搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性相互作用的自旋-轨道耦合玻色-爱因斯坦凝聚体的淬火动力学

王欢 贺夏瑶 李帅 刘博

引用本文:
Citation:

非线性相互作用的自旋-轨道耦合玻色-爱因斯坦凝聚体的淬火动力学

王欢, 贺夏瑶, 李帅, 刘博

Quench dynamics of a spin-orbital coupled Bose-Einstein condensate with nonlinear interactions

Wang Huan, He Xia-Yao, Li Shuai, Liu Bo
PDF
HTML
导出引用
  • 研究了在二维自旋-轨道耦合的相互作用超冷玻色气体中存在一维光晶格时, 超流条纹相到超固相的非平衡动力学. 通过研究这一动力学过程中的缺陷(位相空间中的涡旋)及波函数的变化行为, 利用涡旋数及波函数的交叠等描述方法, 确定了考虑光晶格深度随时间线性变化的量子淬火动力学过程的转变时间. 发现在转变时间之前, 体系对于淬火过程没有响应. 当演化时间超过转变时间后, 系统开始迅速响应, 涡旋数及体系的波函数开始迅速变化. 当演化时间足够长时, 系统将达到稳态. 另外还发现, 在上述动力学过程中, 由于体系中自旋-轨道耦合的存在, 系统在空间中的密度分布与自旋在空间中的结构始终相伴生, 即具有拓扑结构的磁斯格明子(反斯格明子)的中心位置始终与体系密度分布的极小值位置相对应.
    In this work, we study the non-equilibrium quench dynamics from the superfluid stripe phase to the supersolid phase of a two dimensional spin-orbital coupled interacting Bose-Einstein condensate in the presence of a one dimensional optical lattice. The quench protocol here is constructed through varying the lattice depth linearly with the evolution time. By using the time-dependent Gutzwiller method, various physical quantities, such as the vortex number and the overlap of wave-function, have been investigated with respect to the quench time. Through analyzing the dynamical behavior of the above physical quantities, we find out the transition time of the quench procedure, which captures the freeze out time indicating the moment that the system catches the quench speed beginning to evolve quickly. Before the transition time, the dynamics is frozen and the state of the system cannot follow the changes in the Hamiltonian. While passing the transition time, we find that there are significant alterations to both the vortex number and the wave-function. At the transition time, on one hand the vortex number abruptly increases from zero; on the other hand the overlap of wave-function departures from 1 shortly. These signatures indicate that the system evolves rapidly when passing the transition time. Furthermore, we also find that due to the presence of spin-orbital coupling, the spin texture represents a periodic magnetic structure accompanying with the emergence of the supersolid dynamically. It is shown that during the quench procedure, the density distribution of the system are always accompanied with the spatial structure of spin texture, i.e., the central position of topological spin skyrmion (antiskyrmion) corresponding to the minimum position of the density distribution. The topological charge of the above spin structures also shows interesting dynamical properties. We find that the quantized topological charge appears with the emergence of the supersolid dynamically.
      通信作者: 刘博, liubophy@gmail.com
    • 基金项目: 国家重点研发计划(批准号: 2021YFA1401700, 2018YFA0307600)、国家自然科学基金(批准号: 12074305, 12147137, 11774282)和小米青年学者项目资助的课题
      Corresponding author: Liu Bo, liubophy@gmail.com
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2021YFA1401700, 2018YFA0307600), the National Natural Science Foundation of China (Grant Nos. 12074305, 12147137, 11774282), and the Xiaomi Young Scholar Program, China
    [1]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959Google Scholar

    [2]

    Nagaosa N, Sinova J, Onoda S, MacDonald A H, Ong N P 2010 Rev. Mod. Phys. 82 1539Google Scholar

    [3]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [4]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [5]

    Lin Y J, Jiménez-García K, Spielman I B 2011 Nature 471 83Google Scholar

    [6]

    Wang P J, Yu Z Q, Fu Z K, Miao J, Huang L H, Chai S J, Zhai H, Zhang J 2012 Phys. Rev. Lett. 109 095301Google Scholar

    [7]

    Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S, Zwierlein M W 2012 Phys. Rev. Lett. 109 095302Google Scholar

    [8]

    Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S, Pan J W 2012 Phys. Rev. Lett. 109 115301Google Scholar

    [9]

    Wu Z, Zhang L, Sun W. Xu X T, Wang B Z, Ji S C, Deng Y J, Chen S, Liu X J, Pan J W 2016 Science 354 83Google Scholar

    [10]

    Léonaed J, Morales A, Zupancic P, Esslinger T, Donner T 2017 Nature 543 87Google Scholar

    [11]

    Li J R, Lee J, Huang W, Burchesky S, Shteynas B, Top F C, Jamison A O, Ketterle W 2017 Nature 543 91Google Scholar

    [12]

    Gross E P 1957 Phys. Rev. 106 161Google Scholar

    [13]

    Gross E P 1958 Ann. Phys. 4 57Google Scholar

    [14]

    Boninsegni M 2009 Phys. Rev. B 79 174203Google Scholar

    [15]

    Leggett A J 1970 Phys. Rev. Lett. 25 1543Google Scholar

    [16]

    Clark B K, Ceperley D M 2006 Phys. Rev. Lett. 96 105302Google Scholar

    [17]

    Ray M W, Hallock R B 2008 Phys. Rev. Lett. 100 235301Google Scholar

    [18]

    Henkel N, Nath R, Pohl T 2010 Phys. Rev. Lett. 104 195302Google Scholar

    [19]

    Cinti F, Jain P, Boninsegni M, Micheli A, Zoller P, Pupillo G 2010 Phys. Rev. Lett. 105 135301Google Scholar

    [20]

    Henkel N, Cinti F, Jain P, Pupillo G, Pohl T 2012 Phys. Rev. Lett. 108 265301Google Scholar

    [21]

    Wessel S, Troyer M 2005 Phys. Rev. Lett. 95 127205Google Scholar

    [22]

    Danshita I, Sá de Melo C A R 2009 Phys. Rev. Lett. 103 225301Google Scholar

    [23]

    Tieleman O, Lazarides A, Smith C M 2011 Phys. Rev. A 83 013627Google Scholar

    [24]

    Wang H, Li S, Arzamasovs M, Liu W V, Liu B 2022 Phys. Rev. A 105 063301Google Scholar

    [25]

    Norcia M A, Politi C, Klaus L, Poli E, Sohmen M, Mark M J, Bisset R N, Santos L, Ferlaino F 2021 Nature 596 357Google Scholar

    [26]

    Bandyopadhyay S, Bai R, Pal S, Suthar K, Nath R, Angom D 2019 Phys. Rev. A 100 053623Google Scholar

    [27]

    Sable H, Gaur D, Bandyopadhyay S, Nath R, Angom D 2021 arXiv: 2106.01725 [cond-mat.quant-gas]

    [28]

    Shimizu K, Hirano T, Park J, Kuno Y, Ichinose I 2018 Phys. Rev. A 98 063603Google Scholar

    [29]

    Wang H, He X Y, Li S, Li H R, Liu B 2022 arXiv: 2209.12408 [cond-mat.quant-gas]

    [30]

    Titum P, Iosue J T, Garrison J R, Gorshkov A V, Gong Z X 2019 Phys. Rev. Lett. 123 115701Google Scholar

    [31]

    Chen Z, Tang T, Austin J, Shaw Z, Zhao L, Liu Y 2019 Phys. Rev. Lett. 123 113002Google Scholar

    [32]

    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885Google Scholar

    [33]

    Polkovnikov A, Sengupta K, Silva A, Vengalattore M 2011 Rev. Mod. Phys. 83 863Google Scholar

    [34]

    Goo J, Lim Y, Shin Y 2021 Phys. Rev. Lett. 127 115701Google Scholar

    [35]

    Huang Q, Yao R X, Liang L B, Wang S, Zheng Q P, Li D P, Xiong W, Zhou X J, Chen W L, Chen X Z, Hu J Z 2021 Phys. Rev. Lett. 127 200601Google Scholar

    [36]

    Shimizu K, Kuno Y, Hirano T, Ichinose I 2018 Phys. Rev. A 97 033626Google Scholar

    [37]

    Shimizu K, Hirano T, Park J, Kuno Y, Ichinose I 2018 New J. Phys. 20 083006Google Scholar

    [38]

    Goffe W L, Ferrier G D, Rogers J 1994 J. Econometrics 60 65Google Scholar

    [39]

    Kirkpatrick S, Gelatt C D, Vecchi M P 1983 Science 220 4598Google Scholar

    [40]

    Li S, Wang H, Li F L, Cui X L, Liu B 2020 Phys. Rev. A 102 033328Google Scholar

    [41]

    Ji A C, Liu W M, Song J L, Zhou F 2008 Phys. Rev. Lett. 101 010402Google Scholar

    [42]

    Choi S, Morgan S A, Burnett K 1998 Phys. Rev. A 57 4057Google Scholar

    [43]

    Tsubota M, Kasamatsu K, Ueda M 2002 Phys. Rev. A 65 023603Google Scholar

    [44]

    Antoine X, Duboscq R 2015 Comput. Phys. Commun. 193 95Google Scholar

    [45]

    Einkemmer L, Ostermann A 2014 SIAM J. Numer. Anal. 52 140Google Scholar

    [46]

    Kasamatsu K, Tsubota M, Ueda M 2004 Phys. Rev. Lett. 93 250406Google Scholar

    [47]

    Aftalion A, Mason P 2013 Phys. Rev. A 88 023610Google Scholar

    [48]

    Wang H, Wen L H, Yang H, Shi C X, Li J H 2017 J. Phys. B 50 155301Google Scholar

    [49]

    Liu C F, Fan H, Zhang Y C, Wang D S, Liu W M 2012 Phys. Rev. A 86 053616Google Scholar

    [50]

    Girvin S M 2000 Phys. Today 53 39Google Scholar

    [51]

    Kasamatsu K, Tsubota M, Ueda M 2005 Phys. Rev. A 71 043611Google Scholar

  • 图 1  (a)存在一维光晶格束缚的二维SOC相互作用超冷玻色气体的零温平衡态相图. 相图中包含两种平衡态物相分别为超流条纹相和超固相. 左下角和右上角的插图分别代表超流条纹相和超固相中自旋向上组分的密度分布, 其中超流条纹相的密度涨落只在空间中的一个方向即y方向存在, 而超固相是在整个二维空间形成周期分布. 插图中的超流条纹相是在$ V^{\prime}=0 $, $ \kappa^{\prime}=10.8 $的情况下, 而超固相则是在$ V^{\prime}=20 $, $ \kappa^{\prime}=10.8 $的情况下. 另外, 哈密顿量中的其他参数取为$ c_{0}^{\prime}=10 $, $ c_{2}^{\prime}=-0.8 c_{0}^{\prime} $$ k_{{\rm{L}}}^{\prime}=3.5 \pi $. (b)结构因子$ S_{\sigma }({\boldsymbol{k}}) $随光晶格深度的变化, 这里取 $ \kappa^{\prime}=10.8 $, 其他参数与图(a)一致

    Fig. 1.  (a) Equilibrium zero-temperature phase diagram as a function of the SOC strength and lattice depth. The phase diagram consists of two different phases, which are the superfluid stripe phase and supersolid phase. The insets show the density distribution of spin-up atoms for the superfluid stripe phase and supersolid phase, respectively. Here, we choose $ V^{\prime}=0 $, $\kappa^{\prime}=10.8 $ for the superfluid stripe phase and $V^{\prime}=20, \kappa^{\prime}=10.8 $ for the supersolid phase. Other parameters are chosen as $c_{0}^{\prime}=10, c_{2}^{\prime}=-0.8c_{0}^{\prime} $ and $ k_{\mathrm{L}}^{\prime}=3.5 \pi $. (b) Structure factor as a function of the lattice depth. Here, $\kappa^{\prime}=10.8 $, other parameters are the same as in panel (a).

    图 2  (a) 涡旋数Nv随演化时间的变化行为, 虚线的位置对应于转变时间$ {\hat{t}} $. 这里选取$ \tau_{{\rm{Q}}}=20 $, $ V_{{\rm{i}}}^{\prime}=0 $, $ V_{{\rm{f}}}^{\prime}=20 $, $ \gamma=0.03 $. (b), (c) 分别为$ t'=-20 $$ t'=260 $时刻自旋向上组分的波函数的相位角分布, 其中$ t'=-20=-\tau_{{\rm{Q}}} $代表系统演化的初始时刻. 哈密顿量中的其他参数与图1(a)一致

    Fig. 2.  (a) Vortex number Nv as a function of the evolution time. The dashed line corresponds to the transition time ${\hat{t}} $. Here, we choose τQ = 20, $V_{{\rm{i}}}^{\prime}=0, V_{{\rm{f}}}^{\prime}=20 $ and γ = 0.03. (b), (c) Snapshots of phase of the spin-up wave-function at $ t'=-20 $ and $ t'=260 $, respectively, where t′ = −20 = −τQ represents the initial time. Other parameters are the same as in Fig. 1(a)

    图 3  (a) 波函数交叠$ O(t') $随转变时间$ {\hat{t}} $的变化行为, 当$ O(t') $开始偏离1时, 所对应的$ {\hat{t}} $图2(a) 中的相同. (b) 系统的转变时间$ {\hat{t}} $γ的变化行为. 哈密顿量中的其他参数与图2一致

    Fig. 3.  (a) Overlap of the wave-function $ O(t') $ as a function of the transition time. When $O(t') $ begins to deviate from 1, the corresponding $ {\hat{t}}$ is the same as in Fig. 2(a). (b) Transition time $ {\hat{t}} $ as a function of γ. Other parameters are the same as in Fig. 2

    图 4  (a)—(c)自旋纹理的动力学演化行为, 对应的演化时间分别为$ t'=4,\; 80,\; 260 $. $ xy $平面内的矢量$ {\boldsymbol S}_{{\rm{in-plane}}} $用来描述自旋密度矢量在$ xy $平面内的分量, 颜色表示z方向的分量$ {\boldsymbol S}_{z} $. (d)—(f)系统沿x方向上的密度分布, 实线和虚线分别对应自旋两组分沿x方向的密度分布, y方向的位置分别由(a)—(c)中的实线和虚线标定. (g)—(i)拓扑荷密度分布. (a)—(i)中的‘*’和方块标记空间中的相同位置. 哈密顿量中的其他参数与图2一致

    Fig. 4.  (a)–(c) Spin texture as a function of the evolution time for t′ = 4, 80, 260, respectively. Here, the vector Sin−plane describes the xy-plane component of the spin density vector and the color represents the z-direction component. (d)–(f) Density distribution along x-direction, where the solid line and dashed line correspond to the density distribution of the two components along the x-direction, respectively. (g)–(i) Topological charge density. Here, the ‘*’ and square mark the same spatial position as shown in panel (a)–(i). Other parameters are the same as in Fig. 2

  • [1]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959Google Scholar

    [2]

    Nagaosa N, Sinova J, Onoda S, MacDonald A H, Ong N P 2010 Rev. Mod. Phys. 82 1539Google Scholar

    [3]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [4]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [5]

    Lin Y J, Jiménez-García K, Spielman I B 2011 Nature 471 83Google Scholar

    [6]

    Wang P J, Yu Z Q, Fu Z K, Miao J, Huang L H, Chai S J, Zhai H, Zhang J 2012 Phys. Rev. Lett. 109 095301Google Scholar

    [7]

    Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S, Zwierlein M W 2012 Phys. Rev. Lett. 109 095302Google Scholar

    [8]

    Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S, Pan J W 2012 Phys. Rev. Lett. 109 115301Google Scholar

    [9]

    Wu Z, Zhang L, Sun W. Xu X T, Wang B Z, Ji S C, Deng Y J, Chen S, Liu X J, Pan J W 2016 Science 354 83Google Scholar

    [10]

    Léonaed J, Morales A, Zupancic P, Esslinger T, Donner T 2017 Nature 543 87Google Scholar

    [11]

    Li J R, Lee J, Huang W, Burchesky S, Shteynas B, Top F C, Jamison A O, Ketterle W 2017 Nature 543 91Google Scholar

    [12]

    Gross E P 1957 Phys. Rev. 106 161Google Scholar

    [13]

    Gross E P 1958 Ann. Phys. 4 57Google Scholar

    [14]

    Boninsegni M 2009 Phys. Rev. B 79 174203Google Scholar

    [15]

    Leggett A J 1970 Phys. Rev. Lett. 25 1543Google Scholar

    [16]

    Clark B K, Ceperley D M 2006 Phys. Rev. Lett. 96 105302Google Scholar

    [17]

    Ray M W, Hallock R B 2008 Phys. Rev. Lett. 100 235301Google Scholar

    [18]

    Henkel N, Nath R, Pohl T 2010 Phys. Rev. Lett. 104 195302Google Scholar

    [19]

    Cinti F, Jain P, Boninsegni M, Micheli A, Zoller P, Pupillo G 2010 Phys. Rev. Lett. 105 135301Google Scholar

    [20]

    Henkel N, Cinti F, Jain P, Pupillo G, Pohl T 2012 Phys. Rev. Lett. 108 265301Google Scholar

    [21]

    Wessel S, Troyer M 2005 Phys. Rev. Lett. 95 127205Google Scholar

    [22]

    Danshita I, Sá de Melo C A R 2009 Phys. Rev. Lett. 103 225301Google Scholar

    [23]

    Tieleman O, Lazarides A, Smith C M 2011 Phys. Rev. A 83 013627Google Scholar

    [24]

    Wang H, Li S, Arzamasovs M, Liu W V, Liu B 2022 Phys. Rev. A 105 063301Google Scholar

    [25]

    Norcia M A, Politi C, Klaus L, Poli E, Sohmen M, Mark M J, Bisset R N, Santos L, Ferlaino F 2021 Nature 596 357Google Scholar

    [26]

    Bandyopadhyay S, Bai R, Pal S, Suthar K, Nath R, Angom D 2019 Phys. Rev. A 100 053623Google Scholar

    [27]

    Sable H, Gaur D, Bandyopadhyay S, Nath R, Angom D 2021 arXiv: 2106.01725 [cond-mat.quant-gas]

    [28]

    Shimizu K, Hirano T, Park J, Kuno Y, Ichinose I 2018 Phys. Rev. A 98 063603Google Scholar

    [29]

    Wang H, He X Y, Li S, Li H R, Liu B 2022 arXiv: 2209.12408 [cond-mat.quant-gas]

    [30]

    Titum P, Iosue J T, Garrison J R, Gorshkov A V, Gong Z X 2019 Phys. Rev. Lett. 123 115701Google Scholar

    [31]

    Chen Z, Tang T, Austin J, Shaw Z, Zhao L, Liu Y 2019 Phys. Rev. Lett. 123 113002Google Scholar

    [32]

    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885Google Scholar

    [33]

    Polkovnikov A, Sengupta K, Silva A, Vengalattore M 2011 Rev. Mod. Phys. 83 863Google Scholar

    [34]

    Goo J, Lim Y, Shin Y 2021 Phys. Rev. Lett. 127 115701Google Scholar

    [35]

    Huang Q, Yao R X, Liang L B, Wang S, Zheng Q P, Li D P, Xiong W, Zhou X J, Chen W L, Chen X Z, Hu J Z 2021 Phys. Rev. Lett. 127 200601Google Scholar

    [36]

    Shimizu K, Kuno Y, Hirano T, Ichinose I 2018 Phys. Rev. A 97 033626Google Scholar

    [37]

    Shimizu K, Hirano T, Park J, Kuno Y, Ichinose I 2018 New J. Phys. 20 083006Google Scholar

    [38]

    Goffe W L, Ferrier G D, Rogers J 1994 J. Econometrics 60 65Google Scholar

    [39]

    Kirkpatrick S, Gelatt C D, Vecchi M P 1983 Science 220 4598Google Scholar

    [40]

    Li S, Wang H, Li F L, Cui X L, Liu B 2020 Phys. Rev. A 102 033328Google Scholar

    [41]

    Ji A C, Liu W M, Song J L, Zhou F 2008 Phys. Rev. Lett. 101 010402Google Scholar

    [42]

    Choi S, Morgan S A, Burnett K 1998 Phys. Rev. A 57 4057Google Scholar

    [43]

    Tsubota M, Kasamatsu K, Ueda M 2002 Phys. Rev. A 65 023603Google Scholar

    [44]

    Antoine X, Duboscq R 2015 Comput. Phys. Commun. 193 95Google Scholar

    [45]

    Einkemmer L, Ostermann A 2014 SIAM J. Numer. Anal. 52 140Google Scholar

    [46]

    Kasamatsu K, Tsubota M, Ueda M 2004 Phys. Rev. Lett. 93 250406Google Scholar

    [47]

    Aftalion A, Mason P 2013 Phys. Rev. A 88 023610Google Scholar

    [48]

    Wang H, Wen L H, Yang H, Shi C X, Li J H 2017 J. Phys. B 50 155301Google Scholar

    [49]

    Liu C F, Fan H, Zhang Y C, Wang D S, Liu W M 2012 Phys. Rev. A 86 053616Google Scholar

    [50]

    Girvin S M 2000 Phys. Today 53 39Google Scholar

    [51]

    Kasamatsu K, Tsubota M, Ueda M 2005 Phys. Rev. A 71 043611Google Scholar

  • [1] 刘铭婕, 田亚莉, 王瑜, 李晓筱, 和小虎, 宫廷, 孙小聪, 郭古青, 邱选兵, 李传亮. 含自旋-轨道耦合的$ {{\bf{O}}}_{2}^{ - } $光谱常数计算. 物理学报, 2025, 74(2): 023101. doi: 10.7498/aps.74.20241435
    [2] 温丽, 卢卯旺, 陈嘉丽, 陈赛艳, 曹雪丽, 张安琪. 电子在自旋-轨道耦合调制下磁受限半导体纳米结构中的传输时间及其自旋极化. 物理学报, 2024, 73(11): 118504. doi: 10.7498/aps.73.20240285
    [3] 李新月, 祁娟娟, 赵敦, 刘伍明. 自旋-轨道耦合二分量玻色-爱因斯坦凝聚系统的孤子解. 物理学报, 2023, 72(10): 106701. doi: 10.7498/aps.72.20222319
    [4] 贺亚萍, 陈明霞, 潘杰锋, 李冬, 林港钧, 黄新红. Rashba自旋-轨道耦合调制的单层半导体纳米结构中电子的自旋极化效应. 物理学报, 2023, 72(2): 028503. doi: 10.7498/aps.72.20221381
    [5] 袁家望, 陈立, 张云波. 自旋-轨道耦合玻色爱因斯坦凝聚中多能级绝热消除理论. 物理学报, 2023, 72(21): 216701. doi: 10.7498/aps.72.20231052
    [6] 高建华, 黄旭光, 梁作堂, 王群, 王新年. 强相互作用自旋-轨道耦合与夸克-胶子等离子体整体极化. 物理学报, 2023, 72(7): 072501. doi: 10.7498/aps.72.20230102
    [7] 马赟娥, 乔鑫, 高瑞, 梁俊成, 张爱霞, 薛具奎. 可调自旋-轨道耦合玻色-爱因斯坦凝聚体的隧穿动力学. 物理学报, 2022, 71(21): 210302. doi: 10.7498/aps.71.20220697
    [8] 周永香, 薛迅. 自旋-轨道耦合系统的电子涡旋. 物理学报, 2022, 71(21): 210301. doi: 10.7498/aps.71.20220751
    [9] 高峰, 张红, 张常哲, 赵文丽, 孟庆田. SiH+(X1Σ+)的势能曲线、光谱常数、振转能级和自旋-轨道耦合理论研究. 物理学报, 2021, 70(15): 153301. doi: 10.7498/aps.70.20210450
    [10] 符浩, 曹凯源, 钟鸣, 童培庆. 两次淬火下横场中XY链的动力学量子相变. 物理学报, 2021, 70(18): 180502. doi: 10.7498/aps.70.20210728
    [11] 李吉, 刘斌, 白晶, 王寰宇, 何天琛. 环形势阱中自旋-轨道耦合旋转玻色-爱因斯坦凝聚体的基态. 物理学报, 2020, 69(14): 140301. doi: 10.7498/aps.69.20200372
    [12] 施婷婷, 汪六九, 王璟琨, 张威. 自旋轨道耦合量子气体中的一些新进展. 物理学报, 2020, 69(1): 016701. doi: 10.7498/aps.69.20191241
    [13] 文林, 梁毅, 周晶, 余鹏, 夏雷, 牛连斌, 张晓斐. 线性塞曼劈裂对自旋-轨道耦合玻色-爱因斯坦凝聚体中亮孤子动力学的影响. 物理学报, 2019, 68(8): 080301. doi: 10.7498/aps.68.20182013
    [14] 李吉, 刘伍明. 梯度磁场中自旋-轨道耦合旋转两分量玻色-爱因斯坦凝聚体的基态研究. 物理学报, 2018, 67(11): 110302. doi: 10.7498/aps.67.20180539
    [15] 贺丽, 余增强. 自旋-轨道耦合作用下玻色-爱因斯坦凝聚在量子相变附近的朗道临界速度. 物理学报, 2017, 66(22): 220301. doi: 10.7498/aps.66.220301
    [16] 黄珍, 曾文, 古艺, 刘利, 周鲁, 张卫平. 自旋-轨道耦合下冷原子的双反射. 物理学报, 2016, 65(16): 164201. doi: 10.7498/aps.65.164201
    [17] 贺丽, 余增强. 自旋-轨道耦合作用下双组分量子气体中的动力学结构因子与求和规则. 物理学报, 2016, 65(13): 131101. doi: 10.7498/aps.65.131101
    [18] 李志, 曹辉. 自旋轨道耦合玻色-爱因斯坦凝聚体在尖端势垒散射中的Klein隧穿. 物理学报, 2014, 63(11): 110306. doi: 10.7498/aps.63.110306
    [19] 李志, 王建忠. 自旋-轨道耦合玻色-爱因斯坦凝聚势垒散射特性的研究. 物理学报, 2013, 62(10): 100306. doi: 10.7498/aps.62.100306
    [20] 杜菲, 李旭, 黄祖飞, 李昂, 王春忠, 陈岗. 反尖晶石LiNiVO4中几何失措的抑制与磁有序. 物理学报, 2009, 58(1): 541-545. doi: 10.7498/aps.58.541
计量
  • 文章访问数:  4500
  • PDF下载量:  193
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-18
  • 修回日期:  2023-01-16
  • 上网日期:  2023-02-04
  • 刊出日期:  2023-05-20

/

返回文章
返回