搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于相变材料的慢光和吸收可切换多功能太赫兹超材料

金嘉升 马成举 张垚 张跃斌 鲍士仟 李咪 李东明 刘洺 刘芊震 张贻歆

引用本文:
Citation:

基于相变材料的慢光和吸收可切换多功能太赫兹超材料

金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆

Switchable multifunctional terahertz metamaterial with slow-light and absorption functions based on phase change materials

Jin Jia-Sheng, Ma Cheng-Ju, Zhang Yao, Zhang Yue-Bin, Bao Shi-Qian, Li Mi, Li Dong-Ming, Liu Ming, Liu Qian-Zhen, Zhang Yi-Xin
PDF
HTML
导出引用
  • 基于相变材料Ge2Sb2Te5 (GST) 设计了一种太赫兹超材料, 在太赫兹波段实现了慢光和吸收功能的切换. 该超材料由三部分构成, 分别是金环构成的微结构层、SiO2介质层和GST薄膜. 研究结果表明: 当GST薄膜处于绝缘态时, 由于两个谐振环的电磁诱导透明效应, 入射THz光脉冲通过该THz超材料时群速度会减慢, 最大群延迟可以达到3.6 ps; 当GST薄膜转变为金属态时, THz超材料可实现双波段吸收, 在0.365 THz处吸收率可以达到97%, 在0.609 THz处吸收率可以实现完美吸收(吸收率100%). 另外还研究了该THz超材料的入射光偏振不敏感特性, 发现当入射光脉冲的偏振角从0°变化到90°时, THz超材料的慢光和吸收特性不受影响. 所设计的THz超材料在光缓存器、光传感器、光开关等领域具有潜在的应用价值.
    Terahertz (THz) wave usually refers to the electromagnetic wave with a frequency between 0.1—10.0 THz. It has potential applications in wireless communication, biomedical image processing, nondestructive testing, military radar, and other fields. However, owing to function limitation of the natural material, multifunctional terahertz devices are difficult to design and fabricate, which becomes a bottleneck for THz technology. The emergence of metamaterials fills the gap in the electromagnetic materials in the THz frequency band, and now they are widely used in THz functional devices, such as THz modulators, THz absorbers, THz filters, THz sensors, and THz slow-light devices. However, the above-mentioned THz devices all have a single function. For practical application, multifunction integrated THz devices have broader application prospects. As is well known, the Ge2Sb2Te5 (GST) is a typical phase transition material. Under excitation of light or electronic field, GST can realize a reversible phase transition between insulating state and metallic state. In order to achieve a switchable multifunctional THz device, in this work we design a THz metamaterial based on the phase transition material GST and realize a switchable function with slow-light and absorption functions. The THz metamaterial consists of a microstructure layer, which is composed of gold rings arranged periodically, and a GST thin film spaced by an SiO2 dielectric layer. When GST is in an insulating state, the two gold rings are coupled to each other under the excitation of the THz pulse. Then, we can observe the EIT-like effect. The THz pulses propagating in the metamaterial we proposed can be slowed down, and a maximum group delay of the THz pulse can reach 3.6 ps. However, when GST is in a metallic state, we can observe two absorption peaks in the spectrum of the proposed THz metamaterial, and the absorption rate is 97% at a frequency of 0.365 THz and 100% at a frequency of 0.609 THz. Furthermore, we also investigate the polarization properties of the proposed THz metamaterial, and find that it has polarization insensitive characteristic. When the polarization angle of the incident THz light pulse changes from 0° to 90°, the slow-light and absorption properties of the THz metamaterial are unaffected. The proposed THz metamaterial has potential applications in THz biomedical image processing, THz optical switching, and THz optical buffer.
      通信作者: 马成举, chengjuma@xsyu.edu.cn
    • 基金项目: 西安石油大学创新与实践能力培养项目(批准号: YCS20213210)资助的课题.
      Corresponding author: Ma Cheng-Ju, chengjuma@xsyu.edu.cn
    • Funds: Project supported by the Innovation and Practice Ability Training Project of Xi’an Shiyou University, China (Grant No. YCS20213210).
    [1]

    Tonouchi M 2007 Nat. Photonics 1 97Google Scholar

    [2]

    Yang X W, Zhao F 2022 Acta Opt. Sin. 42 0806002Google Scholar

    [3]

    Wang Y Y, Wang G Q, Xu D G, Jiang B Z, Ge M L, Wu L M, Yang C Y, Mu N, Wang S, Chang C, Chen T, Feng H, Yao J Q 2022 Acta Opt. Sin. 42 1017001Google Scholar

    [4]

    Shen Y C, Lo T, Taday P F, Cole B E, Tribe W R, Kemp M C 2005 Appl. Phys. Lett. 86 241116Google Scholar

    [5]

    Li H Y, Li Q, Xia Z W, Zhao Y P, Chen D Y Wang Q 2013 J. Infrared, Millimeter, Terahertz Waves 34 88Google Scholar

    [6]

    Zhou J F, Zhang L, Tuttle G, Koschny T, Soukoulis C M 2006 Phys. Rev. B 73 041101Google Scholar

    [7]

    Seddon N, Bearpark T 2003 Science 302 1537Google Scholar

    [8]

    Zhong Y J, Huang Y, Zhong S C 2021 Opt. Mater. 14 110996Google Scholar

    [9]

    Cai H 2018 Adv. Opt. Mater. 6 1800257Google Scholar

    [10]

    Zhu H L, Zhang Y, Ye L F, Li Y K, Xu Y H, Xu R 2020 Opt. Express 28 414039Google Scholar

    [11]

    Hu F R, Wang H, Zhang X W, Xu X L, Jiang W Y, Rong Q, Zhao S, Jiang M Z, Zhang W T 2019 IEEE J. Sel. Top. Quantum Electron. 25 4700207Google Scholar

    [12]

    Seo M, Park H R 2020 Adv. Opt. Mater. 8 1900662Google Scholar

    [13]

    Cui W, Wang Y X, He Z H, He H 2021 Results Phys. 26 104356Google Scholar

    [14]

    Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, Freymann G V, Linden S, Wegener M 2009 Science 325 1513Google Scholar

    [15]

    Makino K, Kato K, Saito Y, Fons P, Kolobov A V, Tominaga J J, Nakano T, Nakajima M 2019 J. Mater. Chem. C 7 8209Google Scholar

    [16]

    Zhou K, Nan J Y, Shen J B, Li Z P, Cao J C, Song Z T, Zhu M, He B Q, Yan M, Zeng H P, Li H 2021 APL Mater. 9 101113Google Scholar

    [17]

    Guo L Y, Ma X H, Chang Z Q, Xu C L, Liao J, Zhang R 2021 J. Mater. Res. Technol 14 772Google Scholar

    [18]

    Fabio A, Brian K, Dragoslav G, Nickolay V L, Gamani K 2012 Appl. Phys. Lett. 100 111104Google Scholar

    [19]

    Sun H Y, Zhao L, Dai J S, Liang Y Y, Guo J P, Meng H Y, Liu H Z, Dai Q F, Wei Z C 2020 Nanomaterials 10 1359Google Scholar

    [20]

    Galván A M, Hernández J G 2000 J. Appl. Phys. 87 760Google Scholar

    [21]

    Manjappa M, Chiam S Y, Cong L Q, Bettiol A A, Zhang W L, Singh R J 2015 Appl. Phys. Lett. 106 181101Google Scholar

    [22]

    Meng F Y, Wu Q, Erni D, Wu K, Lee J C 2012 IEEE Trans. Microwave Theory Tech. 60 3013Google Scholar

    [23]

    Niakan N, Askari M, Zakery A 2012 J. Opt. Soc. Am. B 29 2329Google Scholar

    [24]

    Sun H, Hu Y Z, Tang Y H, You J, zhou J H, Liu H Z, Zheng X 2020 Photonics Res. 8 263Google Scholar

    [25]

    Bagcia F, Akaoglu B 2018 J. Appl. Phys. 123 173101Google Scholar

    [26]

    Suna Y B, Shi Y P, Liu X Y, Song J M, Lia M P, Wang X D, Yang F H 2021 Nanoscale Adv. 3 4072Google Scholar

    [27]

    Mattiucci N, Bloemer M J, Aközbek N, D’Aguanno G 2013 Sci. Rep. 3 3203Google Scholar

  • 图 1  THz超材料结构示意图 (a) THz超材料阵列; (b) 微结构单元俯视图; (c) 微结构单元侧视图

    Fig. 1.  Schematic structure diagram of the THz metamaterials: (a) THz metamaterial array; (b) top view of microstructure cells; (c) side view of microstructure units.

    图 2   (a) GST薄膜处于绝缘状态时, 外环、内环和双环结构的透射光谱图; (b)—(d) 0.453, 0.547, 0.834 THz处超材料结构的表面电流分布

    Fig. 2.  (a) Transmission spectrum of outer ring, inner ring, and double ring structures with GST films in an insulating state; (b)–(d) surface current distribution of metamaterial structures at 0.453, 0.547, and 0.834 THz.

    图 3   (a) THz超材料的类EIT效应的理论计算与仿真结果; (b) THz光脉冲在超材料中传输时的相位变化和相对群延迟

    Fig. 3.  (a) Theoretical calculation and simulation results of EIT-like effects of THz metamaterials; (b) phase change and relative group delay of THz light pulse transmission in metamaterials.

    图 4   (a) THz超材料的透射、反射和吸收光谱; (b) THz超材料的外环、内环和双环微结构的吸收光谱

    Fig. 4.  (a) Transmission, reflection, and absorption spectra of THz metamaterials; (b) absorption spectra of the outer ring, inner ring, and two-loop microstructures of THz metamaterials.

    图 5  (a)—(c) SiO2层厚度h = 24 μm时, THz超材料结构的介电常数 (a)、磁导率(b)和等效阻抗(c); (d)不同SiO2层厚度时THz超材料结构的吸收光谱

    Fig. 5.  (a)–(c) Permittivity(a), permeability (b) and equivalent impedance (c) of THz metamaterial structure at SiO2 layer thickness h = 24 μm; (d) absorption spectrum of THz metamaterial structure at different SiO2 layer thickness.

    图 6  吸收光谱与入射角的关系

    Fig. 6.  Dependence of the absorption spectra on the incidence angle.

    图 7  入射光的偏振角从0°到90°变化时, THz超材料的透射光谱(a)、群延迟(b)和吸收光谱(c)

    Fig. 7.  Transmission spectrum (a), group delay (b), and absorption spectrum (c) of the THz metamaterials, when the polarization angle of the incident light varies from 0° to 90°.

    表 1  三种相态GST材料的Drude模型参数

    Table 1.  Drude model parameters of the GST materials for the three phases.

    相态ετσdc
    非晶态(a-GST)15.30
    面心立方(c-GST)38.21.61382
    六方(h-GST)60.65.292230
    下载: 导出CSV
  • [1]

    Tonouchi M 2007 Nat. Photonics 1 97Google Scholar

    [2]

    Yang X W, Zhao F 2022 Acta Opt. Sin. 42 0806002Google Scholar

    [3]

    Wang Y Y, Wang G Q, Xu D G, Jiang B Z, Ge M L, Wu L M, Yang C Y, Mu N, Wang S, Chang C, Chen T, Feng H, Yao J Q 2022 Acta Opt. Sin. 42 1017001Google Scholar

    [4]

    Shen Y C, Lo T, Taday P F, Cole B E, Tribe W R, Kemp M C 2005 Appl. Phys. Lett. 86 241116Google Scholar

    [5]

    Li H Y, Li Q, Xia Z W, Zhao Y P, Chen D Y Wang Q 2013 J. Infrared, Millimeter, Terahertz Waves 34 88Google Scholar

    [6]

    Zhou J F, Zhang L, Tuttle G, Koschny T, Soukoulis C M 2006 Phys. Rev. B 73 041101Google Scholar

    [7]

    Seddon N, Bearpark T 2003 Science 302 1537Google Scholar

    [8]

    Zhong Y J, Huang Y, Zhong S C 2021 Opt. Mater. 14 110996Google Scholar

    [9]

    Cai H 2018 Adv. Opt. Mater. 6 1800257Google Scholar

    [10]

    Zhu H L, Zhang Y, Ye L F, Li Y K, Xu Y H, Xu R 2020 Opt. Express 28 414039Google Scholar

    [11]

    Hu F R, Wang H, Zhang X W, Xu X L, Jiang W Y, Rong Q, Zhao S, Jiang M Z, Zhang W T 2019 IEEE J. Sel. Top. Quantum Electron. 25 4700207Google Scholar

    [12]

    Seo M, Park H R 2020 Adv. Opt. Mater. 8 1900662Google Scholar

    [13]

    Cui W, Wang Y X, He Z H, He H 2021 Results Phys. 26 104356Google Scholar

    [14]

    Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, Freymann G V, Linden S, Wegener M 2009 Science 325 1513Google Scholar

    [15]

    Makino K, Kato K, Saito Y, Fons P, Kolobov A V, Tominaga J J, Nakano T, Nakajima M 2019 J. Mater. Chem. C 7 8209Google Scholar

    [16]

    Zhou K, Nan J Y, Shen J B, Li Z P, Cao J C, Song Z T, Zhu M, He B Q, Yan M, Zeng H P, Li H 2021 APL Mater. 9 101113Google Scholar

    [17]

    Guo L Y, Ma X H, Chang Z Q, Xu C L, Liao J, Zhang R 2021 J. Mater. Res. Technol 14 772Google Scholar

    [18]

    Fabio A, Brian K, Dragoslav G, Nickolay V L, Gamani K 2012 Appl. Phys. Lett. 100 111104Google Scholar

    [19]

    Sun H Y, Zhao L, Dai J S, Liang Y Y, Guo J P, Meng H Y, Liu H Z, Dai Q F, Wei Z C 2020 Nanomaterials 10 1359Google Scholar

    [20]

    Galván A M, Hernández J G 2000 J. Appl. Phys. 87 760Google Scholar

    [21]

    Manjappa M, Chiam S Y, Cong L Q, Bettiol A A, Zhang W L, Singh R J 2015 Appl. Phys. Lett. 106 181101Google Scholar

    [22]

    Meng F Y, Wu Q, Erni D, Wu K, Lee J C 2012 IEEE Trans. Microwave Theory Tech. 60 3013Google Scholar

    [23]

    Niakan N, Askari M, Zakery A 2012 J. Opt. Soc. Am. B 29 2329Google Scholar

    [24]

    Sun H, Hu Y Z, Tang Y H, You J, zhou J H, Liu H Z, Zheng X 2020 Photonics Res. 8 263Google Scholar

    [25]

    Bagcia F, Akaoglu B 2018 J. Appl. Phys. 123 173101Google Scholar

    [26]

    Suna Y B, Shi Y P, Liu X Y, Song J M, Lia M P, Wang X D, Yang F H 2021 Nanoscale Adv. 3 4072Google Scholar

    [27]

    Mattiucci N, Bloemer M J, Aközbek N, D’Aguanno G 2013 Sci. Rep. 3 3203Google Scholar

  • [1] 王杨涛, 景蔚萱, 韩枫, 孟庆之, 林启敬, 赵立波, 蒋庄德. 圆环孔阵列超材料对热释电太赫兹探测器性能影响关系研究. 物理学报, 2023, 72(4): 048701. doi: 10.7498/aps.72.20221174
    [2] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器. 物理学报, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [3] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智. 基于双开口金属环的太赫兹超材料吸波体传感器. 物理学报, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [4] 王鑫, 王俊林. 太赫兹波段电磁超材料吸波器折射率传感特性. 物理学报, 2021, 70(3): 038102. doi: 10.7498/aps.70.20201054
    [5] 庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强. 双频带太赫兹超材料吸波体传感器传感特性. 物理学报, 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [6] 王玥, 崔子健, 张晓菊, 张达篪, 张向, 周韬, 王暄. 超材料赋能先进太赫兹生物化学传感检测技术的研究进展. 物理学报, 2021, 70(24): 247802. doi: 10.7498/aps.70.20211752
    [7] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [8] 江孝伟, 武华. 吸收波长和吸收效率可控的超材料吸收器. 物理学报, 2021, 70(2): 027804. doi: 10.7498/aps.70.20201173
    [9] 严巍, 王纪永, 曲俞睿, 李强, 仇旻. 基于相变材料超表面的光学调控. 物理学报, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [10] 王磊, 肖芮文, 葛士军, 沈志雄, 吕鹏, 胡伟, 陆延青. 太赫兹液晶材料与器件研究进展. 物理学报, 2019, 68(8): 084205. doi: 10.7498/aps.68.20182275
    [11] 阎昊岚, 程雅青, 王凯礼, 王雅昕, 陈洋玮, 袁秋林, 马恒. 烷基环己苯异硫氰酸液晶材料太赫兹波吸收. 物理学报, 2019, 68(11): 116102. doi: 10.7498/aps.68.20190209
    [12] 陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨. 基于超材料的可调谐的太赫兹波宽频吸收器. 物理学报, 2019, 68(24): 247802. doi: 10.7498/aps.68.20191216
    [13] 翟世龙, 王元博, 赵晓鹏. 基于声学超材料的低频可调吸收器. 物理学报, 2019, 68(3): 034301. doi: 10.7498/aps.68.20181908
    [14] 张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云. 工字形太赫兹超材料吸波体的传感特性研究. 物理学报, 2015, 64(11): 117801. doi: 10.7498/aps.64.117801
    [15] 邹涛波, 胡放荣, 肖靖, 张隆辉, 刘芳, 陈涛, 牛军浩, 熊显名. 基于超材料的偏振不敏感太赫兹宽带吸波体设计. 物理学报, 2014, 63(17): 178103. doi: 10.7498/aps.63.178103
    [16] 马岩冰, 张怀武, 李元勋. 基于科赫分形的新型超材料双频吸收器. 物理学报, 2014, 63(11): 118102. doi: 10.7498/aps.63.118102
    [17] 韩松, 杨河林. 双向多频超材料吸波器的设计与实验研究. 物理学报, 2013, 62(17): 174102. doi: 10.7498/aps.62.174102
    [18] 刘亚红, 方石磊, 顾帅, 赵晓鹏. 多频与宽频超材料吸收器. 物理学报, 2013, 62(13): 134102. doi: 10.7498/aps.62.134102
    [19] 沈晓鹏, 崔铁军, 叶建祥. 基于超材料的微波双波段吸收器. 物理学报, 2012, 61(5): 058101. doi: 10.7498/aps.61.058101
    [20] 樊京, 蔡广宇. 一种基于金属开口谐振环和杆阵列的左手材料宽带吸收器. 物理学报, 2010, 59(9): 6084-6088. doi: 10.7498/aps.59.6084
计量
  • 文章访问数:  5093
  • PDF下载量:  173
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-07
  • 修回日期:  2023-02-12
  • 上网日期:  2023-02-23
  • 刊出日期:  2023-04-20

/

返回文章
返回