 郑欢, 梁斯婷 2016 中国电机工程学报 36 2563Google Scholar

    Li Z H, Liu L L, Zheng H, Liang S T 2016 Proc. CSEE 36 2563Google Scholar

    [36]

    Mazzanti G, Marzinotto M 2017 IEEE Electr. Insul. Mag. 33 17Google Scholar

    [37]

    刘刚, 陈志娟 2012 高电压技术 38 678

    Liu G, Chen Z Y 2012 High Volt. Eng. 38 678

    [38]

    Hannan M A, Hussin I, Ker P J, Hoque M M, Hossain L M S, Hussain A, Rahman M S A, Faizal C W M, Blaabjerg F 2018 IEEE Access 6 78352Google Scholar

    [39]

    Amaru L, Gaillardon P E, Micheli G D 2014 IET Sci. Meas. Technol. 13 1074

    [40]

    Zhao X L, Meng P F, Hu J, Li Q, He J L 2020 IEEE Trans. Dielectr. Electr. Insul. 27 10Google Scholar

    [41]

    尹毅, 吴建东, 胡嘉磊, 张磊, 孙璐, 沈耀军 2018 电气工程学报 13 30

    Yin Y, Wu J D, Hu J L, Zhang L, Sun L, Shen Y J 2018 Elec. Manuf. 13 30

    [42]

    Yang Q H, Hu J, Yuan Z K, Li J Z, Yin Y, Tang H 2021 International Conference on Electrical Materials and Power Equipment Chongqing, China, April 11–15, 2021 p978

  • 图 1  (a) a-PP的分子结构; (b) s-PP的分子结构; (c) i-PP的分子结构

    Fig. 1.  (a) Molecular structure of a-PP; (b) molecular structure of s-PP; (c) molecular structure of i-PP.

    图 2  flc2hs的函数图[26]

    Fig. 2.  Function diagram of flc2hs [26].

    图 3  (a) PP和PP-g-MAH的陷阱能级密度, 插图为热激电流谱; (b)介电常数与频率关系; (c)体积电阻率的温度依赖性; (d) PP-g-2%MAH空间电荷分布[27]

    Fig. 3.  (a) Trap level density of PP and PP-g-MAH; (b) relationship between dielectric constant and frequency; (c) temperature dependence of volume resistivity; (d) PP-g-2%MAH space charge distribution [27].

    图 4  320 kV高压直流电缆的几何形状[31]

    Fig. 4.  Geometry of 320 kV high voltage direct current cables [31].

    图 5  (a) 320 kV直流电缆典型结构; (b)电导率的函数模型; (c)绝缘层温度分布; (d)施加电压波形; (e)电导率与活化能的关系; (f)电导率与电场依赖系数的关系[35]

    Fig. 5.  (a) Typical structure of 320 kV DC cable; (b) functional model of conductivity; (c) insulation temperature distribution; (d) applied voltage waveform; (e) relationship between conductivity and activation energy; (f) relationship between conductivity and electric field dependence coefficient[35].

    图 6  高压直流电缆系统附件 (a)典型的高压直流预制接头设计, 没有现场分级材料(FGM)层; (b)典型的带FGM层的高压直流预制接头设计; (c)带FGM适配器的HVDC电缆终端的剖面图示意图[36]

    Fig. 6.  HVDC cable system accessories: (a) Typical HVDC prefabricated joint design without a field grading material (FGM) layer; (b) typical HVDC prefabricated joint design with a FGM layer; (c) schematic cut-away view of a HVDC cable termination with FGM adapters[36].

    图 7  (a)不同非线性材料长度的仿真结果; (b)绝缘外表面的电场强度; (c)不同厚度非线性材料的模拟结果; (d)绝缘外表面的电场强度[42]

    Fig. 7.  (a) Simulation results of different nonlinear material lengths; (b) electric field strength on the outer surface of insulation; (c) simulation results of nonlinear materials with different thickness; (d) electric field strength on the outer surface of insulation[42].

  • [1]

    王亚, 吕泽鹏, 吴锴, 王霞, 刘通, 李锐海 2014 绝缘材料 47 22Google Scholar

    Wang Y, Lü Z P, Wu K, Wang X, Liu T, Li R H 2014 Insul. Mater. 47 22Google Scholar

    [2]

    梁旭明, 张平, 常勇 2012 电网技术 36 1Google Scholar

    Liang X M, Zhang P, Chang Y 2012 Power Syst. Tech. 36 1Google Scholar

    [3]

    Green C D, Vaughan A S, Stevens G C, Sutton S J, Geussens T, Fairhurst M J 2013 IEEE Trans. Dielectr. Electr. Insul. 20 1Google Scholar

    [4]

    Hosier I L, Vaughan A S, Swingler S G 2011 J. Mater. Sci. 46 4058Google Scholar

    [5]

    马超, 闵道敏, 李盛涛, 郑旭, 李西育, 闵超, 湛海涯 2017 物理学报 66 067701Google Scholar

    Ma C, Min D M, Li S T, Zheng X, Li X Y, Min C, Zhan H Y 2017 Acta Phys. Sin. 66 067701Google Scholar

    [6]

    Liu M C, Liu Y P, Li Y D, Zheng P, Rui H R 2017 IEEE Trans. Dielectr. Electr. Insul. 24 2282Google Scholar

    [7]

    查俊伟, 王帆 2022 物理学报 71 233601Google Scholar

    Zha J, Wang F 2022 Acta Phys. Sin. 71 233601Google Scholar

    [8]

    赵学风, 倪辉, 李旭, 林涛, 琚泽立, 蒲路, 范明豪, 邓军波, 张冠军 2018 高压电器 54 165Google Scholar

    Zhao X F, Ni H, Li X, Lin T, Ju Z L, Pu L, Fan M H, Deng J B, Zhang G J 2018 High Volt. Appar. 54 165Google Scholar

    [9]

    兰生, 李焜, 高新昀 2017 物理学报 66 136801Google Scholar

    Lan S, Li K, Gao X Y 2017 Acta Phys. Sin. 66 136801Google Scholar

    [10]

    刘智谦, 高震, 郝建, 李捍平, 马志鹏 2020 绝缘材料 53 29Google Scholar

    Liu Z Q, Gao Z, Hao J, Li H P, Ma Z P 2020 Insul. Mater. 53 29Google Scholar

    [11]

    王正洲, 瞿保钧, 范维澄, 徐云华 2001 高分子材料科学与工程 1 7Google Scholar

    Wang Z Z, Qu B J, Fan W C, Xu Y H 2001 Polym. Mater. Sci. Eng. 1 7Google Scholar

    [12]

    张洪宇 2020 硕士学位论文(哈尔滨: 哈尔滨理工大学)

    Zhang H Y 2020 M. S. Thesis (Harbin: Harbin University of Science and Technology) (in Chinese)

    [13]

    郑元浩 2022 硕士学位论文(青岛: 青岛科技大学)

    Zheng Y H 2022 M. S. Thesis (Qingdao: Qingdao University of Science and Technology) (in Chinese)

    [14]

    Gouda O E, ElFarskoury A A, Elsinnary A R, Farag A A 2018 IET Gener. Transm. Distrib. 12 1190Google Scholar

    [15]

    桂媛, 王智晖, 徐兴全, 王志勇, 马光耀, 刘若溪, 李泽瑞 2021 绝缘材料 54 72Google Scholar

    Gui Y, Wang Z H, Xu X Q, Wang Z Y, Ma G Y, Liu R X, Li Z R 2021 Insul. Mater. 54 72Google Scholar

    [16]

    杜伯学, 侯兆豪, 徐航, 李进, 李忠磊 2017 高电压技术 43 2769Google Scholar

    Du B X, Hou Z H, Xu H, Li J, Li Z L 2017 High Vol. Eng. 43 2769Google Scholar

    [17]

    Diao J C, Huang X Y, Jia Q C, Liu F, Jiang P K 2017 IEEE Trans. Dielectr. Electr. Insul. 24 1416Google Scholar

    [18]

    Zhou Y, Yang J M, Zhao H, Sun W F, Gao M Z, Zhao X D, Hu M, Xie S H 2019 Materials 12 1094Google Scholar

    [19]

    Wu Y H, Zha J W, Li W K, Wang S J, Dang Z M 2015 Appl. Phys. Lett. 107 112901Google Scholar

    [20]

    Zhang W, Xu M, Huang K W, Mu Q L, George C 2019 IEEE Trans. Dielectr. Electr. Insul. 26 714Google Scholar

    [21]

    Zha J W, Yan H D, Li W K, Dang Z M 2018 IEEE Trans. Dielectr. Electr. Insul. 25 1088Google Scholar

    [22]

    Yan H D, Zhang C, Li W K, Zha J W 2019 Polym. Compos. 41 780Google Scholar

    [23]

    周垚, 刘继平, 赵孝磊, 房晟辰, 何金良 2020 高压电器 56 155Google Scholar

    Zhou Y, Liu J P, Zhao X L, Fang S C, He J L 2020 High Volt. Appar. 56 155Google Scholar

    [24]

    Zhang Y Y, Shi K S, Zang C Y, Wei W C, Xu C H, Zha J W 2022 Materials 15 6289Google Scholar

    [25]

    Zha J W, Wang Y, Wang S J, Zheng M S, Bian X M, Dang Z M 2019 Appl. Phys. Lett. 114 252902Google Scholar

    [26]

    Zhao Y J, Bhonsle S, Dong S L, Lü Y P, Liu H M, Safaai J A, Davalos R V, Yao C G 2018 IEEE Trans. Biomed. Eng. 65 1810Google Scholar

    [27]

    Zha J W, Wu Y H, Wang S J, Wu D L, Yan H D, Dang Z M, 2016 IEEE Trans. Dielectr. Electr. Insul. 23 2337Google Scholar

    [28]

    刘畅, 李忠磊, 周硕凡, 范铭升, 杜伯学 2021 电气工程学报 16 42

    Liu C, Li Z L, Zhou S F, Fan M S, Du B X 2021 Elec. Manuf. 16 42

    [29]

    李喆, 龚瑾, 操卫康, 盛戈皞, 江秀臣 2015 高电压技术 41 1451Google Scholar

    Li Z, Gong J, Cao W K, Sheng G H, Jiang X C 2015 High Volt. Eng. 41 1451Google Scholar

    [30]

    Zheng Y S, Huang H F, Zhong X Y, Serdyuk Y V 2021 J. Phys. D Appl. Phys. 54 235501Google Scholar

    [31]

    Tian F Q, Zhang S T, Hou C Y 2021 Energies 14 1313Google Scholar

    [32]

    Dai X Y, Tian F Q, Li F, Zhang S T, Xing Z L, Wu J B 2021 Energies 14 4722Google Scholar

    [33]

    Zhou Y, Yuan C, Li C Y, Meng P F, Hu J, Li Q, He J L 2019 IEEE Trans. Dielectr. Electr. Insul. 26 1596Google Scholar

    [34]

    郝艳捧, 陈云, 阳林, 邱伟豪, 傅明利, 侯帅 2017 高电压技术 43 3534Google Scholar

    Hao Y P, Chen Y, Yang L, Qiu W H, Fu M L, Hou S 2017 High Volt. Eng. 43 3534Google Scholar

    [35]

    李忠华, 刘乐乐, 郑欢, 梁斯婷 2016 中国电机工程学报 36 2563Google Scholar

    Li Z H, Liu L L, Zheng H, Liang S T 2016 Proc. CSEE 36 2563Google Scholar

    [36]

    Mazzanti G, Marzinotto M 2017 IEEE Electr. Insul. Mag. 33 17Google Scholar

    [37]

    刘刚, 陈志娟 2012 高电压技术 38 678

    Liu G, Chen Z Y 2012 High Volt. Eng. 38 678

    [38]

    Hannan M A, Hussin I, Ker P J, Hoque M M, Hossain L M S, Hussain A, Rahman M S A, Faizal C W M, Blaabjerg F 2018 IEEE Access 6 78352Google Scholar

    [39]

    Amaru L, Gaillardon P E, Micheli G D 2014 IET Sci. Meas. Technol. 13 1074

    [40]

    Zhao X L, Meng P F, Hu J, Li Q, He J L 2020 IEEE Trans. Dielectr. Electr. Insul. 27 10Google Scholar

    [41]

    尹毅, 吴建东, 胡嘉磊, 张磊, 孙璐, 沈耀军 2018 电气工程学报 13 30

    Yin Y, Wu J D, Hu J L, Zhang L, Sun L, Shen Y J 2018 Elec. Manuf. 13 30

    [42]

    Yang Q H, Hu J, Yuan Z K, Li J Z, Yin Y, Tang H 2021 International Conference on Electrical Materials and Power Equipment Chongqing, China, April 11–15, 2021 p978

  • [1] 郜培丽, 张振宇, 王冬, 张乐振, 徐光宏, 孟凡宁, 谢文祥, 毕胜. 绿色环保化学机械抛光液的研究进展. 物理学报, 2021, 70(6): 068101. doi: 10.7498/aps.70.20201917
    [2] 邢洁, 谭智, 郑婷, 吴家刚, 肖定全, 朱建国. 铌酸钾钠基无铅压电陶瓷的高压电活性研究进展. 物理学报, 2020, 69(12): 127707. doi: 10.7498/aps.69.20200288
    [3] 李蕾, 张程宾. 电场对协流式微流控装置中乳液液滴生成行为的调控机理. 物理学报, 2018, 67(17): 176801. doi: 10.7498/aps.67.20180616
    [4] 吴波, 赵浙明, 王训四, 江岭, 密楠, 潘章豪, 张培晴, 刘自军, 聂秋华, 戴世勋. Te基远红外硫系玻璃光纤的制备及性能分析. 物理学报, 2017, 66(13): 134208. doi: 10.7498/aps.66.134208
    [5] 杨芝, 张悦, 周倩倩, 王玉华. Fe3O4单晶薄膜磁性电场调控的微磁学仿真研究. 物理学报, 2017, 66(13): 137501. doi: 10.7498/aps.66.137501
    [6] 马超, 闵道敏, 李盛涛, 郑旭, 李西育, 闵超, 湛海涯. 聚丙烯/氧化铝纳米电介质的陷阱与直流击穿特性. 物理学报, 2017, 66(6): 067701. doi: 10.7498/aps.66.067701
    [7] 武丽明, 张晓青. 交联聚丙烯压电驻极体的压电性能及振动能量采集研究. 物理学报, 2015, 64(17): 177701. doi: 10.7498/aps.64.177701
    [8] 迟晓红, 高俊国, 郑杰, 张晓虹. 聚丙烯中电树枝生长机理研究. 物理学报, 2014, 63(17): 177701. doi: 10.7498/aps.63.177701
    [9] 张添乐, 黄曦, 郑凯, 张欣梧, 王宇杰, 武丽明, 张晓青, 郑洁, 朱彪. 极化电压对聚丙烯压电驻极体膜压电性能的影响. 物理学报, 2014, 63(15): 157703. doi: 10.7498/aps.63.157703
    [10] 吴宝嘉, 李燕, 彭刚, 高春晓. InSe的高压电输运性质研究. 物理学报, 2013, 62(14): 140702. doi: 10.7498/aps.62.140702
    [11] 张欣梧, 张晓青. 聚丙烯压电驻极体膜的压电和声学性能研究. 物理学报, 2013, 62(16): 167702. doi: 10.7498/aps.62.167702
    [12] 王飞鹏, 夏钟福, 邱勋林, 沈 军. 聚丙烯孔洞铁电驻极体膜的电极化及其电荷动态特性. 物理学报, 2006, 55(7): 3705-3710. doi: 10.7498/aps.55.3705
    [13] 张鹏锋, 夏钟福, 邱勋林, 王飞鹏, 吴贤勇. 充电参数对聚丙烯蜂窝膜驻极体压电性的影响. 物理学报, 2006, 55(2): 904-909. doi: 10.7498/aps.55.904
    [14] 王飞鹏, 夏钟福, 裘晓敏, 吕 航, 邱勋林, 沈 军. 压力膨化处理对正极性聚丙烯蜂窝膜的驻极体性质的影响. 物理学报, 2005, 54(9): 4400-4405. doi: 10.7498/aps.54.4400
    [15] 冀忠宝, 夏钟福, 沈莉莉, 安振连. 电晕充电的聚丙烯无纺布空气过滤膜的电荷储存及稳定性. 物理学报, 2005, 54(8): 3799-3804. doi: 10.7498/aps.54.3799
    [16] 初瑞清, 徐志军, 李国荣, 曾华荣, 余寒峰, 邵 鑫, 罗豪甦, 殷庆瑞. 钛酸钡单晶沿垂直解理面方向的超高压电响应的研究. 物理学报, 2005, 54(2): 935-938. doi: 10.7498/aps.54.935
    [17] 邱勋林, 夏钟福, 安振连, 吴贤勇. 热膨胀处理的聚丙烯蜂窝膜驻极体的压电性. 物理学报, 2005, 54(1): 402-406. doi: 10.7498/aps.54.402
    [18] 张鹏锋, 夏钟福, 邱勋林, 吴贤勇. 聚丙烯蜂窝膜驻极体压电系数的测量及压电性的改善. 物理学报, 2005, 54(1): 397-401. doi: 10.7498/aps.54.397
    [19] 冯若. 聚丙烯酰胺水溶液的超声研究. 物理学报, 1980, 29(7): 940-944. doi: 10.7498/aps.29.940
    [20] 忻贤杰, 吕余庆. 静电分析器用的±2O千伏稳定高压电源. 物理学报, 1962, 18(11): 558-562. doi: 10.7498/aps.18.558
计量
  • 文章访问数:  5193
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-05
  • 修回日期:  2022-12-30
  • 上网日期:  2023-01-12
  • 刊出日期:  2023-03-20

/

返回文章
返回